Small x-physics and Glasma dynamics in ultra-relativistic collisions

Tuomas Lappi
tuomas.v.v.lappi@jyu.fi

March 6, 2023

GGI, 2023

1. Calculate (to lowest order, one tree diagram) the differential QED cross section

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\frac{|\mathcal{M}|^{2}}{16 \pi s^{2}} \tag{1}
\end{equation*}
$$

for $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$scattering neglecting all the masses. Express the result in terms of the Mandelstam invariants s, t and u. What is the high energy limit of the cross section, i.e. the limit t fixed, $s \sim-u \rightarrow \infty$?
2. In the previous problem, what happens if you replace the photon by a massless scalar particle? I.e. replace $g_{\mu \nu} \rightarrow 1$ in the photon propagator and $\gamma^{\mu} \rightarrow 1$ in the vertex. What is the high energy limit now? (This calculation is shorter than the previous one).
3. (a) Show (this is easy) that if

$$
\frac{\mathrm{d} \sigma_{\text {el. }}}{\mathrm{d}^{2} \mathbf{q}_{T}}=\left|\frac{i}{2 \pi} \int \mathrm{~d}^{2} \mathbf{b}_{T} e^{-i \mathbf{q}_{T} \cdot \mathbf{b}_{T}} \Gamma\left(\mathbf{b}_{T}\right)\right|^{2}
$$

then

$$
\sigma_{\mathrm{el}}=\int \mathrm{d}^{2} \mathbf{b}_{T}\left|\Gamma\left(\mathbf{b}_{T}\right)\right|^{2}
$$

(b) The total cross section is

$$
\sigma_{\mathrm{tot}}=2 \int \mathrm{~d}^{2} \mathbf{b}_{T} \operatorname{Re}\left[\Gamma\left(\mathbf{b}_{T}\right)\right]
$$

and the partial wave unitarity bound is $\left|\Gamma\left(\mathbf{b}_{T}\right)\right|^{2} \leq 2 \operatorname{Re}\left[\Gamma\left(\mathbf{b}_{T}\right)\right]$, which leads to $\sigma_{\mathrm{el}} \leq \sigma_{\mathrm{tot}}$ (a pretty natural requirement). Where in the complex plane can $\Gamma\left(\mathbf{b}_{T}\right)$ be to satisfy this?
(c) Show that for the eikonal interaction in the Abelian theory, where we obtained

$$
\begin{equation*}
\Gamma\left(\mathbf{b}_{T}\right)=1-e^{i \chi\left(\mathbf{b}_{T}\right)} \tag{2}
\end{equation*}
$$

with a real χ, the cross section is purely elastic.
In the CGC, we have in stead

$$
\begin{gather*}
\frac{\mathrm{d} \sigma_{q+A \rightarrow q+X}}{\mathrm{~d}^{2} \mathbf{q}_{T}}=\left|\frac{i}{2 \pi} \int \mathrm{~d}^{2} \mathbf{b}_{T} e^{-i \mathbf{q}_{T} \cdot \mathbf{b}_{T}} \Gamma_{i \rightarrow j}\left(\mathbf{b}_{T}\right)\right|^{2} \\
\Gamma_{i \rightarrow j}\left(\mathbf{b}_{T}\right)=\delta_{i j}-V_{j i}\left(\mathbf{b}_{T}\right), \tag{3}
\end{gather*}
$$

with a Wilson line $V_{j i}\left(\mathbf{b}_{T}\right)$ and color indices $i, j \in 1, \ldots, N_{\mathrm{c}}$, and the cross sections need to be averaged $\left(\rangle)\right.$ over color configurations of the target, i.e. different $V_{j i}\left(\mathbf{b}_{T}\right)$.
4. (Kovchegov \& Levin, exercise $5.1 \mathrm{a}, \mathrm{b}$) The gluon field radiated from a fast-moving quark can be written using usual covariant theory Feynman rules as

$$
\begin{equation*}
A_{\mu}^{a}(k)=-i g t^{a} \frac{-i g_{\mu \nu}}{k^{2}+i \varepsilon} \bar{u}_{\sigma}(p-k) \gamma^{\nu} u_{\sigma^{\prime}}(p)(2 \pi) \delta\left((p-k)^{2}\right) \tag{4}
\end{equation*}
$$

The incoming quark is on shell, with $p^{\mu}=\left(p^{+}, 0, \mathbf{0}_{T}\right)$.
(a) Simplify the Dirac structure using the eikonal kinematics $p^{+} \approx(p-k)^{+} \gg k^{+}$
(b) Then Fourier-transform

$$
\begin{equation*}
A_{\mu}^{a}(x)=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} e^{-i k \cdot x} A_{\mu}^{a}(k) \tag{5}
\end{equation*}
$$

to get the field in coordinate space

$$
\begin{equation*}
A_{\mathrm{cov}}^{+a}=-\frac{g}{\pi} t^{a} \delta\left(x^{-}\right) \ln \left|\mathbf{x}_{T}\right| \Lambda \tag{6}
\end{equation*}
$$

5. Consider two (independent of each other) transverse (i, $j \in\{1,2\}$) pure gauge fields that depend only on transverse coordinates $A_{i}^{(1,2)}=A_{i, a}^{(1,2)} t^{a}=\frac{i}{g} V\left(\mathbf{x}_{T}\right) \partial_{i} V^{\dagger}\left(\mathbf{x}_{T}\right)$. Recall the expression for the field strength tensor $F_{\mu \nu}$ and show that these pure gauges have no longitudinal magnetic field $F_{i j}^{(1,2)}=0$. Then consider a field that is the sum of the two: $A_{i}=A_{i}^{(1)}+A_{i}^{(2)}:$ what is its longitudinal magnetic field $F_{i j}$?
