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defects [1705.10623 with K. Hosomichi and S. Lee]
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[1705.06118 TO]
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Plan for Part I

 (vortex defects)

Motivations and the set-up


Three inequivalent definitions of defects


Relations among definitions


Applications


- Twisted chiral ring relations


- Mirror symmetry for minimal models
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Defects characterized by gauge field singularity


Surface operator in 4d theory


Vortex line operator in 3d theory


Vortex (local) operator in 2d theory

Motivations

A ⇠ ⌘d'
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Defects characterized by gauge field singularity


Surface operator in 4d theory


Vortex line operator in 3d theory


Vortex (local) operator in 2d theory <= today

Motivations

A ⇠ ⌘d'
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Sometimes, defects characterized by the gauge 
field singularity             are also described by 
the insertion of local degrees of freedom. (3d: 
Assel-Gomis,…, 4d: Gukov-Witten, Gaiotto, Nawata,
…)


What is the mechanism that guarantees the 
equivalence of the two descriptions?


Will give an answer in the 2d abelian case.

Motivations

A ⇠ ⌘d'
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Meaning of vortex defects in N=(2,2) GLSM for 
Calabi-Yau models.


Holonomy for discrete symmetry


==> Twist field in orbifold theory

More motivations
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Mirror symmetry


- Hori-Vafa mirror symmetry


- Minimal model and its orbifold


- Fundamental fields are mapped to defects


Path integral description of the defects in 
these theories.

More motivations
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Set-up

2d N=(2,2) gauged linear sigma models.


First focus on a single chiral multiplet coupled 
with charge +1 to U(1) gauge multiplet.


Will embed to a larger theory, such as the 
quintic Calabi-Yau model.
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Chiral multiplet with charge +1


U(1) gauge multiplet: dynamical or non-
dynamical 


1/2 BPS (twisted chiral) defect


Invariant under type A supercharges


A chiral multiplet decomposes into


Use SUSY as guidance to construct defects

�, ±, F

Aµ,�
±, �̄±,⌃, D

(�, +) ( �, F )
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Three inequivalent 
definitions of defects

1. Boundary conditions 


2. Smearing regularization


3. 0d-2d couplings 
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Three inequivalent 
definitions of defects

1. Boundary conditions (~ [Drukker-TO-Passerini] in 3d)


2. Smearing regularization ([Kapustin-Willet-Yaakov] in 3d)


3. 0d-2d couplings (~ [Assel-Gomis] 3d)


Will derive relations among the definitions.
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1: Defects via boundary 
conditions

There are two natural boundary conditions 
compatible with type A SUSY.


Normal boundary condition:


Flipped boundary condition:

(�, +), Dz( 
�, F ) : finite

Dz̄(�, 
+), ( �, F ) : finite

( �, F ) = O(r�) , �1 < �  0

(�, +) = O(r�)
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For multiple chiral multiplets, choose one 
boundary condition for each.  The choice is a 
label of the defect.


We can and did perform SUSY localization for 
the two-point function of defects on the sphere.

1: Defects via boundary 
conditions

 14



2: Defects via smearing

Regularize by a smooth function


Type A SUSY ==> D=2𝜋iρ


(3d: [Kapustin-Willet-Yaakov], 2d: TO)

A ⇠ ⌘d'
F12 ⇠ ⌘ · �2(x)

F12 = ⇢(x)

x

1 + ix

2 = re

i'
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3: Defects by 0d-2d 
couplings

   0d SUSY with two super charges 


= type A subalgebra of 2d N=(2,2) SUSY


≃ 2d N=(0,2) SUSY 


Use terminology for N=(0,2)
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3: Defects by 0d-2d 
couplings

0d Chiral multiplet 


0d Fermi multiplet 

(u, ⇣)

S ⇠ ū⌃̄⌃u+ ⇣̄⌃̄⇣

(⌘, h) S ⇠ ⌘̄⌃⌘ + h̄h

Z
dud⇣e�S ⇠ 1

⌃

Z
d⌘dhe�S ⇠ ⌃
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Derivation of the relations 
among the definitions

Key points

Start with the smearing definition.  For some 
values of vorticity 𝜂, the 2d bulk fields develop 
localized modes.


The localized modes form 0d multiplets.


The non-localized modes obey normal/flipped 
boundary conditions.
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Localized modes in smeared 
vortex background

Recall SUSY condition D=2𝜋iρ.  We get


                                              .


Expand         in eigenmodes of            .  Zero-modes, if 
present, are annihilated by      and are localized.


Expand          in eigenmodes of            .  Zero-modes, if 
present, are annihilated by      and are localized.

S ⇠
Z
�̄(�DzDz̄ + ⌃̄⌃)�+  ̄

✓
⌃̄ Dz

Dz̄ ⌃

◆
 + F̄F

 =

✓
 +

 �

◆

�DzDz̄�, +

 �, F �Dz̄Dz

Dz̄

Dz
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First order ODE for 
zero-mode

Need m 0 for regularity.


Need m-𝜂 < -1 for the mode to be localized.


==>  Localized modes exist for


   if 𝜂 > 1.  (Non-integer 𝜂 assumed.)


Dz̄ = 0 for  = �, +

m = 0, 1, . . . , b⌘c � 1

 =  ̂(r)eim'
ˆ

 ⇠
⇢

rm for r ⌧ ✏
rm�⌘

for r � ✏
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ˆ

 ⇠
⇢

r�m
for r ⌧ ✏

rm�⌘
for r � ✏

𝛜
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Similar results for                              .Dz = 0 ,  =  �, F
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Effective boundary conditions 
for non-localized modes

We performed the asymptotic analysis of the 
second-order ODEs as 𝛜 -> 0.


Non-localized modes in the bulk region behave 
as if they obey the normal/flipped boundary 
conditions.

�DzDz̄
ˆ

 = �ˆ for

ˆ

 = �, +

�Dz̄Dz
ˆ

 = �ˆ for

ˆ

 =  �, F
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Relations for the path 
integral measures

D(2d chiral)V smeared

⌘

=

8
>>>><

>>>>:

D(2d chiral)V flipped

⌘
⇥

b⌘c�1Y

a=0

d(0d chiral)a (⌘ > 0)

D(2d chiral)V normal

⌘
⇥

b�⌘c�1Y

↵=0

d(0d Fermi)↵ (⌘ < 0)

 24



Vortex defect for gauge 
symmetry

When the gauge field is dynamical, the 
smearing regularization gives a trivial defect 
because the gauge field is integrated over.


Triviality of the smeared ``gauge vortex 
defect’’ implies the equivalence of a defect 
defined by boundary conditions and a defect 
defined by 0d-2d couplings.
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Chiral ring relations and 
defects: CPN-1 model

U(1) gauge multiplet and N chiral multiplets of 
charge +1.


For 1<𝜂<2, from the relations between the 
measures,


We can invert the 0d-2d coupling

1 = V smeared
⌘ = V flipped

⌘

✓Z
D(0d chiral)e�S

◆N

V flipped
⌘ =

✓Z
D(0d Fermi)e�S

◆N

= ⌃N

 26



For shifted vorticity, 


The boundary conditions are invariant under 
an integer shift of 𝜂.  Only the FI-theta 
coupling is affected.  ==>


Putting everything together, we get the chiral 
ring relation

V flipped
⌘�1 = 1

V flipped
⌘ = e�tV flipped

⌘�1

⌃N = e�t
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On the sphere, a similar consideration leads to 
the Picard-Fuchs equation for the sphere 
partition function.  [Closset-Cremonesi-Park, …]


From the Picard-Fuchs equation also one can 
read off the chiral ring relation by taking the 
large radius limit.  [Givental]


The same works for the quintic Calabi-Yau.  
Twisted chiral operators Σj can be realized as 
vortex defects V𝜂gauge for suitable values of 𝜂.
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Vortex defect for flavor 
symmetry

When the gauge field is non-dynamical, the 
smearing regularization gives a non-trivial 
defect.  [TO]


Flavor vortex defect V𝜂flavor realizes the twisted 
chiral operator e𝜂Y in the Hori-Vafa mirror 
theory.


For discrete symmetries, vortex defects are 
nothing but twist fields.
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Application: N=2 Minimal 
model and its mirror

Level h-2 minimal model with h=2,3,4,…


Its mirror is the Zh orbifold of itself.


N=2 Landau-Ginzburg model with superpotential                      


                 .


Twist fields are vortex defects with vorticity 


          η=-p/h, p=0,1,…,h-1.

c =
3(h� 2)

h

W = g0�
h
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⌦
V�p/h(N)V�p/h(S)

↵
S2 =

1

h

�( 1+p
h )

�(1� 1+p
h )

=
�( 1+p

h )2

h⇡
sin

(1 + p)⇡

h

Two-point function of twist fields 
in the Zh-orbifolded Minimal model

Two-point functions of twist fields can be computed 
by localization.  Agree with known results and mirror 
symmetry expectations.  


Explicit renormalization by Pauli-Villars and 
supergravity counterterms.  [TO] 


Coincides with the known and mirror results.
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Summary for Part I
Found a mechanism for the equivalence of the 
vortex defect defined by boundary condition 
and the defect defined by 0d-2d coupling.


Gave a precise path-integral formulation of 
twist fields in Landau-Ginzburg realization of 
the minimal model.


(In the paper) gave prescriptions for computing 
two-point functions of vortex defects.
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Future directions for 
Part I

More detailed study of the non-Abelian case.


Higher dimensions: vortex lines, surface 
operators.


Brane construction, chiral ring relations from 
branes?  ([Assel] in 3d)


Relation to the Higgsing construction of a 
surface operator [Gaiotto-Rastelli-Razamat]
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Part II
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How does renormalization actually 
work in a supersymmetric theory?
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Will see an explicit example in 2d 
N=(2,2) theory

For amusement/obsession
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Plan for Part II 

(SUSY renormalization)

Pauli-Villars regularization in 2d N=(2,2) 
theory


Supergravity counterterms


Renormalization

 37



SUSY Pauli-Villars

Goal: regularize the one-loop determinant for 
a single physical chiral multiplet.


Add 2NPV-1 ghost/regulator chiral multiplets.


Introduce fictitious symmetry U(1)PV
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J = 0 J = j 2 {1, . . . , 2NPV � 1}
physical unphysical (PV ghosts)

statistics ✏0 = +1 ✏j = ±1

U(1)PV-charge a0 = 0 aj 2 R� {0}
flavor/gauge charge b0 = +1 bj 2 Z

twisted mass � twisted mass aj⇤+ bj�
vector R-charge q0 = q R-charge cjq

c0 = 1
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Linear constraints
Often in localization literature, the 
one-loop determinant is given as an 
infinite product after bose/fermi 
cancellation.

In this case, the following linear 
constraints are enough for UV 
regularization.

X

J

✏J =
X

J

✏JaJ =
X

J

✏JbJ =
X

J

✏JcJ = 0
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Quadratic constraints

It is possible to UV regularize the 
bosonic and fermionic determinants 
separately, by imposing quadratic 
constraints.


Can be seen by explicit enumeration of 
eigenvalues or the heat kernel analysis.

X

J

✏Ja
2
J =

X

J

✏Jb
2
J =

X

J

✏Jc
2
J =

X

J

✏JaJbJ =
X

J

✏JbJcJ =
X

J

✏JcJaJ = 0
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An example that satisfies the linear and 
quadratic constraints:

NPV = 3 ,

(✏1, . . . , ✏5) = (+1,+1,�1,�1,�1) ,

bj = cj = 1 for all j,

(a1, . . . , a5) = (3, 3, 1, 1, 4)
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Combinations of 
parameters

C0 :=

Y

j

|aj |�✏j ,

C1 :=

X

j

✏jbj log |aj | ,

C2 :=

X

j

✏jaj log |aj | ,

C3 :=

X

j

✏jcj log |aj | ,

⌅1 :=
X

j

✏jbjsgn(aj) ,

⌅2 :=
X

j

✏j |aj | ,

⌅3 :=
X

j

✏jcjsgn(aj) ,

⌅4 :=
X

j

✏jsgn(aj) .
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Pauli-Villars regularization 
for SUSY two-sphere

The usual expression for the 1-loop 
determinant is


By Pauli-Villars we get

ZSUSY

1-loop

“=”
1Y

n=0

n+ 1 + 1

2

|B|� �̂

n+ 1

2

|B|+ �̂ ⇣
�̂ = i`�1 +

q

2

⌘

ZSUSY

1-loop, reg

=
1Y

n=0


n+ 1 + 1

2

|B|� �̂

n+ 1

2

|B|+ �̂

Y

j

✓
n+ 1 + 1

2

|bjB|�Mj

n+ 1

2

|bjB|+Mj

◆✏j�

Mj ⌘ cj
q

2
+ i`(aj⇤+ bjRe(�))

 44



Gamma function identities allow us to remove 
the absolute value symbols without changing 
the result.


Stirling’s formula gives, for large Λ>0,


This is regularized by not renormalized, 
because of the Λ-dependence.  Also we need 
to deal with the ugly prefactors…

ZSUSY

1-loop, reg

=
�(�̂ + B

2

)

�(1� �̂ + B
2

)

Y

j

✓
�(Mj + bj

B
2

)

�(1�Mj + bj
B
2

)

◆✏j

= C
0

ei
⇡
2 ⌅1Be(C3�C1)qe2C1�̂e2iC2`⇤(`⇤)1�2�̂ �(�̂ + B

2

)

�(1� �̂ + B
2

)

�
1 +O(⇤�1)

�
,
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Supergravity 
counterterms

Claim: the counterterms given by the following twisted 
superpotential renormalize the one-loop partition functions 
in arbitrary backgrounds.  (μ: renormalization scale)


   :twisted chiral field constructed from the gravity 
multiplet/R-symmetry gauge multiplet in N=(2,2) U(1)V 
SUGRA.


Similar to Witten’s effective twisted superpotential.

fWct(�, bH,⇤) = �
bH
8⇡

X

j

✏j log
iaj⇤

µ

+

1

4⇡

X

j

✏j(aj⇤+ bj� +

cjq

2

bH) log

aj⇤+ bj� +

cjq
2

bH
µ e

.

bH

 46



For large Λ>0,

fWct(�, bH,⇤) =
1� q

8⇡
bH log

⇤

µ
+

1

4⇡

✓
C1 � log

⇤

µ
+ i

⇡

2

⌅1

◆
�

+

1

4⇡

⇣
C2 + i

⇡

2

⌅2

⌘
⇤+

q

4⇡

⇣
C3 + i

⇡

2

⌅3

⌘ bH
2

+

1

4⇡

⇣
logC0 � i

⇡

2

⌅4

⌘ bH
2

+O(⇤

�1
) .

ĉUV

8⇡

Z
d

2
x

p
g R log

⇤

µ

Renormalization of FI-
theta terms for flavor/

gauge symmetry

Renormalization of FI-
theta terms for vector 

R-symmetry

Renormalization of FI-
theta terms for U(1)PV
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log

⇤

µ
� C1 + r(µ) = r0(⇤) , ✓ +

⇡

2

⌅1 = ✓0

t = r � i✓

Renormalization of FI-theta 
terms for flavor/gauge symmetry

 48



ZSUSY = lim
⇤!1

e�Sren�SctZSUSY

1-loop, reg

= e�Sren(`µ)1�2�̂ �(�̂ + B
2

)

�(1� �̂ + B
2

)

= e�iB✓e4⇡i[r(µ)�
1
2⇡ log(`µ)]`Re�(`µ)1�q �(�̂ + B

2

)

�(1� �̂ + B
2

)
.

Renomarlization for 
SUSY two-sphere

Combining the physical action, Pauli-Villars 
regularization, and supergravity 
counterterms, we get
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A convenience choice is to take          .   Then


This is the formula often quoted in the 
literature.

µ = 1/`

ZSUSY = e4⇡ir�e�iB✓ �(�̂ + B
2 )

�(1� �̂ + B
2 )
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Comments

Zeta function regularization is equivalent to a 
specialization (limit) of parameters.


Our scheme works uniformly for different 
SUSY backgrounds, such as A-twist with/
without omega deformation on two-sphere.  
(See paper.)  It is meaningful to compare 
partition functions in different backgrounds.
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Comments

For vortex defects, we can read off the 
scaling dimension from μ or l dependence.


With boundary, we also need boundary 
counterterms.  One has to choose different 
counterterms depending on which the 
symmetry (gauge or charge conjugation 
symmetry) to preserve (unpublished).
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Thank you! 
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