Manifestations of Low-Mass Dark Bosons

Yevgeny Stadnik

Humboldt Fellow

Johannes Gutenberg University, Mainz, Germany

Collaborators (Theory): Victor Flambaum (UNSW)

Collaborators (Experiment): CASPEr collaboration at Mainz nEDM collaboration at PSI and Sussex BASE collaboration at CERN and RIKEN

Beyond Standard Model: Where do we go from here?, Florence, September 2018

Motivation for Low-Mass Dark Bosons

"Low-mass" (*m* << 100 GeV) dark bosons may explain several outstanding puzzles

Dark Matter

Overwhelming astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter).

Motivation for Low-Mass Dark Bosons

- "Low-mass" (*m* << 100 GeV) dark bosons may explain several outstanding puzzles:
- Dark matter and dark energy
- Strong CP problem
- Hierachy problem
- 'Hints' of temporal and spatial variations of the electromagnetic fine-structure constant α at $z \sim 1$

 φ

Basics of Atomic EDMs

Electric Dipole Moment (EDM) = parity (P) and time-reversal-

invariance (T) violating electric moment

Basics of Atomic EDMs

Electric Dipole Moment (EDM) = parity (P) and time-reversal-

invariance (T) violating electric moment

Basics of Atomic EDMs

Electric Dipole Moment (EDM) = parity (P) and time-reversal-

invariance (T) violating electric moment

Sensitivity of EDM Experiments

 $|d_{\text{Hg}}|$ limit $\approx 7*10^{-30} e \text{ cm}$

Non-Cosmological Sources of Dark Bosons

[Stadnik, Dzuba, Flambaum, *PRL* 120, 013202 (2018)], [Dzuba, Flambaum, Samsonov, Stadnik, *PRD* 98, 035048 (2018)]

Non-Cosmological Sources of Dark Bosons

[Stadnik, Dzuba, Flambaum, *PRL* 120, 013202 (2018)], [Dzuba, Flambaum, Samsonov, Stadnik, *PRD* 98, 035048 (2018)]

P,*T*-violating forces => Atomic and Molecular EDMs

Non-Cosmological Sources of Dark Bosons

[Stadnik, Dzuba, Flambaum, *PRL* 120, 013202 (2018)], [Dzuba, Flambaum, Samsonov, Stadnik, *PRD* 98, 035048 (2018)]

$$\mathcal{L}_{int} = a\bar{f}\left(g_{f}^{s} + ig_{f}^{p}\gamma_{5}\right)f$$

$$\downarrow a$$

$$\downarrow a$$

$$V(r) \approx \frac{g_{1}^{p}g_{2}^{s}}{8\pi m_{1}}\boldsymbol{\sigma}\cdot\boldsymbol{\hat{r}}\left(\frac{m_{a}}{r} + \frac{1}{r^{2}}\right)e^{-m_{a}r}$$

P,*T*-violating forces => Atomic and Molecular EDMs

Atomic EDM experiments: Cs, Tl, Xe, Hg, Ra Molecular EDM experiments: YbF, HfF⁺, ThO

Constraints on Scalar-Pseudoscalar Electron-Electron Interaction

EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

Many orders of magnitude improvement!

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

 $\mathcal{M} \propto \left(e'
ight)^2$

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

 $\mathcal{M} \propto \left(e'
ight)^2$

 $N = \frac{d\sigma}{d\Omega} \propto |\mathcal{M}|^2 \propto (e')^4$

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

<u>Challenge</u>: Observable is **<u>fourth power</u>** in a small interaction constant (*e*^{*i*} << 1)!

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

Question: Can we instead look for effects of dark matter that are <u>first power</u> in the interaction constant?

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density

 $< \rho_{\varphi} > \approx m_{\varphi}^2 \varphi_0^2 / 2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density

 $< \rho_{\varphi} > \approx m_{\varphi}^2 \varphi_0^2 / 2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density

 $< \rho_{\varphi} > \approx m_{\varphi}^2 \varphi_0^2 / 2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

 $\ddot{\phi} + 3H(t)\dot{\phi} + m_{\phi}^2\phi = 0$ $H(t) \sim 1/t$ $H_0 \sim 10^{-33} \text{ eV}$ $H \gg m_{\phi}$: $\phi \approx \text{const.} \Rightarrow \rho \approx \text{const.}$ [Dark energy regime]

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density

 $< \rho_{\varphi} > \approx m_{\varphi}^2 \varphi_0^2 / 2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

 $\ddot{\phi} + 3H(t)\dot{\phi} + m_{\phi}^2\phi = 0$ $H(t) \sim 1/t$ $H_0 \sim 10^{-33} \text{ eV}$ $H \gg m_{\varphi}$: $\varphi \approx \text{const.} \Rightarrow \rho \approx \text{const.}$ [Dark energy regime] $H \ll m_{\varphi}$: $\varphi \propto \cos(m_{\varphi}t)/t^{3/4} \Rightarrow \rho \propto 1/V$ [Cold DM regime]

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} << 1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} << 1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} << 1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} << 1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>$ $\approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>$ $\approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \leq m_{\varphi} << 1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|p_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects of *individual particles* suppressed

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>$ $\approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \leq m_{\varphi} << 1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|p_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects of *individual particles* suppressed
- BUT can look for *coherent effects of a low-mass DM field* in low-energy atomic and astrophysical phenomena that are <u>first</u> <u>power</u> in the interaction constant *κ*:

$$\mathcal{L}_{\text{eff}} = \kappa \phi^n X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \kappa$$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>$ $\approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \leq m_{\varphi} << 1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|p_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects of *individual particles* suppressed
- BUT can look for *coherent effects of a low-mass DM field* in low-energy atomic and astrophysical phenomena that are <u>first</u> <u>power</u> in the interaction constant *κ*:

$$\mathcal{L}_{\text{eff}} = \kappa \phi^n X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \kappa$$

<u>First-power effects</u> => Improved sensitivity to certain DM interactions by up to <u>15 orders of magnitude</u> (!)

$$\varphi \xrightarrow{P} - \varphi$$

→ Time-varying spindependent effects

1000-fold improvement

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at *Patras Workshop*, 2013], [Graham, Rajendran, *PRD* 88, 035023 (2013)], [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

D = (f)

* Compare with usual magnetic field: $H = -\mu_f \cdot B$

Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (P) and timereversal-invariance (T) violating electric moment

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

PRD

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\mu_n B}{\mu_{\rm Hg} B} \right| + R(t)$$

$$\uparrow$$

$$f$$

$$B - field Axion DM effect effect$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

PRD

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\mu_n B}{\mu_{\rm Hg} R} \right| + R(t)$$

$$\uparrow$$

$$B - field Axion DM effect effect$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

PRD

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

PRD

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\mu_n R}{\mu_{\rm Hg} R} \right| + R(t)$$

$$R_{\rm EDM}(t) \propto \cos(m_a t)$$

$$R_{\rm wind}(t) \propto \sum_{i=1,2,3} A_i \sin(\omega_i t)$$

$$B_{\rm eff}$$

$$\omega_1 = m_a, \ \omega_2 = m_a + \Omega_{\rm sidereal}, \ \omega_3 = |m_a - \Omega_{\rm sidereal}|$$

$$Earth's rotation$$

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]

Use nuclear magnetic resonance ("sidebands" technique)

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]

Use nuclear magnetic resonance ("sidebands" technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]

 $H_{J} \sim J I_{\rm H} \cdot I_{\rm C}$

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]

Use nuclear magnetic resonance ("sidebands" technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]

 $H_{J} \sim J I_{\rm H} \cdot I_{\rm C}$

• J-coupling only: H

Frequency [Hz]

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]

Use nuclear magnetic resonance ("sidebands" technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]

Signal amplitude [a.u]

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]

Use nuclear magnetic resonance ("sidebands" technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]

Signal amplitude [a.u]

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Use nuclear magnetic resonance

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Use nuclear magnetic resonance

Traditional NMR

Resonance: $2\mu B_{ext} = \omega$

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Use nuclear magnetic resonance

Constraints on Interaction of Axion Dark Matter with Gluons

nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]

3 orders of magnitude improvement!

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Ha} constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]

40-fold improvement (laboratory bounds)!

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Ha} constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]

40-fold improvement (laboratory bounds)!

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hg} constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]
 Formic acid NMR constraints: [CASPEr collaboration, In preparation]
 2 orders of magnitude improvement (laboratory bounds)!

Summary

- New classes of dark matter effects that are <u>first power</u> in the underlying interaction constant
 Up to <u>15 orders of magnitude improvement</u>
- Improved limits on dark bosons from atomic experiments (new forces, independent of $\rho_{\rm DM}$)
- More details in full slides (also on ResearchGate)