Exotic Higgs decays at the HL-LHC (with a focus on Higgs \rightarrow invisible)

Tania Robens partially based on work with T. Stefaniak (HL/HE Yellow Report, to appear)

MTA-DE Particle Physics Research Group, University of Debrecen

GGI Florence

Beyond the Standard Model: Where do we go from here ?

24.8.18

Tania Robens

Exotic Higgs decays, HL-LHC

3 Other exotic decays (very brief)

Tania Robens

Exotic Higgs decays, HL-LHC

< □ → < □ → < ⊇ → < ⊇ → < ⊇ →
 GGI Florence, 24.8.18

Introduction and motivation: Higgs discovery and the Nobel Prize

As you all know, **extraordinary success** of particle physics in recent years

\Rightarrow Discovery of "a" Higgs boson \Leftarrow

(by ATLAS and CMS, Phys.Lett. B716 (2012))

... leading to the Nobel Prize for Higgs/ Englert

\Rightarrow !! Particle physics is more exciting than ever !! \Leftarrow

Tania Robens

Exotic Higgs decays, HL-LHC

After Higgs discovery: Open questions

Higgs discovery in 2012 \Rightarrow last building block discovered

? Any remaining questions ?

- Why is the SM the way it is ??
 ⇒ search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 - \Rightarrow e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision

for all: Search for Physics beyond the SM (BSM)

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

< ロ > < 同 > < 回 > < 回 > < 回 >

うくで

Current community efforts

Currently: many community efforts (\Rightarrow European Strategy report)

- FCC-xx, CLIC, HL-LHC, HE-LHC, ...
- focus here:

HL-LHC

$$\sqrt{s}\,=\,14\,{
m TeV},\,\int{\cal L}\,=\,3\,{
m ab}^{-1}$$

• WG twiki:

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HLHELHCWorkshop

Exotic Higgs decays, HL-LHC

Role of Higgs couplings (I)

one way to search: direct searches

⇒ HL-LHC: can profit from enhanced statistics (cross sections identical to 14 TeV run)

other ways: indirect constraints

 \Rightarrow prominent example: Higgs couplings

study of Higgs couplings at HL-LHC combine direct searches with indirect constraints

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

Role of Higgs couplings (II)

- direct Higgs channels: e.g. $H \rightarrow$ invisible, $H \rightarrow$ exotics, ...
- indirect constraints: modifications of SM decays, via
 - a) suppression of rates (through new decay channels)
 - b) modification of relative BRs (new physics contributions)
- b): especially for loop-induced processes

$$H
ightarrow \gamma \gamma, H
ightarrow gg$$

Tania Robens

Exotic Higgs decays, HL-LHC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 GGI Florence, 24.8.18

Higgs to invisible and interpretation within portal models (in collaboration with T. Stefaniak)

Tania Robens

Exotic Higgs decays, HL-LHC

 A B > 4
 A GGI Florence, 24.8.18

→ < Ξ →</p>

Э

Other exotic decays

Higgs to invisible: general setup

Higgs decay to invisible:

• typical realization in models with dark matter candidates

$H \rightarrow \text{DM} \text{DM}$

• in the SM: $H \rightarrow \nu \nu \overline{\nu} \overline{\nu} \leq 0.1\%$

 \Rightarrow any (measurable) deviation: new physics \Leftarrow

- double effect:
 - \Rightarrow suppression of SM rates
 - ⇒ direct measurement

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

→ < Ξ →</p>

1

Discussion in the literature

• Widely discussed in the literature

[e.g. Kanemura, Matsumoto, Nabeshima, Okada, Phys.Rev.D82 (2010); Djouadi, Lebedev, Mambrini, Quevillon, Phys. Lett. B709 (2012)]

• typically considered: portal coupling to scalar/ vector/ fermion DM candidates

$$\mathcal{L} \supset \qquad \lambda H^{\dagger} H S^{2}, \, \lambda H^{\dagger} H V_{\mu} V^{\mu}, \, \frac{\lambda}{\Lambda} H^{\dagger} H \overline{\chi} \chi$$

⇒ nice feature: can be related to dark matter direct detection (same coupling !!)

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

General parametrization

one step back... [next couple of slides stolen from T. Stefaniak]

Coupling scale factor (κ) parametrization

For many BSM theories, the 125 ${\rm GeV}$ Higgs collider pheno can be parametrized in terms of κ scale factors, [LHC HXSWG: YR3, '13]

$$\frac{\Gamma(H \to XX)}{\Gamma(H \to XX)_{\rm SM}} = \kappa_X^2 \quad (X = W, Z, g, \gamma, b, \tau, \dots)$$
$$\frac{\sigma(gg \to H)}{\sigma(gg \to H)_{\rm SM}} = \kappa_g^2, \quad \frac{\sigma(qq \to VH)}{\sigma(qq \to VH)_{\rm SM}} = \kappa_V^2 \quad (V = W, Z), \text{ etc.}$$

and a rate for additional *new physics* (NP) Higgs decays, $BR(H \rightarrow NP)$.

Our strategy:

Tim Stefaniak (DE	SY) Invisible Higgs: Theory	HL/HE-LHC Meeting 9 / 21	_
			E 99
Tania Robens	Exotic Higgs decays, HL-LHC	GGI Florence, 24.8.18	

Experimental input

Future HL-LHC limits from invisible Higgs searches

Official HL-LHC projections found in literature:

$$\begin{split} & \mu_{\mathsf{VBF}} \cdot \operatorname{BR}(H \to \operatorname{inv}) \leq 5.6\% \quad (\mathsf{CMS}, \mathsf{S2+ scenario}) \quad [\mathsf{CMS} \text{ PAS FTR-16-002}] \\ & \mu_{VH} \cdot \operatorname{BR}(H \to \operatorname{inv}) \leq 8.0\% \quad (\mathsf{ATLAS}, \text{ "realistic" scenario}) \\ & (\text{with} \quad \mu_i = \sigma_i / \sigma_{i,\mathrm{SM}}) & [\mathsf{ATL-PHYS-PUB-2013-014}] \end{split}$$

more studies are under way...(?)

Let's make a tentative assumption:

"ATLAS (CMS) performs equally well as CMS (ATLAS) in missing channel!"

(Naive) combination of VBF and VH channels from ATLAS and CMS: $\Rightarrow \quad \mu_{\text{VBF},\text{VH}} \cdot \text{BR}(H \rightarrow \text{inv}) \lesssim 3.5\% \quad (\text{ATLAS} \oplus \text{CMS})$

Tim Stefan	iak (DESY)	Invisible Higgs: Theory	HL/HE-LHC Meeting	6 / 21		
			<	≣⊁ ⊀ ≣⊁ .	3	うく
Tania Robens	Exot	ic Higgs decays, HL-LHC	GGI Flore	nce, 24.8.18		

Experimental input

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

Experimental input

Tania Robens

Exotic Higgs decays, HL-LHC

Simple fit: results

Result of combination: $BR_{inv} \leq 3.5\%$

HL-LHC prospects: κ parametrization

\implies can be interpreted in many models $!! \Leftarrow$

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

3.5 3

э

Higgs couplings in portal models

- remember: relation between BRinv and direct detection
- \Rightarrow can translate limits

Tania Robens

Exotic Higgs decays, HL-LHC

future

Higgs portal: a more concrete model

- \Rightarrow study a more concrete model to investigate complementarity
- \Rightarrow here: Higgs singlet:

2 scalar states h, H with mixing angle α

with singlet coupling to scalar dark matter candidate X

important parameters

 $\underbrace{M_h, \cos \alpha, v_s}_{M_X, \lambda_{SXX}}, \underbrace{M_X, \lambda_{SXX}}_{M_X, \lambda_{SXX}}$ as in "standard" singlet new

 M_i new masses, λ new couplings, v_s singlet vev

(e.g. Englert, Plehn, Zerwas², Phys.Lett. B703 (2011))

(Singlet: e.g. TR, T. Stefaniak, Eur.Phys.J. C75 (2015), Eur.Phys.J. C76 (2016))

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Concrete model: results

(b) enhanced
 (b) suppressed
 ⇒ for certain regions, LEP direct searches always strongest constraints

 \Rightarrow for (b): direct limit better than fit

Tania Robens

Exotic Higgs decays, HL-LHC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 GGI Florence, 24.8.18

Higgs to invisible: summary

• simple fit in κ framework:

large improvement wrt current status \checkmark

- dominance of fit or direct measurement depends on parameter point
- "simple" portal models:

interesting complementarity to direct detection experiments

- \Rightarrow for low DM masses, important probe !!
- \Rightarrow in general, improve by an order of magnitude
 - for concrete model: depends a lot in parameter space !
- \Rightarrow large regions can be tested at HL-LHC

? Is this a physics case ?

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

Other exotic decays

(more a discussion)

Tania Robens

Exotic Higgs decays, HL-LHC

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇

Other exotic decays (excerpts)

- \Rightarrow (nearly) complete list: **D. Curtin ea, Phys.Rev. D90 (2014)**
 - nice examples:

$$H_{125} \to SM(SM) \not \in_{\mathcal{T}} \tag{1}$$

(example: Inert Doublet Model)

- \Rightarrow can be largely constrained by $H \rightarrow$ invisible
 - would need searches/ search improvements for (1)
- ⇒ searches often in specific models ! others might escape detection

Exotic Higgs decays, HL-LHC

http://exotichiggs.physics.sunysb.edu

Exotic Higgs Decays	P Search
Working Group	
Home Overview Theories Producing Exotic Higgs Decays Decay Channels Conta	kt Admin
Theories Producing Exotic Higgs	
Decays	
Here we summarize the phenomenology of exotic higgs decays generated by some well-motivated models, both simplified and more complete. This list is not	
meant to be exhaustive — for many decay channels we mention additional models which motivate that signature.	
For more details, please refer to Section 1.3 of our Survey of Exotic Higgs	
Decays, aniv:1312.4492	
Standard Model plus a Singlet Scalar	
Two-Higgs-Doublets Plus a Singlet	
Standard Model plus a Singlet Fermion	
Standard Model plus Two Singlet Fermions	
Standard Model plus a Singlet Vector	
MSSM	
NMSSM with exotic Higgs decay to scalars	
NMSSM with exotic Higgs decays to fermions	
Little Higgs	
Hidden Valleys	
Proudly powered by WordPress	

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

Э

Tania Robens

In the following: Excerpts from Z. Lius talk, CERN-TH Institute, 07/18

possible final states

• $\ell^+ \ell^- \ell^+ \ell^- (+ \not\!\! E_T)$

realized e.g. in models with dark gauge bosons Z_D , hidden valleys, additional scalars, SUSY, IDM, ...

γγγγ
 invalue

singlet, NMSSM, ...

• $b\bar{b}\tau^+\tau^-, b\bar{b}b\bar{b}$

extra scalars, NMSSM, little Higgs models

• ...

(long list of final state signatures)

Tania Robens

Exotic Higgs decays, HL-LHC

♦ 4 ☐ > 4 ≥ > 4 ≥ > 2 GGI Florence, 24.8.18

Excerpts from Z. Lius talk, CERN-TH Institute, 07/18

Exotic Higgs decays, HL-LHC

Excerpts from Z. Lius talk, CERN-TH Institute, 07/18

Coverage & Potential

Tania Robens

Exotic Higgs decays, HL-LHC

Excerpts from Z. Lius talk, CERN-TH Institute, 07/18

Tania Robens

Exotic Higgs decays, HL-LHC

What about EFT setup ?

(slides from C. Murphy, HE/HL LHC meeting, June '18)

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

(人名) (二) (三)

What about EFT setup ?

(slides from C. Murphy, HE/HL LHC meeting, June '18)

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

▲ @ ▶ ▲ ∃

∃ ⊳

Another example: dark photons [M.Heikinheimo, WG3 HL-LH meeting, 05/18]

Dark Photons

- Dark photons appear in several beyond the Standard Model physics scenarios, where a new U(1) gauge group is added to the SM.
- Massive dark photons can be dark matter candidates, while massless dark photons can appear in models of self-interacting dark matter. (Cusp-vs-core, missing satellites...)
- Unbroken U(1) results in a massless dark photon. Motivated e.g. in a model for radiative origin of the SM Yukawa couplings. Gabrielli and Raidal: [arXiv:1310.1090 [hep-ph]]

			A NEW YEAR ARY	= +) < (+		
	Matti Heikinheimo	Searching for dark pl	notons via Higgs production a	t the HL-LHC		
			< □ > < □ > <	(문)(문)	- E	500
Tania Robens	Exotic Higgs decay	/s, HL-LHC	GGI FI	orence, 24.8.1	8	

Another example: dark photons [M.Heikinheimo, WG3 HL-LH meeting, 05/18]

Coupling to the SM

Couplings to the Higgs can be generated via messenger particles charged under $U(1)' \times U(1)$.

Similar diagrams will also contribute to the $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$ decay widths. Effective Lagrangian:

$$\mathcal{L}_{\rm DP_{H}} = \frac{\alpha}{\pi} \Big(\frac{C_{\gamma\bar{\gamma}}}{v} \gamma^{\mu\nu} \bar{\gamma}_{\mu\nu} \mathcal{H} + \frac{C_{Z\bar{\gamma}}}{v} Z^{\mu\nu} \bar{\gamma}_{\mu\nu} \mathcal{H} + \frac{C_{\bar{\gamma}\bar{\gamma}}}{v} \bar{\gamma}^{\mu\nu} \bar{\gamma}_{\mu\nu} \mathcal{H} \Big)$$

Tania Robens

Exotic Higgs decays, HL-LHC

Matti Heikinheimo

GGI Florence, 24.8.18

イロト イクト イミト イミト ニミー のくび

Searching for dark photons via Higgs production at the HL-LHC

Other exotic decays

Another example: dark photons [M.Heikinheimo, WG3 HL-LH meeting, 05/18]

$H\gamma\bar{\gamma}$ Search; reach

Based on the two event selection criteria discussed above (the event selection adapted from the CMS analysis [1507.00359], and the jet veto), we estimate the reach for the $H \to \gamma \bar{\gamma}$ branching ratio (in %) in the HL-LHC and HE-LHC:

int. luminosity	3 ab ⁻¹ @14 TeV		15 ab ⁻¹	027 TeV
significance	2σ	5σ	2σ	5σ
CMS inspired	0.012	0.030	0.0052	0.013
jet veto in $ \eta^j < 4.5$	0.020	0.051	0.021	0.053

These are our initial attempts to estimate the reach: A full detector simulation is required to better understand the QCD background.

Discussion

- ⇒ did not cover: long lived particles (might also be interesting...)
 - in EFT: advantages of HL (and HE) LHC clear !
 - dark photon [very (!) optimistic cuts]: strong limits seem possible

 \implies in general: not enough studies [that I saw] \Longleftarrow

- (maybe) missing priority list \Rightarrow needed ?
- also not seen: clear case for exotic decays at HL-LHC (lepton colliders better in many cases)
- so far not covered (as far as I know) in YREP (maybe in single models)

Tania Robens

Exotic Higgs decays, HL-LHC

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ⊇
 GGI Florence, 24.8.18

Constraining BSM through SM

- another way: determine $H_{125}^{3,(4)}$ couplings
- Status:

HH analyses: HL-LHC

Two alternative approaches to sensitivity prediction of HH @ HL-LHC:

Tania Robens

Exotic Higgs decays, HL-LHC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 GGI Florence, 24.8.18

It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.

Sherlock Holmes, A scandal in Bohemia (A. C. Doyle)

Tania Robens

Exotic Higgs decays, HL-LHC

GGI Florence, 24.8.18

→