

$MSSM + (g-2)_{\mu} + LHC$

Sho IWAMOTO (岩本 祥)

21 Aug. 2018 Beyond Standard Model: Where do we go from here? @ GGI

Based on

- Endo, Hamaguchi, Iwamoto, Yanagi [<u>1704.05287</u>]
- Endo, Hamaguchi, Iwamoto, Yoshinaga [1303.4256]

and a few ongoing projects.

(cf. https://github.com/misho104/notes/blob/master/MSSM/journal_20180313.pdf)

$1 \cdot (g - 2)_{\mu}$

2. LHC

Ila Iwamota

Tiples

Nhy.

4 200 LHC: ~ 150 fb' (2018) + 150 fb' (2021-23) SUSY (MSSM) : Solution to • Natural ness_if H±200GeV ES600GeV for 20% tuning 3 2900 GeV [1110.6926] mostly excluded (except for degeneric ted region) · DM · Gauge coupling unification o muon 2-2 anomely $-\Omega_{M}^{SM} = \frac{J_{M}^{SM} - 2}{2} = (-1.1659 + 82.04 \pm 3.56) \times 10^{10} \quad [1802, 02995]$ 77. two data collected (release 20197 Fermilab (ongoing): 17 ±1.6 (2020) -> 70 ?? affamilt aparts years, activity

Sho Iwamoto

(g-2) & Show SUSY Re MIT L-R 3) でまし 9 0 W† De Du Ha B R SU(2) wo Mr. Y. My @ three SUST particles @ 21 TeV M M. : 0+0 70 & N70 $(\mathfrak{g}) = -\frac{1}{\mathfrak{g}} \times \mathbb{O}$ ⇒ μ>0, tanβ=0(10) W, H, Mc 500= 17eV Wino Seenair

No,

1 Jako

141

Eljo Iwamoto

Finhe

300 - gr + Mi M. H. tan B , > M& O, ton B = O(10), Mior B H, Mp = 400 Gev BHR B, H, MR- 4400 GU (A) x + 2yr-"negative /1" because U(1) Scena.io 5 x + gr x M. Ming but M & MLoop = { Mr. Mr. Mi} IA = + O((TeV) a Utan³ B. Dr. Dr E. 1 Ter (Altan S- en had coment) 500Gev - ITEV LHCI ₩°₩° 33.56 1.0 pp-1 $\tilde{W}^+ \tilde{W}^- 22 = 0.62$ 0.3 0.18 2. 2*-0.47 · le la 0.18 pure-bino + pp-1 Rip Lip -12l+Er BHR "negetive W' - pp-1 Fit File=+ 3T+Er, 3L+Er W+W-3L+Er

SUSY contribution to muon g-2: (1) "Chargino" contributions

SUSY contribution to muon g-2: (3) pure-Bino contribution

Endo, Hamaguchi, Kitahara, Yoshinaga [1309.3065]

$1 \cdot (g - 2)_{\mu}$

2. LHC

[1803.02762]

[1806.05264]

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

 $\tilde{\chi}_2^0 \tilde{\chi}_1^+ \rightarrow 3\ell + \text{mET}$ Z-unlike

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

 $x_\ell \sim 0.5$

 $x_{\ell} \sim 1$

 $x_{\ell} \sim 0$

L4 /17

Backup

Muon g-2 SM expectation : $3-4\sigma$ discrepancy!

SM cor QED: EW: OCD:	mbination according to Jegerlehner [<u>1804.07409</u>]. Aoyama, Hayakawa, Kinoshita, Nio [<u>1205.5370</u>] (cf. [<u>1712.06060]</u>). Gnendiger, Stöckinger, Stöckinger-Kim [<u>1306.5546</u>]. Jegerlehner [1711.06089] [1705.00263].	See also: QED: HVP-LO: HVP-HO: HLbL:	Laporta [<u>1704.06996</u>], Marquard et al. [<u>1708.07138</u>]. Keshavarzi, Nomura, Teubner [<u>1802.02995</u>] Kurz, Liu, Marquard, Steinhauser [<u>1403.6400</u>], Jegerlehner, Nyffeler [<u>0902.3360</u>],	Q	/17
QCD:	Jegerlehner [<u>1711.06089</u>] [<u>1705.00263</u>].	HLbL:	Jegerlehner, Nyffeler (0902.3360), Colangelo, Hoferichter, Nyffeler, Passera, Stoffer (1403.7512)	9	/17

Muon g-2 anomaly: What is the origin?

- Just a statistical fluctuation.
- Just an issue in the experiment.
- > O(100) GeV particles with O(0.1) couplings $10 \times 10^{-10} \approx \frac{\alpha_{em}}{4\pi} \left(\frac{m_{\mu}}{m_{pew}}\right)^2$

we assume it is "actual".

- KK gravition, MSSM
- keV–MeV particles with tiny couplings.
 - dark photon (extra U(1) gauge boson)

Muon g-2 anomaly: What is the origin?

SUSY contribution to muon g-2 : gauge basis

Wino >> TeV & Higgsino < TeV \rightarrow BHL or BHR scenario.

- > $\propto g_V^2$ → relevant particles \lesssim 500 GeV
- > LHC: $pp \rightarrow \tilde{H}^+ \tilde{H}^0$, $\tilde{H}^+ \tilde{H}^-$ "not much, but enough"
- DM: Bino Higgsino mixing bino slepton co-annihilation, resonance.

■ Bino-slepton (stau) co-annihilation $\rightarrow m_{\tilde{v}_{\tau}}$ (or $m_{\tilde{\tau}_R}$) $\simeq m_{\tilde{B}}$.

Muon g-2 vs LHC (3) BHR or BHL

