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This talk is about certain aspects of superconformal field theories with moduli.

The work I will report here is an extension of earlier work done in collaboration with
Gomis, Hsin, Komargodski, Seiberg and Schwimmer [1509.08511].

There we exploited extended supersymmetry to compute certain local terms in the
generating functional which allowed us to determine the sphere partition function as a
function of the data (Kählerpotential) of the conformal manifold.

We extended this to semi-local terms, in the way which will be described in some detail.

As in the earlier paper (to be partially reviewed shortly) this will be based on a study of
the (Super-Weyl) anomaly polynomial of a generic SCFT with extended SUSY in even
dimensions (N = (2, 2) in d = 2 and N = 2 in d = 4).

The results obtained are very general and I think they fit well with the general theme of
the workshop

Supersymmetric Quantum Field Theories in the Non-perturbative Regime



Outline:

I CFTs with moduli

I Their Weyl anomalies

I SCFTs and their Super-Weyl anomalies

I Lessons from the anomaly polynomial

I Illustrative example: N = 2 SUSY Maxwell theory

I Further comments, summary, conclusions



CFTs with Moduli or Exactly Marginal Deformations

Given a fiducial CFT S∗, we can perturb it by operators Oi ⊂ CFT

S = S∗ +
∑
i

λi

∫
Oi(x) d

dx

the deformed CFT is generally not a CFT ...

• this is obvious for relevant, i.e. dim Oi < d, and irrelevant, i.e. dim Oi > d
operators:

in these cases dim λi > 0 and λi < 0 and we have an explicit mass scale which
breaks scale invariance classically



• for marginal perturbations with dim Oi = d ⇒ dimλi = 0, the situation is more
subtle:

I for Oi marginal but not exactly marginal, βi 6= 0 and scale invariance is
broken quantum mechanically

I the perturbed theory stays conformal, i.e. βi = 0, if the Oi are exactly
marginal operators, called moduli and denoted in the following Mi.

This implies additional conditions (besides dim Mi = d)

One necessary condition is vanishing 3-point functions at separate points
x 6= y 6= z 6= x

〈Mi(x)Mj(y)Mk(z)〉 = 0

this guarantees βi = 0 at lowest non-trivial order in λi

i.e. the operator product coefficients cijk which involve three moduli

Mi(x)Mj(y) =
cijk

|x− y]d
Mk(y) + . . .

vanish.



From now on: we consider only exactly marginal perturbations, i.e. we deal with CFTs
with free parameters λi.

They parametrize families of CFTs and are local coordinates – in the neighbourhood of
the reference CFT S∗ – on the conformal manifold or moduli space Mcon.

Even though β = 0, scale and therefore conformal invariance is broken in a subtle way
by the conformal or Weyl anomaly (cf. below).

In unitary theories this is unavoidable and, in fact, offers a tool for further analysis of
unitary CFTs.



Examples of CFTs with marginal deformations:

I d = 2: the world-sheet theories of compactified string theory

• String on a torus Tn: (2d sigma-model)

S =
∫
∂αX

i ∂αXi + gij ∂αX
i ∂αXj + bijε

αβ ∂αX
i ∂βX

j

n2 marginal perturbations: the (constant) components of gij and bij

Mcon = Γ\O(n, n)/O(n)×O(n)

• Type II string on CY: N = (2, 2) SCFTs on world-sheet

moduli are in 1-1 correspondence with Ricci flat deformations of the CY
metric and the B-field: complexified Kähler and complex structures
deformations

N =(2,2) SCFTs, dim(Mcon) = h1,1
CY + h2,1

CY,

Mcon = MKahler ×Mc.s.



I d = 4 superconformal field theories

• N = 4 SYM: λ ≡ τ = θ + i
g2
YM

, M = LYM

• N = 2 superconformal Seiberg-Witten theories: SYM with Nf = 2Nc

• N = 2 Maxwell . . . this will play a role later to check our claims

• N = 1 superconformal theories:

all chiral operators O with dim(O) = 3 are marginal operators

superpotential deformations W =
∑

λi Oi

− if there is no global symmetry other than U(1)R :
they are all exactly marginal

− if there is additional global symmetry G : Mcon = {λi}/GC

the remaining couplings are marginally irrelevant

Leigh-Strassler; Kol; Green-Komargodski-Seiberg-Tachikawa-Wecht



The conformal manifold Mcon can be endowed with a natural Riemannian structure:

A metric Gij(λ) on Mcon was proposed by Zamolodchikov

〈Mi(x)Mj(y)〉λ =
Gij(λ)

|x− y|2d

The Zamolodchikov metric Gij is positive definite for unitary theories.

It is of great interest, one reason being that in string compactifications the
Zamolodchikov metric of the world-sheet CFT determines to a large extend the low
energy effective action Dixon-Kaplunovsky-Louis,. . .

The geometric structure on the conformal manifold in terms of higher point correlation
functions of moduli was analysed a long time ago by Kutasov. We will return to it later.

But let us first consider the above two-point function somewhat closer.



For x 6= y the space-time dependence of

〈Mi(x)Mj(y)〉λ =
Gij(λ)

|x− y|2d

is completely fixed by conformal symmetry . . .

. . . but for x = y it is not defined, even in a distributional sense, as it has no Fourier
transform.

To define it requires regularization, leading to (for even d)

〈Mi(p)Mj(−p)〉 ∝ Gij (p
2)d/2 log Λ2/p2

This has an explicit scale Λ and therefore violates scale invariance:

under rescaling of momenta p → e−λp =̂ dilations x → eλx in position space:

δ
(anom)
λ

(
(p2)d/2 log Λ2/p2

)
= 2λ (p2)d/2 = 2λF.T.

(
�d/2δ(x)

)
This reflects an anomaly in the conservation Ward identity of the dilatation current

∂µ〈jµD(x)Mi(y)Mj(z)〉 = 〈Tµ
µ (x)Mi(y)Mj(z)〉 6= 0



Weyl or Trace Anomalies in CFTs . . . and some consequences

In even dimensions the two Ward identities following from

conservation and tracelessness of Tµν

cannot be maintained simultaneously.

Counterterms needed to regularize the theory necessarily break one of the symmetries.
Usually one chooses to give up Tµ

µ = 0. Either way it leads to

anomalous Ward identities in correlators involving the em-tensor

The above was just one example involving the correlator

〈Tµν(x)Mi(y)Mj(z)〉

Following the classification of Deser and Schwimmer, this is a type B anomaly, which is
characterized by the appearance of an explicit scale Λ in a counter term.



To put (anomalous) Ward identities into evidence, introduce space-time dependent
sources for the composite operators:

λi → J i(x) , ηµν → gµν(x)

↑ ↑
source for Mi Tµν

I Poincaré invariance (∂µTµν = 0) ⇔ diffeo invariance

δξgµν = ∇µξν +∇νξµ δξJ
i = ξµ ∂µJ

i

I conformal invariance (Tµ
µ = 0) ⇔ Weyl invariance

δσgµν = 2σ(x) gµν δσJ
i = 0

of the generating functional W [g, J ]

Z[g, J ] = e−W [g,J] =

∫
D[CFT ] e−(S∗[g]+

∫ √
g Ji(x)Mi(x)+ ... )

...... up to anomalies



. . . the non-invariance of the generating functional under Weyl transformations

δσW [g, J ] = A[g, J ] =

∫
√
g σa(g, J)

where
δσgµν = 2σgµν δσJ

i = 0

A priori conditions on the anomaly A :

• solves the Wess-Zumino consistency condition

δσ2A1 = δσ1A2

• A[g, J ] is a local functional

• diffeo invariant (in space-time and in Mcon)

• non-trivial: i.e. A 6= δσ

∫
local ⇒ cannot be removed by adding a local

counterterm



This is a cohomology problem which can be solved in any dimension

(non-trivial solutions only exist for even d).

If the metric is the only source, the general solution is known up to d = 8; e.g.

I d = 2

A = c

∫
√
g σ R

I d = 4

A = a

∫
√
g σ E4 + c

∫
√
g σ C2

In d = 4 there is also the trivial solution
∫ √

g σ�R ∝ δσ
∫ √

g R2



In the presence of moduli the cohomology problem was studied by Osborn. Additional
Weyl anomalies i.e. non-trivial solution of WZ consistency, are e.g.

I d = 2

A =

∫
√
g σ Gij(λ) ∂

µJ i ∂µJ
j Gij the Zamolodchikov metric

I d = 4

A =

∫
√
g σ

(
Gij(λ) �̂J i �̂Jj − 2Gij(λ)∂µJ

i
(
Rµν − 1

3g
µνR

)
∂νJ

j
)

A =

∫
√
g σ cijkl(J) ∂

µJ i∂µJ
j ∂νJk∂νJ

l
‘Osborn Anomaly’

where cijkl is a tensor on Mconv..

There are also trivial solutions, e.g. in d = 2

A =

∫
√
g�σK(J) ∝ δσ

∫
√
g K(J)R

where K is an arbitrary function on Mconv..



These are type B, i.e.

I they do not vanish for constant σ

or, equivalently,

I they arise from a log-divergent counterterm Deser-Duff-Isham

e.g. for the 2d example

log Λ2

∫
Gij(J) ∂

µJ i ∂µJ
j (∗)

and encode the two-point function

〈M(p)i M(−p)j〉λ = Gij p
2 log(Λ2/p2)

Taking three functional derivatives of (∗) gives

〈Mi(p1)Mj(p2)Mk(p3)〉λ = log Λ2
(
p23 Γij,k + cyclic permutations

)
with Γij,k the Christoffel connection for Gij



In position space this yields the semi-local expression

〈Mi(x)Mj(y)Mk(z)〉λ = Γij,k δ
(d)(x− y)

(
|y − z|−2d

)
reg.

+ cyclic permutations

which is now valid in any even d.

It implies a local term in the OPE of two moduli

Mi(x)Mj(y) ∼ δ(d)(x− y) Γk
ij Mk(y)

Note that while the OPE coefficient cijk vanishes by the property of Mi being moduli,
local terms are allowed. However . . .

. . . this local term in the OPE is not universal. It can be removed by a coordinate
change on Mconf., i.e. by redefining the sources:

J i → J i + Γi
jkJ

jJk + . . . Riemann normal coordinates

But the four point function contains universal data of Mconf., the Riemann tensor
Kutasov; Friedan-Konechny,. . .



In the remaining time we will apply the same logic to identify new local contributions to
the OPE of moduli and currents which cannot be removed by source redefinitions and
are therefore universal:

They are normalized by the Zamolodchikov metric, which is a tensor on Mconf and can
hence cannot be transformed away.

This will be a consequence of SUSY and applies to N = 2 theories in d = 4 and to
N = (2, 2) theories in d = 2. I will mainly discuss the former.

I will start with a discussion of their Super-Weyl Anomalies and then exploit them along
the above lines.



Super-Weyl Anomalies

here for N = 2 in d = 4.

As often with SUSY theories, it is convenient to start in superspace where SUSY is
manifest. But many details are hidden in the compact notation and they become
manifest only in the component field expansion.

The purely gravitational Weyl anomalies have been known for some time
Kuzenko; de Wit et al,. . .

Ag =

∫
d4x d4θ E Σ

(
aΞ + (c− a)WαβWαβ

)
+ c.c.

Here

I the integral is over one chiral half of superspace and E is the chiral density

I Ξ and Wαβ are gravitational (chiral) superfields

I Σ is a chiral superfield with Σ| = σ + iα where α is the gauge parameter of the
anomalous U(1)R ⊂ SU(2)R × U(1)R part of the R-symmetry

I a and c are, as before, parameters which are characteristic of a given SCFT



The moduli source dependent part is Gomis et al.

AJ =

∫
d4x d4θ d4θ̄ E (Σ + Σ̄)K(J, J̄)

I an integral over full N = 2 superspace, where E is the density

I J i and J̄ i are neutral chiral superfields with J i| = J i and Weyl weight zero

I K(J, J̄) is the Kähler potential for the Zamolodchikov metric

It is normalized to the 〈Mi M̄j〉 ∼ Gi̄ two-point function.

These are the three irreducible (in the sense of N = 2 SUSY) non-trivial solutions to
WZ consistency.

When expanded in components, they contain many terms

I some of them true Weyl anomalies, parametrized by σ

I some of them true U(1)R chiral anomalies, parametrized by α

I some of them trivial if it were not for SUSY, which demands them, i.e. there is no
local superspace counterterm to remove them



Explicit calculation yields, relying on Butter-de Wit-Kuzenko-Lodato

A =

∫
√
g

{
− a σ

(
E4 − 2

3 �R
)
+ c σ CµνρσCµνρσ − 2 c σ FµνFµν + 1

2c σ tr
(
FµνFµν

)
+ (a− c)αRµνρσR̃µνρσ + 2(c− a)αFµν F̃

µν + 1
2 (2 a− c)α tr

(
Fµν F̃

µν
)

+ 4 a∇µAµ �α− 8αAµ
(
Rµν − 1

3Rgµν

)
∇να− 8 aFµν A

µ ∇νσ

}
+1

6

∫
√
g

{
σRik̄jl̄∇µJ i∇µJ

j ∇ν J̄k∇ν J̄
l+σGi̄

(
�̂J i �̂J̄j−2

(
Rµν−1

3Rgµν
)
∂µJ

i ∂ν J̄
j
)

+ 1
2K �2σ + 1

6K ∂µR∂µσ +K
(
Rµν − 1

3Rgµν
)
∇µ∇νσ − 2Gi̄ ∇µJ i ∇ν J̄j ∇µ∇νσ

+ iGi̄

(
∇̂µ∇̂νJ i ∇ν J̄

j − ∇̂µ∇̂ν J̄j ∇νJ
i
)
∂µα−∇µAµ �α+ 2Aµ

(
Rµν − 1

3Rgµν
)
∇να

− σ Fµν Fµν + 2Fµν Aµ ∇νσ + Fµν ∇µK∇να

}
Here Aµ is the gauge field contained in the SUGRA multiplet which couples to the
U(1)R current jµ and Aµ is the Kähler connection

Aµ =
i

2

(
∂iK ∂µJ

i − ∂̄K ∂µJ̄
ı̄
)

and Fµν its field strength which depends on K through Gi̄.



Lessons from the anomaly polynomial

In Gomis et al we used the cohomologically trivial term

A =

∫
√
g

{
− a σ

(
E4 − 2

3 �R
)
+ c σ CµνρσCµνρσ − 2 c σ FµνFµν + 1

2c σ tr
(
FµνFµν

)
+ (a− c)αRµνρσR̃µνρσ + 2(c− a)αFµν F̃

µν + 1
2 (2 a− c)α tr

(
Fµν F̃

µν
)

+ 4 a∇µAµ �α− 8αAµ
(
Rµν − 1

3Rgµν

)
∇να− 8 aFµν A

µ ∇νσ

}
+1

6

∫
√
g

{
σRik̄jl̄∇µJ i∇µJ

j ∇ν J̄k∇ν J̄
l+σGi̄

(
�̂J i �̂J̄j−2

(
Rµν−1

3Rgµν
)
∂µJ

i ∂ν J̄
j
)

+ 1
2K �2σ + 1

6K ∂µR∂µσ +K
(
Rµν − 1

3Rgµν
)
∇µ∇νσ − 2Gi̄ ∇µJ i ∇ν J̄j ∇µ∇νσ

+ iGi̄

(
∇̂µ∇̂νJ i ∇ν J̄

j − ∇̂µ∇̂ν J̄j ∇νJ
i
)
∂µα−∇µAµ �α+ 2Aµ

(
Rµν − 1

3Rgµν
)
∇να

− σ Fµν Fµν + 2Fµν Aµ ∇νσ + Fµν ∇µK∇να

}
to establish the relation between the S4 partition function and the Kähler potential Z.

For later reference we also point out the Osborn anomaly. SUSY requires that the a
priori arbitrary tensor is the Riemann tensor on the conformal manifold; i.e. it is no
longer an independent anomaly



Here we will use

A =

∫
√
g

{
− a σ

(
E4 − 2

3 �R
)
+ c σ CµνρσCµνρσ − 2 c σ FµνFµν + 1

2c σ tr
(
FµνFµν

)
+ (a− c)αRµνρσR̃µνρσ + 2(c− a)αFµν F̃

µν + 1
2 (2 a− c)α tr

(
Fµν F̃

µν
)

+ 4 a∇µAµ �α− 8αAµ
(
Rµν − 1

3Rgµν

)
∇να− 8 aFµν A

µ ∇νσ

}
+1

6

∫
√
g

{
σRik̄jl̄∇µJ i∇µJ

j ∇ν J̄k∇ν J̄
l+σGi̄

(
�̂J i �̂J̄j−2

(
Rµν−1

3Rgµν
)
∂µJ

i ∂ν J̄
j
)

+ 1
2K �2σ + 1

6K ∂µR∂µσ +K
(
Rµν − 1

3Rgµν
)
∇µ∇νσ − 2Gi̄ ∇µJ i ∇ν J̄j ∇µ∇νσ

+ iGi̄

(
∇̂µ∇̂νJ i ∇ν J̄

j − ∇̂µ∇̂ν J̄j ∇νJ
i
)
∂µα−∇µAµ �α+ 2Aµ

(
Rµν − 1

3Rgµν
)
∇να

− σ Fµν Fµν + 2Fµν Aµ ∇νσ + Fµν ∇µK∇να

}
which is a type B Weyl anomaly and therefore tells us that the generating functional
contains the counterterm

log Λ2

∫
Fµν Fµν

which encodes non-local information in certain correlation functions.



Taking functional derivatives with respect to J i, J̄ ̄ and Aµ gives

〈Mi(k1)M ̄(k2) jµ(−k1 − k2)〉 = Gi̄(q
2 rµ − q · r qµ) log Λ2

q = k1 + k2 , r = k1 − k2

I This cannot originate from an ordinary three point function: the moduli are neutral
under U(1)R and therefore the structure constant cMM̄j vanishes

I This indicates that the U(1) R-current jµ appears in a contact term in the M M
operator product

Mi(x)M j(y) ∼ Gi̄

(
∂(x)
µ δ4(x− y) jµ(y)− ∂(y)

µ δ(x− y) jµ(y)
)
+ . . .

I It is proportional to the Zamolodchikov metric ⇒ cannot be removed by a
reparametrization of the sources

I It is a consequence of SUSY

I There could be other local terms in the OPE, but they do not couple to jµ



I The same counterterm generates correlation functions of an arbitrary number of
moduli and one current via 〈jµ jν〉

I The local term in the OPE will give a contribution to any correlator involving
moduli by coupling the moduli to the U(1)R current jµ.

The correlators of R-currents are represented by terms in the effective action containing
its source Aµ

⇒ the contribution of the local term in the OPE to correlators with moduli is obtained
by replacing Aµ in any term in the generating functional by 1

24cAµ.

The normalization follows from comparing the following two terms in the anomaly
polynomial

A ⊃
∫ (

− 2 c Fµν F
µν − 1

6
Fµν Fµν

)
This is the general formulation of factorization that we are using.



This raises the following question:

To what extend does factorization determine the form of the anomaly polynomial or,
more generally, the effective action?

If it were given completely by factorization, the two U(1) gauge fields would only appear
in the combination Aµ + 1

24cAµ. This is clearly not the case.

For instance, while there is a term αFµν F̃
µν , there is no term αFµνF̃µν , the

corresponding terms constructed from Aµ.

This seems to be dictated by supersymmetry, because there is no way to
supersymmetrize αFµνF̃µν , at least not within the setup used here (e.g. moduli in
chiral multiplets)

This being said, we will now show explicitly that factorization is required by
supersymmetry, but it is ‘contaminated’ by ‘ordinary’ terms which contribute to moduli
correlators.

We will do this by looking at a simply computable example . . .



N = 2 Super-Maxwell theory

It contains of a single vector multiplet (Aµ, λ
i, φ) where

λi SU(2)R doublet of Weyl fermions

φ complex boson

The action is (we ignore the SU(2)R triplet of auxiliary fields as it plays no role)

S = − 1

g2

∫
d4x

(
1

4
FµνF

µν +
g2

32π2
θ Fµν F̃

µν + i λ̄i σ̄
µ∂µλ

i + ∂µφ∂µφ̄

)
The theory has the U(1)R current

jµ = −λ̄i σ̄µλ
i + 2 i(φ∂µφ̄− φ̄ ∂µφ)

and one complex modulus with source τ = θ
2π + 4πi

g2

M =
i π

2

(
1

8
F+
µνF

+µν + i λ̄i σ̄
µ∂µλ

i − φ̄�φ

)
F± = F ± i F̃

Note that the last two terms in M are ‘redundant’ operators, i.e. they vanish on-shell.



One might be tempted to drop them, but as we will see, SUSY forbids this. While they
do not contribute to the Zamolodchikov metric

〈M(x)M(y)〉

which receives only contributions from ‘ordinary’ F±F± terms,

they contribute to higher point amplitudes via the ‘cancelled propagator mechanism’,
e.g.

M

jµ

M M

M

jµp2

p2 ⇒

They are responsible for the local term in the MM OPE and they are the only parts in
M which couple to the U(1)R current.

Explicit calculation of the one-loop triangle diagram gives

〈M(k1)M(k2) jµ(−k1 − k2)〉 = − 1

64

(
q2 rµ − q ·r qµ

)
log

Λ2

q2
+ local (1)

as expected from the anomaly polynomial.



Even more interesting is the four-point function:

we know that the Osborn anomaly is the signal of a log-divergent counterterm in the
four-point function and that N = 2 SUSY dictates that it is of the form

log Λ2

∫
Rik̄jl̄ ∂

µJ i∂µJ
j ∂ν J̄k∂ν J̄

l

where Rik̄jl̄ is the Riemann tensor on Mconf which is H+ with metric

Gττ̄ =
1

2 τ2

For pure Maxwell (no SUSY) where the modulus only contains the non-redundant part,
Osborn has computed the four-point function. It cannot be expressed in terms of the
Riemann tensor and is therefore not consistent with N = 2 SUSY. The difference

2 (∇µτ ∇µτ̄)
2 − 5 |∇µτ ∇µτ |2

can only be accounted for by the redundant part of M and the local part in the MM̄
OPE.



In fact, if one computes the contribution from the fermions and scalars in M to the
four-point function

〈M(k1)M(k2)M(k3)M(k4)〉

and adds them up, one precisely recovers the mismatch between Osborn’s result and
that required by supersymmetry.

This proves that the local-terms in the OPE are necessary to reproduce the result
consistent with SUSY.

But this also shows that the factorized contribution gets mixed with the ‘ordinary’ ones,
here those due to the non-redundant part of M .

While the fact that the factorized contribution is due to the redundant part of M is a
peculiarity of this simple free model, the general message is not.

Remark: In this simple model we can also explicitly determine the local terms in the
MM̄ OPE. Besides the U(1)R current two other operators appear: a second
‘accidental’ U(1) current and a scalar operator.



Further comments, etc.

• A similar analysis can be performed for N = (2, 2) in two dimensions, using their
anomaly polynomial. While there are differences in exactly how it is used, the main
conclusion is once more, that factorized contributions to the OPE of moduli are
universal and indispensible.

The result in d = 2 is even stronger: the complete anomalous part of the
(non-local) effective action is determined by factorization.

This can be verified on a simple example with a free (twisted-chiral) superfield
coupled to a chiral source.



• The existence of local contributions in certain OPs as required by SUSY should
have relevance for the bootstrap of these theories.

• It is an interesting question whether there is any relation to the issue of Kähler shift
anomalies which was discussed in recent papers by (Seiberg)-Tachikawa-Yonekura.
The factorization assumption might suggest that there is.



Thank you !


