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We analyse a wide variety of
quark-dominated processes and observables, and show how the power contri-
butions are specified in lowest order by the behaviour of one-loop Feynman
diagrams containing a gluon of small virtual mass. We discuss both collinear
safe observables (such as the ete™ total cross section and 7 hadronic width,
DIS sum rules, eTe™ event shape variables and the Drell-Yan K-factor) and
collinear divergent quantities (such as DIS structure functions, ete™ fragmen-
tation functions and the Drell-Yan cross section).



Testing place: event shapes

Thrust:

2-jet event: [ ~1 3-jet event: T ~2/3

here exist many other measures of aspects of the shape: Thrust-Major,
C-parameter, broadening, heavy-jet mass, jet-resolution parameters,. . .



Power corrections matter for event shapes
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Power corrections matter for event shapes

Schematic picture:
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universality of ot v. data (ellipses should all coincide. . .)
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The data clearly say something is wrong with this assumption
initially, most clearly pointed out by the JADE collaboration 5



A first key result with Pino (+Yuri & A. Lucenti)
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ldea of “wise dispersive method": probe non-perturbative effects by
integrating over virtuality of an infrared gluon.

But such a “massive” gluon will necessarily decay to two gluons or gqg
that go in different directions.
issue raised: Nason & Seymour '95

So: explicitly include the calculation of that splitting.
A very simple result: for thrust, non-perturbative correction simply
gets rescaled by a numerical “Milan” factor

M ~ 1.49

Matrix elements from Berends and Giele '88 + Dokshitzer, Marchesini & Oriani '92
M first calculated for thrust: Dokshitzer, Lucenti, Marchesini & GPS 97

ns piece for o, : Beneke, Braun & Magnea '97

calculation fixed: Dasgupta, Magnea & Smye '99



2nd key observation with Pino et al.
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There are two classes of event shape

1) those that are a linear combination of contributions from individual
emissions 1 =1...n

SN = >~y =

(e.g. 1 — T ~ Zpt,-e_|”"|)

=1

2) those that are non-linear, e.g. By, BT, ps

P . S .

for the latter, the non-perturbative correction cannot possibly be
deduced just from a one-gluon calculation (2-gluon M diverges)



Jrd key observation with Pino et al

In the presence of perturbative emissions with p; > Agcp, then all
the non-linear event shapes turn out to have an “"emergent’ linearity
for non-perturbative emissions at scales ~ Agcp

N = S 4 e

= non-perturbative (NP) effects can still be deduced from the effect
of a single non-perturbative gluon, but its impact must be determined
by averaging over perturbative configurations

(NP) ~ /[dcbpe,t,] |M?(pert.)| x NP(pert.)

first such observation, for p,: Akhoury & Zakharov 95

universality of “Milan” factor in e e™: Dokshitzer, Marchesini, Lucenti & GPS '98
PT and NP effects together in jet broadenings: Dokshitzer, Marchesini & GPS '98
universality of “Milan” factor in DIS: Dasgupta & Webber '98

cross-talk between shape functions: Korchemsky & Tafat '00



comparing improvements to data
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comparing improvements to data
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comparing improvements to data
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many other investigations
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Overall, many analyses in late '90s and
early '00s paint a picture of general success
of the simple physical idea of probing NP
physics with perturbative tools.

Even if there are “corners’ where it doesn’t
work as well as we'd like. ..




NOW MOVE FORWARDS
15-20 YEARS

many NNLO calculations have become available

(fore e, DIS and pp)

LHC physics 1s reaching high precision,
not just for QCD physics, but also
e.g. today for “dark-matter” searches,
& in the future for Higgs physics



NNLO hadron-collider calculations v, time

W/Z total, H total, Harlander, Kilgore VBF total, Bolzoni, Maltoni, Moch, Zaro
H total, Anastasiou, Melnikov WH diff., Ferrera, Grazzini, Tramontano
H total, Ravindran, Smith, van Neerven Y-y, Catani et al.

WH total, Brein, Djouadi, Harlander Hj (partial), Boughezal et al.
H diff., Anastasiou, Melnikov, Petriello ttbar total, Czakon, Fiedler, Mitov
. , . . Z-y, Grazzini, Kallweit, Rathlev, Torre
H diff., Anastasiou, Melnikov, Petriello
. jii (partial), Currie, Gehrmann-De Ridder, Glover, Pires
W diff., Melnikov, Petriello
ZZ, Cascioli it et al.
W/Z diff., Melnikov, Petriello _ .
_ _ o ZH diff., Ferrera, Grazzini, Tramontano
H diff., Catani, Grazzin WW . Gehrmann et al.
' 3 ttbar diff., Czakon, Fiedler, Mitov
Z-y, W-y, Grazzini, Kallweit, Rathlev
Hj, Boughezal et al.
Wij, Boughezal, Focke, Liu, Petriello

explosion of calculations
In past 24 months

ZZ, Grazzini, Kallweit, Rathlev
Hj, Caola, Melnikov, Schulze
Zj, Boughezal et al.
WH diff., ZH diff., Campbell, Ellis, Williams

Y-y, Campbell, Ellis, Li, Williams
WZ, Grazzini, Kallweit, Rathlev, Wiesemann
WW , Grazzini et al.
MCFM at NNLO, Boughezal et al.
piz, Gehrmann-De Ridder et al.

Zj, Gehrmann-De Ridder et al.
2002 2004 2006 2008 2010 2012 2014

single top, Berger, Gao, C.-Yuan, Zhu
HH, de Florian et al.

piH, Chen et al.

piz, Gehrmann-De Ridder et al.

ji, Currie, Glover, Pires

as of April 2017, let me know of omissions yX, Campbell, Ellis, Williams
Yj, Campbell, Ellis, Williams
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indirect constraints on Hcc coupling

impact of modified Hcc joint limits on kc & Kb

coupling on Higgs+jet pr @ HL-LHC

(1o daldpr (1o daldpy ,)sm
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| LHCRunII cem-

Fady Bishara, Ulrich Haisch, Pier Francesco Monni and Emanuele Re, arXiv:1606.09253
see also Y. Soreq, H. X. Zhu, and J. Zupan, JHEP 12, 045 (2016), 1606.09621
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Extracting o¢s from e+e- event shapes and jet rates

> Two “best” determinations are from same group ALEPH (jets&shapes) ;-,: ' ® | D
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thrust & “best” lattice are 4-0 apart

Comments:

» thrust & C-parameter are highly correlated observables

» Analysis valid far from 3-jet region, but not too deep into
2-jet region — at LEP, not clear how much of distribution
satisfies this requirement

> thrust fit shows noticeable sensitivity to fit region
(C-parameter doesn't)
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Non-perturbative effects in Z p; — (issues hold also for Higgs py)

r-QCoc: l S
O..gm‘nsl-

%Z L/ So4 ¢t aluoh
_<
caﬁuon -Z c,uark
\féeh

17



Non-perturbative effects in Z p;
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Non-perturbative effects in Z p;
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Non-perturbative effects in Z p;

» Inclusive Z cross section should have
2,2 : 4
~/A\"/M" corrections (~10 " ?)

» Z pr is not inclusive so corrections
can be ~A/M.

> Size of effect can’t be probed by
turning MC hadronisation on/oft
[maybe by modifying underlying MC
parameters? ]

» Shifting Z pr by a finite amount
illustrates what could happen

(o with shift) / (o without shift)
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shlft of y 4 pT
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... [ § ......... conservatlve(?) ............... .
40 60 80 100 120 140
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Closing remarks

This is just one of several fun physics topics
that were pushed forwards in the late '90s

with Pino in Milan.
small x, resummations were others

Pino wrote ~ 15 articles with the students
and postdocs then
(including Banfi, Dasgupta, GPS, Smye,
Zanderighi)

Many of the collaborations that formed
between them then have continued to this

day, easily having produced another ~ )6
articles. 24

Gavin Salam (CERN/Princeton Pino and Power Corrections Pino2012 May 29 2012 15 / 15



EXTRAS
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LHC PRECISION: PERTURBATION THEORY

Z+jet process 1s main
background for LHC
dark-matter searches.

And powerful input for
PDF fits.

Perturbative results are
Very precise...
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LHC PRECISION: EXPERIMENT
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REMARKS

Analytic v. MC

> Non-pert. effects are always relevant at
accuracies we’re interested in

» Watch out for cancellation between
“hadronisation” and MPI/UE (separate
physical effects)

» Definition of perturbative / non-
perturbative is ambiguous

» Alternative to MC: analytical
estimates.
MC'’s have strong pT dependence,
missing in analytical estimates
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non-perturbative effects may become a key limitation at 1%




STANDARD MODEL TODAY
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STANDARD MODEL TODAY
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STANDARD MoDEL BY END OF LHC (~2035)
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(data - SM)/SM
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new physics isn’t
just a single
number that’s
wrong (think g-2)

but rather a
distinct scaling
pattern of
deviation (~ pr?)

moderate and high
pr’s have similar
statistical
significance — so
it’s useful to
understand whole

pT range



