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Motivation for Low-Mass Dark Bosons

“Low-mass” (m << 100 GeV) dark bosons may
explain several outstanding puzzles



Dark Matter

Overwhelming astrophysical evidence for existence
of dark matter (~5 times more dark matter than
ordinary matter).
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Motivation for Low-Mass Dark Bosons

“Low-mass” (m << 100 GeV) dark bosons may
explain several outstanding puzzles:

« Dark matter and dark energy
« Strong CP problem
* Hierachy problem

* ‘Hints’ of temporal and spatial variations of the
electromagnetic fine-structure constant a at z ~ 1
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Basics of Atomic EDMs

Electric Dipole Moment (EDM) = parity (P) and time-reversal-

invariance (T) violating electric moment
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Electric Dipole Moment (EDM) = parity (P) and time-reversal-

invariance (T) violating electric moment

— 2| B + diE]‘

w:.+£8 => W=O




Sensitivity of EDM Experiments
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Sensitivity of EDM Experiments

|dygl limit = 7%10-30 e cm
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(ng)cIassicaI = 6Q'LHg LHg ~3"10° cm

-0Q

0Q sensitivity ~ 1022 e (!)



Non-Cosmological Sources of Dark Bosons

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],
[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]
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Non-Cosmological Sources of Dark Bosons

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],
[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]
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P, T-violating forces => Atomic and Molecular EDMs




Non-Cosmological Sources of Dark Bosons

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],
[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]
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P, T-violating forces => Atomic and Molecular EDMs

Atomic EDM experiments: Cs, Tl, Xe, Hg, Ra
Molecular EDM experiments: YbF, HfF*, ThO



Constraints on Scalar-Pseudoscalar
Electron-Electron Interaction

EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

Many orders of magnitude improvement!
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Motivation

Traditional “scattering-off-nuclei” searches for heavy
WIMP dark matter particles (m, ~ GeV) have not yet

produced a strong positive result.
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Motivation

Traditional “scattering-off-nuclei” searches for heavy
WIMP dark matter particles (m, ~ GeV) have not yet

produced a strong positive result.
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Challenge: Observable is fourth power in a small

iInteraction constant (e' << 1)!



Motivation

Traditional “scattering-off-nuclei” searches for heavy
WIMP dark matter particles (m, ~ GeV) have not yet

produced a strong positive result.
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Question: Can we instead look for effects of dark matter

that are first power in the interaction constant?
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Low-mass Spin-0 Dark Matter

« Low-mass spin-0 particles form a coherently oscillating
classical field @(t) = ¢, cos(m, c?t/h), with energy density

<pcp> ~ m¢2§002/2 (pDM,IocaI ~0.4 GeV/CmB)

Vie) m2 ¢?
V() = 222

2T

M <U%M>

() Tcoh ™ ~ 1O6Tosc

b+ 3H(t)¢+ m?bgb =0 H(t)~1/t Hy~10"% eV
H>>m,: ¢ =const. => p=const. [Dark energy regime]

H<<m,: @ « cos(mt)/t3* => p « 1/V [Cold DM regime]
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Low-mass Spin-0 Dark Matter

« Low-mass spin-0 particles form a coherently oscillating
classical field @(t) = ¢, cos(m, c?t/h), with energy density

<Py> = M2Py?I2 (Ppp joca = 0-4 GeViemd)
» Coherently oscillating field, since cold (E, = m, c?)
» Classical field for m, << 1 eV, since n (A ,/217)° >> 1
« Coherent + classical DM field = “Cosmic laser field”

e 1022¢eV < m,, << 1eV<=>108Hz<f<<101" Hz

T AN

AdB.o = Lwar galaxy ~ 1 KPC Classical field
« m,~10%2eV <=>T~1year
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Low-mass Spin-0 Dark Matter

Low-mass spin-0 particles form a coherently oscillating
classical field ¢(f) = @, cos(m, c?t/h), with energy density <p >
~ m¢2(p02/2 (pDM,IocaI ~0.4 GeV/Cm3)

1022 eV s m, << 1 eV inaccessible to traditional “scattering-

off-nuclei” searches, since |p | ~ 10*m,, is extremely small
=> recoll effects of individual particles suppressed

BUT can look for coherent effects of a low-mass DM field in
low-energy atomic and astrophysical phenomena that are first
power in the interaction constant k:

Leg = kO XsuXsmy => O x K
First-power effects => Improved sensitivity to certain DM
interactions by up to 15 orders of magnitude (!)




Low-mass Spin-0 Dark Matter

Dark Matter

QCD axion resolves
strong CP problem

—

— Time-varying spin-

dependent effects

1000-fold improvement




“Axion Wind” Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Graham, Rajendran, PRD 88, 035023 (2013)],
[Stadnik, Flambaum, PRD 89, 043522 (2014)]
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Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]
Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (P) and time-
reversal-invariance (T) violating electric moment
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patfras Workshop, 2013; Stadnik, Flambaum, PRD
89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula



Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patfras Workshop, 2013; Stadnik, Flambaum, PRD
89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula

Experiment (n/Hg): [NEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patfras Workshop, 2013; Stadnik, Flambaum, PRD
89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula

Experiment (n/Hg): [NEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patfras Workshop, 2013; Stadnik, Flambaum, PRD
89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula

Experiment (n/Hg): [NEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patfras Workshop, 2013; Stadnik, Flambaum, PRD
89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula

Experiment (n/Hg): [NEDM collaboration, PRX 7, 041034 (2017)]
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Searching for Spin-Dependent Effects
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Searching for Spin-Dependent Effects

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]
Use nuclear magnetic resonance (“sidebands” technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]
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Searching for Spin-Dependent Effects

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]
Use nuclear magnetic resonance (“sidebands” technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]
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Searching for Spin-Dependent Effects

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]
Use nuclear magnetic resonance (“sidebands” technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]
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Searching for Spin-Dependent Effects

Proposals: [CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)]
Use nuclear magnetic resonance (“sidebands” technique)

Experiment (Formic acid): [CASPEr collaboration, In preparation]
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Searching for Spin-Dependent Effects

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Use nuclear magnetic resonance



Searching for Spin-Dependent Effects

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Use nuclear magnetic resonance

Traditional NMR
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Searching for Spin-Dependent Effects

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Use nuclear magnetic resonance

Traditional NMR Dark-matter-driven NMR
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Constraints on Interaction of Axion
Dark Matter with Gluons

NEDM constraints: [NnEDM collaboration, PRX 7, 041034 (2017)]

3 orders of magnitude improvement!
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Constraints on Interaction of Axion
Dark Matter with Nucleons

Vi /vy, constraints: [NnEDM collaboration, PRX 7, 041034 (2017)]

40-fold improvement (laboratory bounds)!
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Constraints on Interaction of Axion
Dark Matter with Nucleons

Vi /vy, constraints: [NnEDM collaboration, PRX 7, 041034 (2017)]

40-fold improvement (laboratory bounds)!
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Constraints on Interaction of Axion
Dark Matter with Nucleons

Vi /vy, constraints: [NnEDM collaboration, PRX 7, 041034 (2017)]

Formic acid NMR constraints: [CASPEr collaboration, In preparation]
2 orders of magnitude improvement (laboratory bounds)!

Laboratory searches for new spin—dependent forces
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Summary

 New classes of dark matter effects that are

first power in the underlying interaction constant

=> Up to 15 orders of magnitude improvement

* Improved limits on dark bosons from atomic

experiments (new forces, independent of pyy)

* More details in full slides (also on ResearchGate)



