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OLD STORY (mid 90-s):

• Exact non-perturbative Seiberg-Witten solution of N = 2
SUSY 4d gauge theories;

• Formulated (GKMMM95) in terms of integrable systems

(algebraic, . . . ), pure SUSY gauge theories ≡ a�ne or

periodic Toda chains;

• 5d (Nekrasov96,. . . ) generalization ≡ �relativization� of

an integrable system (compact 5-th dim's R ≡ 1
c);

• Relativistic Toda chains on Poisson-Lie groups (Fock &

AM 95-97) ⇒ towards cluster integrable systems (5d ≡
cluster).



NEW MILLENNIUM (2000 +):

• Seiberg-Witten prepotential as a limit of Nekrasov instan-

ton partition functions;

• Nekrasov functions as conformal blocks (2d CFT) and par-
tition functions of topological strings;

• 5d generalization �more e�ective�, quantum mechanics on

instanton moduli spaces, topological vertices etc;

• Relativistic Toda chains as cluster integrable systems: pure
combinatorial approach (GK,. . . ).



PRESENT DAYS (2012 +):

• Conformal blocks and isomonodromic deformation tau-

functions (Painlev�e equations etc): the �Kiev formulas�

(GIL-PG-MB & AÙ);

• 5d SUSY gauge theories and q-deformed conformal alge-

bras;

• Discrete integrable systems & q-di�erence equations: from

cluster mutations.



Main motivation:

• Non-perturbative SUSY gauge theories: equations for par-

tition functions (integrable systems etc);

• De�ne the partition functions as solutions � the way to

take into account non-perturbative e�ects;

• Testing at the level of the instanton expansions.



Amazingly:

• 4d → 4+1=5d (with in�nitely many KK modes) � more

simple, 5-th dimension as �time� for the quantum mechan-

ics on instanton moduli spaces, Nekrasov functions are

better de�ned;

• q-deformation from dual 2d-point of view (q-Virasoro etc),

and q-deformation of the Painlev�e systems: more simple

discrete dynamics, than continuous.

Lack of �physical intuition� is compensated.



Our (Bershtein-Gavrylenko-AM)

MAIN CONJECTURE (2017):

• Deautonomization of a cluster integrable system (de�ned

by a Newton polygon ∆), leads to q-di�erence equations

of the Painlev�e type, generated by discrete �ows, treated

as sequences of quiver mutations;

• In tau-variables they can be written as a system of Hirota

bilinear di�erence equations;

• The tau-functions are given by (Fourier-)dual 5d Nekrasov
partition functions or partition functions of the topologi-

cal string on 3d Calabi-Yau (also determined by the same

polygon ∆ as the SW curve).



This Conjecture has been tested:

the Painlev�e case: list of Newton polygons ∆ with a single

internal point and 3 ≤ B ≤ 9 boundary points.

3 4a 4b 4c 5a 5b 6a 6b

6c 6d 7a 7b 8a 8b 8c 9

Here the SW curve f∆(λ, µ) =
∑

(a,b)∈∆ λaµbfa,b = 0 is always

a torus.



the Toda case: Newton polygons with N − 1 internal points

and B = 4 boundary points.

(0,N)

(1,0)

(0,0)

(-1,N-k)

N=6, k=2

Y N,k-geometry, N-particle relativistic Toda chain (�true� for

k = 0) or 5d SUSY SU(N) pure gauge theory with CS-term

at level k.



Exceptional case of L1,2N−1,2-geometry.

(0,N-1)

(1,0)(1,-1)

(-1,0)

N=6

q-di�erence equations can be constructed in the same way.

The SW curve f∆(λ, µ) =
∑

(a,b)∈∆ λaµbfa,b = 0 in Toda cases

is hyperelliptic, the Krichever data dλ
λ ∧

dµ
µ .



Quivers Q of the �Painlev�e� cluster varieties (labeled their q-

Painlev�e names).
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Building blocks for Toda quivers:

glued along the polyline �Motzkin paths�

N=6, k=2



⋂
better, than

⋃
: relativistic Toda (2-particle)
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Here q = x1x2x3x4(= 1) and z = x1x3 are Casimir functions,

if y = x1, x = x2, then {y, x} = 2yx. The Hamiltonian

H =
√
yx+

√
y

x
+

1
√
yx

+ z

√
x

y

generates discrete (algebraic) �ow: (y, x) 7→ (x(y+z)2

(y+1)2, y
−1).



In detail (up to SA(2,Z)-tranform):

Newton polygon for the SW curve of 5d pure SU(2) gauge

theory:

f∆(λ, µ) =
∑

(a,b)∈∆

λaµbfa,b = λ+
1

λ
+ µ+

z

µ
+ u = 0 (1)

spectral curve for relativistic a�ne 2-particle Toda at H = u.



Realized on a cluster Poisson variety with the quiver:

1 2

34

just means that Poisson bracket is logarithmically constant

{xi, xj} = εijxixj, i, j = 1, . . . , |Q| (2)

with the skew-symmetric matrix

εij = #arrows (i→ j) = −εji (3)

Obviously q = x1x2x3x4 and z = x1x3 are in the center of

Poisson algebra.



Poisson maps include mutations of the graph:

µk : xk →
1

xk
, xi → xi

(
1 + x

sgn(εik)
k

)εik
, i 6= k (4)

Direct quantization of the cluster variety:

XiXj = p−2εijXjXi, i, j = 1, . . . , |Q| (5)

with quantum mutations

X ′k = X−1
k

X
′1/|εik|
i = X

1/|εik|
i

(
1 + pX

sgn εik
k

)sgn εik (6)

where p = exp(−i~/2) is multiplicative quantum parameter (do

not mix with q).



Finally, the dimer partition function on a bipartite graph
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gives rise ... for q = 1 ... to an integrable system with a 5d

SW spectral curve Zdimer ∼ f∆ = λ+ 1
λ + µ+ z

µ +H(~x).



Deautonomization q 6= 1:

discrete �ow T = (1,2)(3,4)◦µ1◦µ3 � a sequence of mutations

in the opposite vertices of the quiver

(x1, x2, x3, x4) 7→

x2
(x3 + 1)2

(x−1
1 + 1)2

, x−1
1 , x4

(x1 + 1)2

(x−1
3 + 1)2

, x−1
3


(7)

or, for q = x1x2x3x4, z = x−1
2 x−1

4 and F = x1, G = x−1
2

T : (z, q, F,G) 7→
(
qz, q,

(F + qz)2

(F + 1)2G
,F

)
. (8)



Consider G,F as a functions of z such that T : G 7→ G(qz) =

F (z), then

G(qz)G(q−1z) =
(G(z) + z)2

(G(z) + 1)2
(9)

the second order q-di�erence equation (q-Painlev�e equation of

the type A
(1)′
7 ).

For tau-functions G(z) = z1/2τ3(z)2

τ1(z)2: bilinear (non-autonomous

Hirota) equations

τ1(qz)τ1(q−1z) = τ1(z)2 + z1/2τ3(z)2

τ3(qz)τ3(q−1z) = τ3(z)2 + z1/2τ1(z)2
(10)



Generic equations for the (N, k)-theory

τj (qz) τj
(
q−1z

)
= τj(z)2 + z1/Nτj+1

(
qk/Nz

)
τj−1

(
q−k/Nz

)
j ∈ Z/NZ

(11)

are solved τj(z) = τ
N,k
j (~u,~s; q|z) by the �Kiev-formula�

τ
N,k
j (~u,~s; q|z) =

∑
~Λ∈QN−1+ωj

sΛZN,k(~uq
~Λ; q−1, q|z)

(12)

where the sum is over the AN−1 root lattice, {ωj} are the

fundamental weights, and 5d Nekrasov functions ZN,k = Z
N,k
cl ·

ZN1−loop · Z
N,k
inst are de�ned by (we use them here for q1q2 = 1)



Z
N,k
cl = exp

(
log z

∑
(logui)

2

−2 log q1 log q2
+ k

∑
(logui)

3

−6 log q1 log q2

)
,

ZN1−loop =
∏

1≤i 6=j≤N
(ui/uj; q1, q2)∞ ,

Z
N,k
inst =

∑
~λ

z|
~λ|∏N

i=1 T
λ(i)(u; q1, q2)k∏N

i,j=1 N
λ(i),λ(j)(ui/uj; q1, q2)

(13)

with

Nλ,µ(u, q1, q2) =
∏
s∈λ

(1−uq−aµ(s)−1
2 q

`λ(s)
1 )

∏
s∈µ

(1−uqaλ(s)
2 q

−`µ(s)−1
1 )

Tλ(u; q1, q2) = u|λ|q
1
2(‖λt‖−|λt|)
1 q

1
2(‖λ‖−|λ|)
2 =

∏
(i,j)∈λ

uqi−1
1 q

j−1
2 ,

and ~λ = (λ(1), . . . , λ(N)), |~λ| =
∑
|λ(i)|, |λ| =

∑
λj, ‖λ‖ =

∑
λ2
j .



Solutions:

• Given in terms of 5d Nekrasov functions for the SU(N)
theory with CS-term at level |k| ≤ N ;

• Depend on the vacuum condensates u = eRa, dual param-

eters s (∼ eRaD) and q = q2 = q−1
1 for the parameters

{qi = eRεi} of Ω-background (non-re�ned case);

• Substitution lead to bilinear equations for q-deformed con-
formal blocks, which resemble the blow-up equations;

• Turn at q → 1 to the Θ-function solutions of autonomous

Hirota equations.



Re�ned case q1q2 = p 6= 1 corresponds to the quantization of

cluster variety.

Quantum q-di�erence Painlev�e equation
G1/2(q−1z) G1/2(qz) =

G(z) + pz

G(z) + p
,

G(z)G(q−1z) = p4G(q−1z)G(z)

(14)

now with two di�erent (q and p!) parameters.

Instead of functions G(z) are now elements of a non-commutative

algebra, equation depends on the quantum parameter p.



The corresponding quantum tau-functions G(z) = pz1/2T 2
1 T
−2

3 ,

G(qz) = pq1/2z1/2T 2
2 T
−2

4 satisfy

T1(q−1z)T1(qz) = T1(z)2 + p2z1/2T3(z)2

T3(q−1z)T3(qz) = T3(z)2 + p2z1/2T1(z)2,
(15)

and are still given by Kiev formulas (q2 = q1/2, q1 = q−1
2 p2)

T1 = a
∑
m∈Z

smZ(uq4m
2 |z), T2 = ab

∑
m∈Z

smZ(uq4m
2 |q

2
2z),

T3 = ia
∑

m∈1
2+Z

smZ(uq4m
2 |z), T4 = iab

∑
m∈Z+1

2

smZ(uq4m
2 |q

2
2z).

(16)

but with the non-commutative parameters

q2
2a = p−2aq2

2

us = p4su, zb = p2bz
(17)



Main conclusions:

• For 5d SUSY gauge theories the non-perturbative parti-

tion functions satisfy q-di�erence equations of the Painlev�e

type;

• These equations are generated by mutations of correspond-
ing cluster varieties, whose quantization gives rise to re-

�ned topological strings.

Thank you!


