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 “Low-mass” (m << 100 GeV) dark bosons may 
explain several outstanding puzzles

Motivation for Low-Mass Dark Bosons



Dark Matter
 Overwhelming astrophysical evidence for existence 

of dark matter (~5 times more dark matter than 
ordinary matter).                                                         

ρDM ≈ 0.4 GeV/cm3

vDM ~ 300 km/s



 “Low-mass” (m << 100 GeV) dark bosons may 
explain several outstanding puzzles: 

• Dark matter and dark energy 
• Strong CP problem 
• Hierachy problem 
• ‘Hints’ of temporal and spatial variations of the 

electromagnetic fine-structure constant α at z ~ 1 

⋮

Motivation for Low-Mass Dark Bosons
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LHg ≈ 3*10-8 cm
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  δQ sensitivity ~ 10-22 e (!)

(dHg)classical = δQ·LHg



[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],  
[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]

Non-Cosmological Sources of Dark Bosons



 P,T-violating forces => Atomic and Molecular EDMs

Non-Cosmological Sources of Dark Bosons
[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],  

[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]



Atomic EDM experiments: Cs, Tl, Xe, Hg, Ra 

Molecular EDM experiments: YbF, HfF+, ThO

 P,T-violating forces => Atomic and Molecular EDMs

Non-Cosmological Sources of Dark Bosons
[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],  

[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]



Constraints on Scalar-Pseudoscalar 
Electron-Electron Interaction

EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

Many orders of magnitude improvement! 
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interaction constant (e1 >> י)!



Motivation
 Traditional “scattering-off-nuclei” searches for heavy 

WIMP dark matter particles (mχ ~ GeV) have not yet 

produced a strong positive result.  

 Question: Can we instead look for effects of dark matter 

that are first power in the interaction constant?
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3/4  =>  ρ ∝ 1/V   [Cold DM regime]
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• 10-22 eV ≲ mφ << 1 eV <=> 10-8 Hz ≲ f << 1014 Hz 

• mφ ~ 10-22 eV <=> T ~ 1 year
λdB,φ ≤ L dwarf galaxy ~ 1 kpc Classical field
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classical  field φ(t) = φ0 cos(mφc2t/ℏ), with energy density   <ρφ> 

≈ mφ
2φ0

2/2 (ρDM,local ≈ 0.4 GeV/cm3) 

• 10-22 eV ≲ mφ << 1 eV inaccessible to traditional “scattering-
off-nuclei” searches, since |pφ| ~ 10-3mφ is extremely small       
=> recoil effects of individual particles suppressed 

• BUT can look for coherent effects of a low-mass DM field in 
low-energy atomic and astrophysical phenomena that are first 
power in the interaction constant κ : 

• First-power effects  => Improved sensitivity to certain DM 
interactions by up to 15 orders of magnitude (!) 



Low-mass Spin-0 Dark Matter
Dark Matter

Pseudoscalars                        
(Axions):  
φ → -φ

→ Time-varying spin-
dependent effects

P

QCD axion resolves 
strong CP problem

1000-fold improvement



“Axion Wind” Spin-Precession Effect
[Flambaum, talk at Patras Workshop, 2013], [Graham, Rajendran, PRD 88, 035023 (2013)], 

[Stadnik, Flambaum, PRD 89, 043522 (2014)]

Pseudo-magnetic field *

* Compare with usual magnetic field: H = -µf ·B



Oscillating Electric Dipole Moments

 Electric Dipole Moment (EDM) = parity (P) and time-
reversal-invariance (T) violating electric moment

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)] 
Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]
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 Use spin-polarised sources: Atomic magnetometers,      
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Searching for Spin-Dependent Effects

 Use spin-polarised sources: Atomic magnetometers,      
ultracold neutrons, torsion pendula

 Earth’s rotation

σE B

Proposals: [Flambaum, talk at Patras Workshop, 2013; Stadnik, Flambaum,            PRD 
89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Beff

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects
Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Resonance: 2µBext = ω
Resonance: 2µBext ≈ ma

Traditional NMR Dark-matter-driven NMR

Measure transverse magnetisation

 Use nuclear magnetic resonance



 nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]
3 orders of magnitude improvement!
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Constraints on Interaction of Axion            
Dark Matter with Nucleons

 νn/νHg constraints: [nEDM collaboration, PRX 7, 041034 (2017)]

2 orders of magnitude improvement (laboratory bounds)!
 Formic acid NMR constraints: [CASPEr collaboration, In preparation]



Summary
• New classes of dark matter effects that are                  

first power in the underlying interaction constant      

=> Up to 15 orders of magnitude improvement 

• Improved limits on dark bosons from atomic 

experiments (new forces, independent of ρDM) 

• More details in full slides (also on ResearchGate)


