Addressing hard questions to soft gluons

Giuseppe Marchesini Memorial Meeting GGI, Florence, 18.05.2017

> Yuri Dokshitzer LPTHE, UPMC & PNPI

Working on a project with Pino is like falling in love: exciting, never boring and with unpredictable results

> 20 papers 1600 citations

The main theme - physics of soft gluon radiation

Virtual convergence

Hard Processes in Quantum Chromodynamics Yuri L. Dokshitzer, Dmitri Diakonov, S.I. Troian (St. Petersburg, INP). Phys.Rept. 58 (1980) 269-395 Cited by 811 records

indirect multiple soft gluon radiation effects

Jet Structure and Infrared Sensitive Quantities in Perturbative QCD A. Bassetto (Trento), M. Ciafaloni (Florence & Pisa, Scuola Normale Superiore), G. Marchesini (Parma). Phys.Rept. 100 (1983) 201-272 Cited by 649 records

direct manifestations in the final state structure

Real interaction

Measuring color flows in hard processes via hadronic correlations		1990
Dispersive approach to power behaved contribution	s in QCD hard processes	1995
Nonperturbative effects in the energy-energy correlation 1 with Bryan. Then, a series of studies with/by Gavin, Gulia & Andrea		1999
On large angle multiple gluon radiation	2003	
Hadron collisions and the fifth form-factor Soft gluons at large angles in hadron collisions	2005	
Revisiting parton evolution and the large-x limit with Gavin	2005	
N=4 SUSY Yang-Mills: three loops made simple(r)	2006	

Wise Dispersive Method

Hidden message from QCD Radiophysics

Quarks and gluons - QCD partons - involved in a hard interactions act as elements of a color antenna - a composite source of additional gluon radiation.

Soft gluon effects (accompanying radiation plus virtual corrections) to 2 -> 2 hard parton scattering is rather involved as it does not reduce to combination of "color charges" of the participating partons

Especially true for gluon-gluon scattering.

Here one encounters 6 (5 for SU(3)) color channels that mix with each other under soft gluon radiation ...

A difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators.

Our revision of this problem has revealed a strange (if not mysterious) feature ...

Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension for gluon-gluon scattering

$$\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{t \, u}{s^2} \right) \cdot \hat{\Gamma} \right\} \cdot M$$

6=3+3. Three eigenvalues are "simple".

Three "ain't-so-simple " ones were found to satisfy the cubic equation

$$\begin{bmatrix} E_i - \frac{4}{3} \end{bmatrix}^3 - \frac{(1+3b^2)(1+3x^2)}{3} \begin{bmatrix} E_i - \frac{4}{3} \end{bmatrix} - \frac{2(1-9b^2)(1-9x^2)}{27} = 0,$$
$$x = \frac{1}{N}, \qquad b \equiv \frac{\ln(t/s) - \ln(u/s)}{\ln(t/s) + \ln(u/s)}$$

Mark the mysterious symmetry w.r.t. to x -> b

interchanging internal (group rank) and external (scattering angle) variables . . .

An open quest for "theoretical theory"

Our experience *may* help to resolve a still hanging "*superlogs*" mystery (Mike Seymour, Jeff Forshaw & Co)

Super-leading logarithms in non-global observables in QCD (2006) Breakdown of QCD coherence?

On the Breaking of Collinear Factorization in QCD (2012)

the origin of the trouble : in high pQCD orders, a Coulomb exchange btw incoming color charges starts messing with scattering dynamics

> G.M. & Y.D; thought about, but not through; unfinished and unpublished

The main hint:

Better be damn careful when trying to solve

- 1. an unphysical problem by means of
- 2. the standard scattering theory (representing <inl and lout> states as plane waves, in the momentum space)

N=4 SUSY: a CLASSICAL QFT ?

an inviting heresy

Let us see what sort of functions the N=4 parton Hamiltonian is made of

In spite of having many states ($s = 0, \frac{1}{2}, 1$), the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:

 $\gamma_{+}(N+2) = \tilde{\gamma}_{+}(N+1) = \gamma_{0}(N) = \tilde{\gamma}_{-}(N-1) = \gamma_{-}(N-2) \equiv \gamma_{\text{uni}}(N)$

$$\gamma_{\rm uni}^{(1)}(N) = -S_1(N) = -\int_0^1 \frac{dx}{x} \left(x^N - 1\right) \cdot \frac{x}{x-1} \equiv \mathsf{M}\left[\frac{x}{(1-x)_+}\right]$$

This is nothing but (the Mellin image of) the classical (LBK) gluon radiation spectrum !

 $S_1(N) = \sum_{k=1}^{N} \frac{1}{k} = \psi(N+1) - \psi(1)$ Euler Harmonic Sum

Beyond the 1st loop the answer is more complex. New interesting functions show up

harmonic sums

Euler-Zagier harmonic sums

In higher orders enter
$$m > 1$$

$$S_m(N) = \sum_{k=1}^{N} \frac{1}{k^m} = \frac{(-1)^m}{\Gamma(m)} \int_0^1 dx \, x^N \frac{\ln^{m-1}x}{1-x} + \zeta(m)$$
QCD and the "Basel problem" The problem posed in 1644 by Pietro Mengoli, solved by 28 year old Leonhard Euler in 1735.
Euler : look upon $\frac{\sin x}{x}$ as an infinite degree polynomial = an infinite product of roots
"... the other results of this chapter will be of similar nature: that is, correct but unproven"
 $\zeta_2 = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \equiv S_2(\infty)$ $\zeta_{2n} \equiv S_{2n}(\infty) \propto \pi^{2n}$

more and more transcendental ...

Euler-Zagier harmonic sums

In higher orders enter m > 1 $S_m(N) = \sum_{k=1}^N \frac{1}{k^m} = \frac{(-1)^m}{\Gamma(m)} \int_0^1 dx \, x^N \, \frac{\ln^{m-1} x}{1-x} + \zeta(m)$

 Starting from the 2nd loop, one encounters also negative indices.

multiple indices — nested sums

 $S_{m,\vec{\rho}}(N) = \sum_{k=1}^{N} \frac{S_{\vec{\rho}}(k)}{k^m} \qquad (\vec{\rho} = (m_1, m_2, \dots, m_i))$

"transcedentality" of a Harmonic Sum = the sum of its indices

twist-2 anomalous dimension for N=4 SYM Anatoly Kotikov - Lev Lipatov (2000) $\gamma_1 = -S_1$ $\gamma_2 = \frac{1}{2}S_3 + S_1S_2 + (\frac{1}{2}S_{-3} + S_1S_{-2} - S_{-2,1})$

Principle of Maximal Transcedentality hypothesis: sum of indices = 2L-1

N=4 SYM vs QCD

Compare parton Hamiltonians

N=4 SYM QCD 1st loop: 1 line 1st loop: 1 symbol 2nd loop: 1 line 2nd loop: 1 page 1/2 page 3rd loop : 3rd loop: 200 pages Exploring another hidden symmetry - "Gribov-Lipatov reciprocity" 1 line D-r & Marchesini (2006) Beccaria & Fiorini (2009) 4 loops Romuald Janik & Co (2010+) 5 loops someone (one day) ... ALL loops ?

why care ?

QCD and SUSY-QCD share the gluon sector !

Importantly, the maximal transcedentality (*clagon*) structures constitute the bulk of the QCD anomalous dimensions.

Employ $\mathcal{N} = 4$ SYM to simplify the essential part of the QCD dynamics

N=4 SYM dynamics is *classical*, in (un)certain sense

No truly quantum effects are being seen

(look at the β -function and/or the anomalous dimension)

If this is true, the goal would be

to derive a one-line-all-orders expression for γ from $\gamma^{(1)}$ in $\mathcal{N}=4$ SYM and then to export it into QCD, to cover "90%" of the small-distance parton dynamics

