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Beyond Standard Model: Where do we go from here?

Based on M. Farina, YN and D. Shih, arXiv:1808.08992 [hep-ph]. 

Searching for New Physics with 
Deep Autoencoders
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Supervised or Unsupervised
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Learn from labeled data Learn from unlabeled data

Machine learning algorithms can be classified into:

Anomaly detection

The system looks for patterns 
and extracts features in data.

Applications ) Clustering

Applications )

Supervised learning                        Unsupervised learning
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Anomaly Detection
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We need more ways to discover the unexpected at the LHC, and here is 
where unsupervised machine learning comes into play.

All the searches for new physics in the expected places 

have turned up empty.

We have considered many possibilities of BSM physics with top-down 
theory prejudice (supersymmetry, extra dimension, …)

Hitoshi Murayama



Autoencoder
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• Autoencoder learns to map background events back to themselves.

• It fails to reconstruct anomalous events that it has never encountered.

Autoencoder is an unsupervised learning algorithm that maps

an input to a latent compressed representation and then back to itself.

Signal the existence of anomaly !

Anomaly detection with autoencoder
The Keras Blog

Latent space



Sample Generation

Generate jet samples by using PYTHIA for hadronization and Delphes for 
detector simulation. 

We use sample sizes of 100k events for training and testing.

(The performance seems to saturate.)
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Background : QCD jets

Signal jets: top jets, RPV gluino jets
(decay to 3 light quark jets)

pT ∈[800,  900] GeV η <1

ΔR < 0.6

m !g = 400 GeV

Merge requirement : the partonic daughters of heavy resonance

                                 is within the fat jet, 

ΔR < 0.6Match requirement : heavy resonance is within the fat jet, 

The idea is general, but concentrate on detection of anomalous jets.



Jet Images
Concentrate on jet images ( 2D of eta and phi ) whose pixel intensities 
correspond to total pT.

1. Shift an image so that the centroid is at the origin 

Image pre-processing

2. Rotate the image so that the major principal axis is vertical

3. Flip the image so that the maximum intensity is in the upper right region

4. Normalize the image to unit total intensity 

5. Pixelate the image ( 37 x 37 pixels )
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Figure 2: The average of 100k jet images drawn from the CMS sample (37 ⇥ 37 pixels spanning

�⌘ = �� = 3.2). The grayscale intensity corresponds to the total p
T

in each pixel. Upper: no

preprocessing besides centering. Lower: with full preprocessing. Left: top jets. Right: QCD jets

top jets. After our preprocessing steps, the 3-prong substructure of the top jets becomes

readily apparent, while the QCD jets remain more dipole-like. (This should be contrasted

with the average images in the DeepTop paper, where the 3-prong substructure of the

top jets is much less apparent.)

5 Other improvements

5.1 Sample size

In the DeepTop paper, the training samples were limited to 150k+150k. Here we explore

the e↵ect on our CNN top tagger of increasing the training sample size. Shown in fig. 3

are the learning curves for the test accuracy vs. training sample size, for our two di↵erent

jet samples. (The training sample size is defined to be the number of top jets in the

training sample; an equal number of QCD jets were used. The test sample size was fixed

at 400k+400k jets.) We have shifted the learning curve for the DeepTop sample by a
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Average images

Left : top jets
Right : QCD jets

Macaluso, Shih (2018)



Autoencoder Architectures
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✓ Simple (dense) autoencoder

✓ Principal Component Analysis (PCA)

✓ Convolutional (CNN) autoencoder

Reconstruction error : a measure for how well autoencoder performs.

L(x, x̂) = 1
n

xi − x̂i
2

i=1

n

∑ x
x̂

: inputs

: outputs

Train autoencoder to minimize the reconstruction error on 
background events.

Architectures we consider :



Principal Component Analysis
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PCA is a technique to drop the least important variables 
by focusing on variance of data.

“PCA autoencoder”

Eigenvectors of covariance matrix of xn − c0 give desired axes. (c0 = xn / Nn∑ )

d : the number of principal components ( d < D )Γ = (e1  e2  ...  ed )

Original data First PC Reconstruction

“Encoder” “Decoder”

“Encoder” : “Decoder” :!xn = (xn − c0 )Γ ′xn = !xnΓ
T + c0

Find the axis 
and project 
data to the axis



Simple Autoencoder
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✓ Flatten a jet image into a single column vector.

Autoencoder with a single dense (fully-connected) layer 
as encoder and as decoder.

✓ Encoder and decoder are symmetric.

✓ The number of neurons in a hidden layer = 32.

✓ We use Keras with Tensorflow backend for implementation.

Training details

✦ The default Adam algorithm for optimizer. 

✦ Minibatch size of 1024 

✦ Early stopping : threshold = 0 and patience = 5

The number of images fed into the network at one time

To avoid overtraining

~100 iterations of optimization in one epoch
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Convolutional Neural Network (CNN)                          
✓ Show high performance for image recognitions 

✓ Maintain the spacial information of images

Convolutional Autoencoder

Max pooling
Weights Feature maps

Convolutional layer
Reduce the image size4 ×1+ 9 × 0 + 2 × (−1)

+5 ×1+ 6 × 0 + 2 × (−1)
+2 ×1+ 4 × 0 + 5 × (−1) = 2

Up sampling (pooling) 
also exists in autoencoder.

arXiv:1712.01670



Convolutional Autoencoder
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128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with

              a 3x3 kernel

MP2 : max pooling with

          a 2x2 reduction factor

32N : a fully-connected layer

         with 32 neurons

Autoencoder architecture :

US2 : up sampling with

          a 2x2 expansion factor

Encoder Latent space Decoder
M. Ke, C. Lin, Q. Huang (2017)



Weakly-supervised mode
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Reconstruction error is used as an anomaly threshold.

Weakly-supervised case with pure background events for training.

Autoencoder fails to reconstruct the signals.

Inputs

Outputs

Pixel-wise 
squared error

QCD Top Gluino

More error

Average imagesConvolutional autoencoder

Autoencoder learns to reconstruct the QCD background.



Autoencoder Performance
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For gluino jets, PCA ROC curve approaches jet mass ROC curve, 
suggesting PCA reconstruction error is highly correlated with jet mass.

εS =
(Correctly classified into signals)

(Total number of signal jets)

ε B =
(Misclassified into signals)

(Total number of backgrounds)

Smaller εBLarger εB
Larger εS Smaller εS

Top jets Gluino jets

Performance measure :

CNN outperforms the others.

PCA outperforms CNN.

Jet mass as 
anomaly 
threshold



Choosing the Latent Dimension k
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Too small k
Too large k

Autoencoder cannot capture all the features.
Autoencoder approaches trivial representation.

Optimizing the latent dimension using various signals is NOT a good idea.

Instead, we use the number of principal components in PCA and 
reconstruction error.

Amount of variance (“scree plot”) :

Choose k close to 
the “elbow”

Reconstruction error :

or
Consider cumulative 
% of total variance

Similar behavior 
as scree plot.

We choose

k = 6.



Choosing the Latent Dimension k
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Let’s examine our choice by looking at the top signal.

: the signal efficiency at 90% and 99% background rejectionE10, 100

Autoencoder performance plateaus around k = 6.

Each dot corresponds to the average of 5 independent training runs. 



Robustness with Other Monte Carlo
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Autoencoder probably learns fundamental jet features.

Evaluate autoencoder (trained on PYTHIA samples) on jet samples 
produced with HERWIG.

Autoencoder really does not learn artifacts special to a Monte Carlo?

The differences are small.

Separation between 
background and anomaly 
is preserved.

One possible check :

Comparison of 
reconstruction error 
(top jets, CNN)



Unsupervised mode
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Autoencoder performance is remarkably stable 
against signal contamination.
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Top jets for anomalous events
Reduction is not dramatic !

Train autoencoder on a sample of backgrounds contaminated by 
a small fraction of signal events.

A much more exciting possibility is to train autoencoder on actual data 
(which may contain some amount of signals).



Correlation with Jet Mass
18

In actual new physics searches, we look for subtle signals …

It’s more powerful to combine autoencoder with another variable 
such as jet mass.

Reconstruction error should not be correlated with jet mass.

Cut hard on reconstruction error to clean out the QCD background 
and look for a bump in jet mass distribution.
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Mean jet mass in bins of reco error 
for the QCD background

For PCA and dense, reco error 
is correlated with jet mass.

Jet mass distribution is stable 
against cutting on CNN loss.



Correlation with Jet Mass
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Jet mass distributions after cuts on CNN loss

Reduce the QCD background by 
a factor of 10, 100 and 1000.

Convolutional autoencoder is useful for 
a bump hunt in jet mass above 300 GeV.

Jet mass histograms normalized to LO gluino and QCD cross sections

Before the cut After the cut
S / B ≈ 4% S / B ≈ 25%



Comments on “QCD or What?”
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T. Heimel, G. Kasieczka, T. Plehn, J. Thompson, arXiv:1808.08979 [hep-ph].

They also consider anomaly detection through autoencoder.

pp→ (φ→ aa→ cc  cc )+ jets
mφ = mt = 175 GeVma = 4 GeV

Signal jets : top jets, scalar decay to jets, dark showers

Performance is comparable.

Top jets



Comments on “QCD or What?”
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Additional adversary tries to extract 
jet mass from autoencoder output.

Autoencoder wants the adversary 
to be as unsuccessful as possible.

Autoencoder will avoid all information on jet mass.

They take an alternative approach using adversarial networks.

Correlation with jet mass

Non-adversarial Adversarial

Fake peak

Flatten



Summary

✓ Autoencoder learns to map background events back to themselves 
but fails to reconstruct signals that it has never encountered before.
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✓ Reconstruction error is used as an anomaly threshold.

✓ Autoencoder performance is stable against signal contamination

which enables us to train autoencoder on actual data.

✓ Jet mass distribution is stable against cutting on CNN loss and 
convolutional autoencoder is useful for a bump hunt in jet mass.

✓ Thresholding on reco error gives a significant improvement of S/B.



Future directions
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✓ Testing out autoencoder on other signals. 

( Other numbers of subjets, non-resonant particles, … )

Thank you.

✓ Training autoencoder to flag entire events as anomalous, 
instead of just individual fat jets.

✓ Trying other autoencoder architectures on the market to improve 
the performance.

✓ Understanding what the latent space actually learns.

( Jet mass? N-subjettiness? ) …

Autoencoder is a powerful new method to search for 
any signal of new physics without prejudice !



Backup Material



What is Machine Learning?
A1

Weights

Weights

✓ Modeled loosely after the human brain

✓ Powerful machine learning-based techniques 
used to solve many real-world problems

✓ Containing weights between neurons 
that are tuned by learning from data

Neural Networks                         

Machine learning : technique to give computer systems the ability

                                  to learn with data without being explicitly programmed.

Networks contain multiple hidden layers Deep learning                       

Machine can learn the feature of data which human has not realized ! 



The goal of training is to minimize loss function :

Δθ = −η∇L

Weights are updated according to 
derivative of loss function :

Loss function

Weights

L

θ

Initial weights

Minimum Learning rate

What is Machine Learning?

Mean squared error (MSE) :

Cross entropy :

L = f (p(θ , xi ), yi )
i
∑ : Prediction

: Target value of example i: Input

p(θ , xi )

yixi

θ : Weights

f (p, y) = (p − y)2

f (p, y) = −(y log p + (1− y)log(1− p))

A2



Keras Codes
A3

A Keras code for autoencoder architectures

A.1 Dense

1 input_img = Input(shape =(37*37 ,))

2 layer = Dense(32, activation=’relu ’)( input_img)

3 encoded = Dense(6, activation=’relu ’)( layer)

4

5 layer = Dense(32, activation=’relu ’)( encoded)

6 layer = Dense (37*37 , activation=’relu ’)( layer)

7 decoded=Activation(’softmax ’)( layer)

8

9 autoencoder=Model(input_img ,decoded)

10 autoencoder.compile(loss=keras.losses.mean_squared_error ,

11 optimizer=keras.optimizers.Adam ())

A.2 CNN

1 input_img=Input(shape= (40, 40, 1))

2

3 layer=input_img

4 layer=Conv2D (128, kernel_size =(3, 3),

5 activation=’relu ’,padding=’same ’)( layer)

6 layer=MaxPooling2D(pool_size =(2, 2),padding=’same ’)( layer)

7 layer=Conv2D (128, kernel_size =(3, 3),

8 activation=’relu ’,padding=’same ’)( layer)

9 layer=MaxPooling2D(pool_size =(2, 2),padding=’same ’)( layer)

10 layer=Conv2D (128, kernel_size =(3, 3),

11 activation=’relu ’,padding=’same ’)( layer)

12 layer=Flatten ()( layer)

13 layer=Dense(32, activation=’relu ’)( layer)

14 layer=Dense (6)( layer)

15 encoded=layer

16

17 layer=Dense(32, activation=’relu ’)( encoded)

18 layer=Dense (12800 , activation=’relu ’)( layer)

19 layer=Reshape ((10 ,10 ,128))( layer)

20 layer=Conv2D (128, kernel_size =(3, 3),

21 activation=’relu ’,padding=’same ’)( layer)

22 layer=UpSampling2D ((2 ,2))( layer)

23 layer=Conv2D (128, kernel_size =(3, 3),

24 activation=’relu ’,padding=’same ’)( layer)

25 layer=UpSampling2D ((2 ,2))( layer)

26 layer=Conv2D(1, kernel_size =(3, 3),padding=’same ’)( layer)

27 layer=Reshape ((1 ,1600))( layer)

18

•  Simple autoencoder



Keras Codes
A4

A Keras code for autoencoder architectures

A.1 Dense

1 input_img = Input(shape =(37*37 ,))

2 layer = Dense(32, activation=’relu ’)( input_img)

3 encoded = Dense(6, activation=’relu ’)( layer)

4

5 layer = Dense(32, activation=’relu ’)( encoded)

6 layer = Dense (37*37 , activation=’relu ’)( layer)

7 decoded=Activation(’softmax ’)( layer)

8

9 autoencoder=Model(input_img ,decoded)

10 autoencoder.compile(loss=keras.losses.mean_squared_error ,

11 optimizer=keras.optimizers.Adam ())

A.2 CNN

1 input_img=Input(shape= (40, 40, 1))

2

3 layer=input_img

4 layer=Conv2D (128, kernel_size =(3, 3),

5 activation=’relu ’,padding=’same ’)( layer)

6 layer=MaxPooling2D(pool_size =(2, 2),padding=’same ’)( layer)

7 layer=Conv2D (128, kernel_size =(3, 3),

8 activation=’relu ’,padding=’same ’)( layer)

9 layer=MaxPooling2D(pool_size =(2, 2),padding=’same ’)( layer)

10 layer=Conv2D (128, kernel_size =(3, 3),

11 activation=’relu ’,padding=’same ’)( layer)

12 layer=Flatten ()( layer)

13 layer=Dense(32, activation=’relu ’)( layer)

14 layer=Dense (6)( layer)

15 encoded=layer

16

17 layer=Dense(32, activation=’relu ’)( encoded)

18 layer=Dense (12800 , activation=’relu ’)( layer)

19 layer=Reshape ((10 ,10 ,128))( layer)

20 layer=Conv2D (128, kernel_size =(3, 3),

21 activation=’relu ’,padding=’same ’)( layer)

22 layer=UpSampling2D ((2 ,2))( layer)

23 layer=Conv2D (128, kernel_size =(3, 3),

24 activation=’relu ’,padding=’same ’)( layer)

25 layer=UpSampling2D ((2 ,2))( layer)

26 layer=Conv2D(1, kernel_size =(3, 3),padding=’same ’)( layer)

27 layer=Reshape ((1 ,1600))( layer)

18

•  Convolutional autoencoder



CWoLa Hunting
A5

J. Collins, K. Howe, B. Nachman, arXiv:1805.02664 [hep-ph].

Another approach to anomaly detection to extend bump hunt 
with machine learning.

Classification without labels (CWoLa)
A classifier is trained to distinguish 
statistical mixtures of classes.

Mass distribution

Metodiev, Nachman, Thaler

Auxiliary information Y = (x, y)

Background :

Signal :

Toy model

−0.5 < x < 0.5
−0.5 < y < 0.5

−w / 2 < x < w / 2
−w / 2 < y < w / 2


