Running top Yukawa for the naturalness

> GGI 2018 Florence, Italy Aug 23, 2018

Hyung Do Kim (Seoul National University)

with Raffaele D'agnolo

Higgs as pNGB

works in **Nnaturalness**

works in running Yukawa couplings

It is important to fill up the loophole in all possible explanation of the hierarchy

Nnaturalness

Running Yukawa

by S Dimopoulos

Nnaturalness

Nnaturalness

Arkani-Hamed Cohen D'agnolo

random dart to 1m*1m in the disk of the solar system

scenario | $N = 10^{16}$ $\Lambda_* = \Lambda_H = 10^{10} \text{ GeV}$ scenario II $N = 10^4$ $\Lambda_* = 10^{16} \text{ GeV}$ $\Lambda_H = 10 \text{ TeV}$ by N Arkani-Hamed

$$(m_H^2)_i = -\frac{\Lambda_H^2}{N} (2i+r), \qquad -\frac{N}{2} \le i \le \frac{N}{2}$$

different phase of deconstruction

phase A : extra dimension

phase B : Nnaturalness

Nnaturalness

Cosmological solution to the naturalness

It might explain no new physics at the LHC Cosmological observables might be interesting

Why is it working?

Reheaton is pNGB (not Higgs itself)

The presence of light scalar can be explained by pNGB idea

and

extra assumption of decay via Higgs can explain why it decays predominantly to the lightest Higgs sector Higgs as pNGB does not work well since $y_t \sim \mathcal{O}(1)$

For the relevant operators, it is more important (relevant) at IR

$$g_{\rm eff}(\mu) = c \frac{\Lambda}{\mu}$$
 $c = \epsilon \ll 1$

Running Yukawa Couplings

Talk at LHCP2017, May 15-20 1709.00766

[‡]One possible way out is to make the SM Yukawa and gauge couplings to be relevant.

3

 $\Delta[Qt^c] = 2$

 $\Delta[y_t] = 1$

$$y_t(\Lambda) = \left(\frac{\mu}{\Lambda}\right) y_t(\mu) \ll y_t(\mu)$$

 $m_h^2(\mu) \phi^* \phi \qquad y \phi \psi \psi + M \psi \psi$

Add heavy Dirac Perision of masenty in Swith coupling y y problem: is Nature nationally as an example 11

e divergence in a suita<u>ble renormalization scheme</u> – anyway it drops... fferences between different2scales. The logarithm, on the other hand, e beta function of the running Higgs mass as

$$\beta_{m_h^2} = \frac{d \, m_h^2(\bar{\mu})}{d \log \bar{\mu}} = \frac{y_{\delta m}^2}{(4\pi)^2} (\frac{m_h^2}{m_h^2} - 6M^2) \frac{m_h^2}{100} \cdot (2.21)$$

$$m_h^2(\Lambda_{\rm SM}) \simeq m_h^2(\Lambda_{\rm NP}) - \# \Lambda_{\rm NP_{l6}}^2 \log \frac{\Lambda_{\rm NP}}{\Lambda_{\rm SM}}.$$

10% to 20% fine tuning would be acceptable

$$\Delta = \frac{\delta m_H^2}{\left(\frac{m_H^2}{2}\right)} \sim \frac{\delta m_H^2}{(100 \text{ GeV})^2}$$

 $\delta m_H^2 \sim (200 \text{ GeV})^2 \qquad 20\% \qquad \Delta \sim 5$

 $\delta m_H^2 \sim (300 \text{ GeV})^2 \qquad 10\% \qquad \Delta \sim 10$

$$\begin{split} \delta m_{H}^{2} \propto -\frac{3y_{t}^{2}}{16\pi^{2}} \left(m_{\tilde{t}_{1}}^{2} + m_{\tilde{t}_{2}}^{2} + |A_{t}|^{2} \right) \log \left(\frac{\Lambda}{m_{\tilde{t}}} \right) \\ \downarrow \\ \sim 10^{-2} & 3 \sim 30 \\ -(200 \ {\rm GeV})^{2} & -(\frac{m_{\tilde{t}}}{3})^{2} \\ -m_{\tilde{t}}^{2} \end{split}$$

 $m_{\tilde{t}} \sim 600 \text{ GeV} : 20\% \text{ to } 2\%$ $(M_3, M_2 \sim 900 \text{ GeV})$ $m_h(\mu) \psi \psi$

Below the sparticle mass scales, the correction is negligible

$$\beta_{m_h^2} = \frac{dm_h^2}{d\log\bar{\mu}} = \frac{3m_h^2}{8\pi^2} \left(2\lambda + y_t^2 - \frac{3g^2}{4} - \frac{g'^2}{4}\right) < 10\%$$
 correction

Fine tuning is determined at the sparticle mass scales, $m_h^2(m_{\rm SUSY}) = m_h^2(\Lambda) + \delta m_h^2(\Lambda \to m_{\rm SUSY})$ Focus on the couplings $\longrightarrow \frac{6y_t^2}{8\pi^2}m_{\rm SUSY}^2\log(\frac{\Lambda}{m_{\rm SUSY}})$ Top Yukawa : constrained at the weak scale $= \mathcal{O}(m_{\rm SUSY}^2)$ bounds from direct search

$$\delta m_h^2(m_{\rm SUSY}) = c y_{t*}^2 m_{\rm SUSY}^2$$

 $y_{t*} = y_t(\mu = m_{\rm SUSY})$

If y_t is drastically different at m_{SUSY}, m_t , EWSB can be natural with heavy stops.

$$\delta m_h^2(m_{\rm SUSY}) = c y_{t*}^2 m_{\rm SUSY}^2$$

 $y_{t*} = y_t(\mu = m_{\rm SUSY})$

If y_t is drastically different at m_{SUSY}, m_t , EWSB can be natural with heavy stops.

The idea works for $~\gamma \geq 1$

Conformal Window

Conformal window of QCD

$$a_s = \frac{g^2 N_c}{(4\pi)^2} \qquad \qquad x = \frac{N_f}{N_c}$$

$$\beta(a_s) = -\frac{2}{3} \begin{bmatrix} (11-2x)a_s^2 + (34-13x)a_s^3 + \cdots \end{bmatrix}$$

$$> 0 \qquad < 0$$

$$5.5 > x > 2.6$$

$$a_{s*} = \frac{2}{75} (11-2x) \text{ :fixed point for x close to } 11/2$$

$$a_{s*} \sim \frac{11 - 2x}{13x - 34} \sim 0.5$$

 $\uparrow_{x_c} = 3.25$

Conformal window

external parameter coupling

Gardi Grunberg 1998

29

from D Kaplan et al : conformality lost

Conformal window of QCD at the critical point

$$\left[\bar{\psi}\psi\right] = 2$$

$$N_{f*} \simeq 10$$

$$g_{s*}^2 \simeq 10$$

$$\alpha_{s*} \simeq 0.8$$

$$a_{s*} = \frac{N_c \alpha_{s*}}{4\pi} \simeq 0.2$$

Conformal window of SQCD Seiberg

$$N_{f} \qquad Q, \tilde{Q}$$
$$\Delta[Q\tilde{Q}] = \frac{3}{2}R[Q\tilde{Q}] = \frac{3(N_{f} - N_{c})}{N_{f}}$$
electric description

$$\int \frac{3N_c}{2} < N_f < 2N_C$$

$$\int \gamma = 1 \qquad \gamma = \frac{1}{2}$$

$$q \rightarrow \infty$$

 $g_- \to \infty$ $g_- (\text{magnetic}) \to 0$ $\begin{array}{ll} \mbox{magnetic description} \\ SU(N_f-N_c) & N_f & q, \tilde{q} \\ \mbox{gauge group} \\ M = Q \tilde{Q} \end{array}$

Conformal window of SQCD

Running Yukawa Couplings

One concrete realization : how to make $\Delta[Qt^c] = 2?$ $\gamma = 1$

The setup

conformal window

$$\begin{aligned} SU(3)_1 \times SU(3)_2 &\to SU(3)_C \\ & \langle \Sigma \rangle = \mathrm{diag}(f, f, f) \\ & (3, \bar{3}) \end{aligned}$$

All the SM quarks are charged under $SU(3)_1$

$$\frac{1}{g_s^2} = \frac{1}{g_1^2} + \frac{1}{g_2^2}$$
$$g_1^2 \simeq 10$$
$$g_2^2 \simeq 1$$

Higgs modified by hidden $\frac{1}{\sec t}$ or

Two loop corrections : Higgs, top, hidden color

$$a_{s_*} = \frac{N_c \alpha_{s*}}{4\pi} \simeq 0.2$$

M can be 1 TeV or higher

Flavor Universal Coloron

(massive color octet vector boson)

 $f \sim 1 - 2 \text{ TeV}$

 $M_{G'} = g_1 f \sim 3f$: 3 - 6 TeV

 $g_1 \bar{q} \gamma^\mu T^a G'^a_\mu q$

 $\Sigma = \phi_R + \phi_I + \Theta + \text{Goldstone}$ 18 = 1 + 1 + 8 + 8 $\Sigma = (3, \overline{3}) \text{ under } SU(3)_1 \times SU(3)_2$

th coupling y

11Electroweak precision

conformal technicolor

 $\Delta[H^2] = 2 \rightarrow 4$ relevant to marginal

relevant SM $\Delta[Qt^c] = 3 \rightarrow 2$

marginal to relevant

One concrete realization : how to make $\gamma = 1$?

It was only half-way successful

Task : keep the anomalous dimension to be 1 while avoid large couplings : SU(2) and U(1) extension?

Summary

Light Higgs might be due to smaller couplings at high energy (off-shell)

Measuring off-shell top Yukawa coupling would be important to check this idea

It is consistent with Higgs being a pseudo-Nambu-Goldstone boson at high energy

To realize the idea in the SM, we can take several possibilities (strongly interacting QFT above M)