Constraining $h \to s\bar{s}$ at lepton colliders

Matthias Schlaffer Weizmann Institute of Science

based on ongoing work with:

• J. Duarte-Campderros, G. Perez, A. Soffer

GGI, Florence August 2018

Gauge boson masses

Higgs is main source of electroweak symmetry breaking!

Higgs couples to gauge bosons as expected

What about fermion masses?

SM: economic solution, Higgs does it!

However

Measurement of Yukawa couplings

Does the SM Higgs generate fermion masses?

$$\mu_X = \frac{\sigma_{\text{prod}} \times \mathsf{BR}(h \to X)}{\sigma_{\mathsf{SM}} \times \mathsf{BR}^{\mathsf{SM}}(h \to X)}$$

- > tth, $h \to \tau \tau$, $h \to bb > 5 \sigma$ \checkmark
- > $h \rightarrow \mu \mu$: $\mu_{\mu\mu} < 2.8$ at 95 % CL [ATLAS: 1705.04582, CMS: 1807.06325]

Lighter fermions even less constrained!

Difficulties

Difficulties

ii) difficult final state for quarks

- > quarks appear as jets
- > large background
- > hard to distinguish

Nevertheless:

 $h \rightarrow cc$ will be measured at % level at FCC-ee [1310.8361]

What about strange?

Exclusive decay $h
ightarrow \phi \gamma$ [1306.5770, 1406.1722]

- > Clean decay: ${\rm BR}(\phi(s\bar{s})\to K^+(u\bar{s})+K^-(\bar{u}s))\approx 50\%$
- > BUT: ${\sf BR}(h \to \phi \gamma) \approx 2 \times 10^{-6}$ [1505.03870]
- > compare ${\sf BR}(h \to s\bar{s}) \approx 2 \times 10^{-4}$
- > only weak limit at future (hadron) colliders [1406.1722]
- > current limit: BR $(h \to \phi \gamma) < 4.8 \times 10^{-4}$ [1712.02758]

Ideas to use differential distributions [see e.g. 1606.09253, 1606.09621, 1609.06592, 1611.05463]

Brute force method

Alternative ansatz:

> FCC-ee will produce $\mathcal{O}(10^6-10^7)$ Higgses via

- > $\mathcal{O}(200-2000)$ of which decay into strange quarks
- > tag strange jets
- > Done before in $Z \to s \bar{s}$
 - Measurement of the strange quark forward backward asymmetry around the Z0 peak
 [DELPHI Collaboration, Eur.Phys.J. C14 (2000)]
 - Light quark fragmentation in polarized Z0 decays [SLD Collaboration, Nucl.Phys.Proc.Suppl. 96 (2001)]

Setup and assumptions

Setup and assumptions

Part I:

- > Clean sample with 10^7 Higgses
- > Only background other Higgs decays $(h
 ightarrow gg, \, bb, \, cc)$
- $\,>\,$ We know which jets originate from the Higgs decay
- > Generate and shower with PYTHIA
- > No detector simulation

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

In which kaons can a s quark hadronize?

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

In which kaons can a s quark hadronize?

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

In which kaons can a s quark hadronize?

CC/NC/NN=9/6/1

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

Charged kaon reconstruction:

- > stable on detector scales
- > tracking efficiency 95%
- > Particle ID

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

Charged kaon reconstruction:

- > stable on detector scales
- > tracking efficiency 95%
- > Particle ID

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

Charged kaon reconstruction:

- > stable on detector scales
- > tracking efficiency 95%
- > Particle ID

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

Neutral K_s^0 reconstruction:

> Decay length $\sim\!80\,\mathrm{cm}$

- > Needs to decay to π^\pm within $5\,\mathrm{mm} < R < 1\,\mathrm{m}$
- > reconstruction efficiency 80%

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

Neutral K_s^0 reconstruction:

> Decay length $\sim\!80\,\mathrm{cm}$

- > Needs to decay to π^\pm within $5\,\mathrm{mm} < R < 1\,\mathrm{m}$
- > reconstruction efficiency 80%

- > Keep hardest pair of kaons with charge sum $|q_1 + q_2| < 2$
- > Split into CC, NC and NN channel

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

- > straight extrapolation of tracks
- > no vertexing
- > $\mathcal{O}(60 80\%)$ of kaon candidates in *b*-jets stem from *b*-decays
- > $\mathcal{O}(40\%)$ of kaon candidates in *c*-jets stem from *c*-decays
- > smearing according to momentum and angle
- $> 5\,\mu{\rm m}$ uncertainty on IP

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

<u>Ansatz:</u> *s*-jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum.

> candidates from non-s-jets are soft, especially in g-jets

> here:
$$p(jet) \approx 60 \text{ GeV}$$

s-tagging performance in CC channel

> impact parameter $d_0 < 15 \mu {
m m}$

s-tagging performance in CC channel

Number of events

> impact parameter $d_0 < 15 \mu {
m m}$

Number of events

> impact parameter $d_0 < 15 \mu m$

- > strange Yukawa within reach of FCC-ee!
- > Improvements possible with vertexing

Realistic Collider

Existing studies for $h \rightarrow bb, cc, gg$:

- > Cut&Count: $m_h = 120 \text{ GeV}$ [1207.0300]
- > Cut&Count+BDT [Talk by Yu Bai @ CEPC meeting]

Assumptions:

- > $h \nu \nu$ final state (don't consider $h \ell \ell$ or h j j)
- > Only CC channel (no combination with NC)
- $> \mbox{ Non-}h \rightarrow jj$ flavor decomposition as in BDT study

flavor	W	bb	uu	dd	cc	ss	gg
relative abundance	65.3	9.8	6.1	6.0	6.4	6.0	0.2

> ϵ_W from $ee \to WW$

> Only statistical uncertainty

data
$$\Rightarrow$$
 kinematic separation
cut&count, BDT,... $\xrightarrow{h \to jj}$ $\xrightarrow{\mathbf{x}}$ $\xrightarrow{\mathbf{y}}$ s-tagger \Rightarrow limit
x-Axis: $\frac{\#(h \to q\bar{q})}{\mathsf{BR}(h \to q\bar{q})} \approx \frac{\#(h \to gg)}{\mathsf{BR}(h \to g\bar{g})} \approx \mathcal{L}\sigma_h\epsilon_{h_{jj}}$
y-Axis: $\#$ of all events that are not $e^+e^- \to \nu\nu h, h \to jj$
 $\approx \mathcal{L}\sum_{\mathsf{bkg}} \sigma_{\mathsf{bkg}}\epsilon_{h_{jj}}^{\mathsf{bkg}}$

For each point (x,y) find best cut values to minimize upper limit

x-Axis:
$$\frac{\#(h \to q\bar{q})}{\mathsf{BR}(h \to q\bar{q})} \approx \frac{\#(h \to gg)}{\mathsf{BR}(h \to g\bar{g})}$$

y-Axis: $\#$ of all events that are not $e^+e^- \to \nu\nu h, h \to jj$

x-Axis:
$$\frac{\#(h \to q\bar{q})}{\mathsf{BR}(h \to q\bar{q})} \approx \frac{\#(h \to gg)}{\mathsf{BR}(h \to g\bar{g})}$$

y-Axis: $\#$ of all events that are not $e^+e^- \to \nu\nu h, h \to jj$

x-Axis:
$$\frac{\#(h \to q\bar{q})}{\mathsf{BR}(h \to q\bar{q})} \approx \frac{\#(h \to gg)}{\mathsf{BR}(h \to g\bar{g})}$$

y-Axis: $\#$ of all events that are not $e^+e^- \to \nu\nu h, h \to jg$

x-Axis:
$$\frac{\#(h \to q\bar{q})}{\mathsf{BR}(h \to q\bar{q})} \approx \frac{\#(h \to gg)}{\mathsf{BR}(h \to g\bar{g})}$$

y-Axis: $\#$ of all events that are not $e^+e^- \to \nu\nu h, h \to jj$

x-Axis:
$$\frac{\#(h \to q\bar{q})}{\mathsf{BR}(h \to q\bar{q})} \approx \frac{\#(h \to gg)}{\mathsf{BR}(h \to g\bar{g})}$$

y-Axis: $\#$ of all events that are not $e^+e^- \to \nu\nu h, h \to jj$

Conclusion

- >~s-tagger in the context of $h\to s\bar{s}$
- > Proof-of-concept, can be improved
- > with $\approx 50 \ {\rm ab}^{-1}$ (FCCee): $\mu_s \lesssim 5$
- > with $\approx 250 \text{ fb}^{-1}$ (ILC): $\mu_s \lesssim \mathcal{O}(50)$
- > applicable to other searches with s-jets (up to some modifications)

Thank You

non-Higgs background [1207.0300]

- > $M_{\rm recoil}^2 = s + m_Z^2 2 E_Z \sqrt{s}$ independent of Higgs decay
- > signal-background separation in $h \rightarrow bb, \ cc, \ gg$
- > with $m_h = 120 \text{ GeV}$
- > $Z \rightarrow$ invisible (20%):
- $\epsilon_h = 33\%$ - S/B = 0.58 > Z \rightarrow ee (3.4%):
 - $-\epsilon_h = 38\%$ -S/B = 0.74
- $> Z \rightarrow \mu\mu$ (3.4%):
 - $-\epsilon_h = 47\%$
 - -S/B = 1.4
- > $Z \rightarrow$ hadrons (70%):
 - $-\epsilon_h = 26\%$
 - -S/B = 0.08

background flavor

$ee \rightarrow$	WW	$(ZZ, Z\gamma)$	$\nu \nu h$	$(ZZ, Z\gamma)$	$\tau \tau h$	qqh	WW
fs	au u q q'	$\nu \nu dd$	non-jj	$\nu \nu u u$	bb	non- <i>jj</i>	$\mu u qq'$
rel. [%]	47.1	18.0	13.7	12.2	2.7	2.5	2.0