Small x-physics and Glasma dynamics in ultra-relativistic collisions

Tuomas Lappi tuomas.v.v.lappi@jyu.fi

March 6, 2023

GGI, 2023

1. Calculate (to lowest order, one tree diagram) the differential QED cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{|\mathcal{M}|^2}{16\pi s^2} \tag{1}$$

for $e^-\mu^- \to e^-\mu^-$ scattering neglecting all the masses. Express the result in terms of the Mandelstam invariants s, t and u. What is the high energy limit of the cross section, i.e. the limit t fixed, $s \sim -u \to \infty$?

- 2. In the previous problem, what happens if you replace the photon by a massless scalar particle? I.e. replace $g_{\mu\nu} \to 1$ in the photon propagator and $\gamma^{\mu} \to 1$ in the vertex. What is the high energy limit now? (This calculation is shorter than the previous one).
- 3. (a) Show (this is easy) that if

$$\frac{\mathrm{d}\sigma_{\mathrm{el.}}}{\mathrm{d}^{2}\mathbf{q}_{T}} = \left|\frac{i}{2\pi}\int\mathrm{d}^{2}\mathbf{b}_{T}e^{-i\mathbf{q}_{T}\cdot\mathbf{b}_{T}}\Gamma(\mathbf{b}_{T})\right|^{2}$$

then

$$\sigma_{\rm el} = \int d^2 \mathbf{b}_T |\Gamma(\mathbf{b}_T)|^2$$

(b) The total cross section is

$$\sigma_{\rm tot} = 2 \int d^2 \mathbf{b}_T \operatorname{Re}[\Gamma(\mathbf{b}_T)],$$

and the partial wave unitarity bound is $|\Gamma(\mathbf{b}_T)|^2 \leq 2 \operatorname{Re}[\Gamma(\mathbf{b}_T)]$, which leads to $\sigma_{\rm el} \leq \sigma_{\rm tot}$ (a pretty natural requirement). Where in the complex plane can $\Gamma(\mathbf{b}_T)$ be to satisfy this?

(c) Show that for the eikonal interaction in the Abelian theory, where we obtained

$$\Gamma(\mathbf{b}_T) = 1 - e^{i\chi(\mathbf{b}_T)},\tag{2}$$

with a real χ , the cross section is purely elastic.

In the CGC, we have in stead

$$\frac{\mathrm{d}\sigma_{q+A\to q+X}}{\mathrm{d}^{2}\mathbf{q}_{T}} = \left|\frac{i}{2\pi}\int\mathrm{d}^{2}\mathbf{b}_{T}e^{-i\mathbf{q}_{T}\cdot\mathbf{b}_{T}}\Gamma_{i\to j}(\mathbf{b}_{T})\right|^{2}$$
$$\Gamma_{i\to j}(\mathbf{b}_{T}) = \delta_{ij} - V_{ji}(\mathbf{b}_{T}), \tag{3}$$

with a Wilson line $V_{ji}(\mathbf{b}_T)$ and color indices $i, j \in 1, ..., N_c$, and the cross sections need to be averaged ($\langle \rangle$) over color configurations of the target, i.e. different $V_{ji}(\mathbf{b}_T)$. 4. (Kovchegov & Levin, exercise 5.1 a,b) The gluon field radiated from a fast-moving quark can be written using usual covariant theory Feynman rules as

$$A^a_\mu(k) = -igt^a \frac{-ig_{\mu\nu}}{k^2 + i\varepsilon} \bar{u}_\sigma(p-k)\gamma^\nu u_{\sigma'}(p)(2\pi)\delta((p-k)^2)$$

$$\tag{4}$$

The incoming quark is on shell, with $p^{\mu} = (p^+, 0, \mathbf{0}_T)$.

- (a) Simplify the Dirac structure using the eikonal kinematics $p^+ \approx (p-k)^+ \gg k^+$
- (b) Then Fourier-transform

$$A^{a}_{\mu}(x) = \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} e^{-ik \cdot x} A^{a}_{\mu}(k)$$
(5)

to get the field in coordinate space

$$A_{\rm cov}^{+a} = -\frac{g}{\pi} t^a \delta(x^-) \ln |\mathbf{x}_T| \Lambda \tag{6}$$

5. Consider two (independent of each other) transverse $(i, j \in \{1, 2\})$ pure gauge fields that depend only on transverse coordinates $A_i^{(1,2)} = A_{i,a}^{(1,2)} t^a = \frac{i}{g} V(\mathbf{x}_T) \partial_i V^{\dagger}(\mathbf{x}_T)$. Recall the expression for the field strength tensor $F_{\mu\nu}$ and show that these pure gauges have no longitudinal magnetic field $F_{ij}^{(1,2)} = 0$. Then consider a field that is the sum of the two: $A_i = A_i^{(1)} + A_i^{(2)}$: what is its longitudinal magnetic field F_{ij} ?