TWO ASPECTS OF SIDM

Michel H.G. Tytgat Université Libre de Bruxelles Belgium

GGI, Florence, September 11th 2018

SIDM MOTIVATION

DIRECT DETECTION IS TESTING FI

Direct detection is testing Freeze-in Th. Hambye, M.T., J. Vandecasteele & L. Vanderheyden (2018)

(The Four Basic Ways of Creating Dark Matter Through a Portal) X. Chu, Th. Hambye & M.T (2012)

$\mathsf{SIDM} + \mathsf{NS} \to \mathsf{BH}$

Non-primordial solar mass black holes C. Kouvaris, P. Tinyakov, M.T. (2018)

WHY SIDM ?

core or cusp?

to-big-to-fail ?

missing satellites ?

CDM only simulation

SIDM may alleviate the small-scale problems

diversity*

CORE/CUSP Spergel & Steinhardt (2000),...

too-big-to-fail Vogelsberger, Zavala & Loeb (2012),...

Hamada, Kaplinghat, Pace & Yu (2016),...

collisions \longrightarrow thermalized DM \longrightarrow core instead of cusp

$$\frac{\sigma}{m} \sim \frac{\mathrm{cm}^2}{\mathrm{g}} \equiv \frac{\mathrm{barn}}{\mathrm{GeV}}$$

i.e. seemingly hadronic

but more generally light mediator

DIVERSITY PROBLEM

There is a **diversity problem** unexplained by CDM + BARYONS simulations (mostly dwarf galaxies)

Oman *et al*, arXiv:1504.01437

DIVERSITY PROBLEM

Diversity problem solved/alleviated with $\sigma/m \sim \frac{{\rm cm}^2}{{\rm g}}$

HIDDEN SECTOR

Patt & Wilczek (2006)

THE SM PORTALS

Patt & Wilczek (2006)

....

SM singlet operators	renormalizable interactions (i.e. dimensionless couplings)	
$ar{L} ilde{H}$	$\Delta \mathcal{L} \supset y \bar{L} \tilde{H} N$	Sterile neutrino Dodelson & Widrow (1994)
$B_{\mu u}$	$\Delta \mathcal{L} \supset \epsilon B_{\mu\nu} X^{\mu\nu}$	Kinetic mixing Holdom (1986)
$H^{\dagger}H$	$\Delta \mathcal{L} \supset \lambda S^2 H^\dagger H$ Linked to EWSB?	Higgs portal
Lorentz invaria	t	Silveira & Zee (1985) Veltman & Ynderain (1989)

PART I

DIRECT DETECTION IS TESTING FREEZE-IN

Direct detection is testing Freeze-in Th. Hambye, M.T., J. Vandecasteele & L. Vanderheyden (2018)

KINETIC MIXING

hidden charged χ

 χ stable ~ SM electron

 χ suppressed coupling to SM

only 4 parameters

 $\kappa = \epsilon \sqrt{\alpha'/\alpha}$

 $m_{\gamma'}$

FIMP THROUGH KINETIC MIXING

 κ is naturally tiny !

DM feebly coupled to SM

Feebly Interacting Massive Particle or FIMP

ABUNDANCE FROM FREEZE-IN

HS feebly coupled ~ no thermal equilibrium

abundance could built up from slow processes

* Mc Donald '02; Hall, Jedamzik & March-Russell '10; Chu, Hambye, M.T. '12

ABUNDANCE FROM FREEZE-IN

ABUNDANCE FROM FREEZE-IN

Chu, Hambye, M.T. '12

ABUNDANCE FROM FREEZE-OUT

$DM + DM \longrightarrow SM + SM$ $\Gamma = \sigma v n_{\rm DM}$

ABUNDANCE FROM FREEZE-IN

$SM + SM \longrightarrow DM + DM$

 $\Gamma = \sigma v n_{\rm SM}$

FREEZE-IN vs FREEZE-OUT

4 BASIC WAYS TO CREATE DM THROUGH A PORTAL

Chu, Hambye, M.T. '12

DIRECT DETECTION TEST OF FREEZE-IN

PRODUCTION THROUGH S-CHANNEL

determines relic abundance

very small cross section

Rutherford (1911)

RUTHERFORD SCATTERING - DIRECT DETECTION

v ~ 200 km/s (halo DM)

$$\frac{d\sigma}{dE_R} \propto \frac{m_N \kappa^2 \alpha^2 Z^2}{(2m_N E_R + m_{\gamma'}^2)^2} \sim \frac{1}{E_R^2}$$

large enhancement if $m_{\gamma'} \lesssim 40 \text{ MeV}$

DIRECT DETECTION IS TESTING FREEZE IN

n.b.: Not the same spectrum as a WIMP, Must recasti the direct detection constraints

first direct detection test of a FI scenario

Hambye, M.T., Vandecasteele, Vanderheyden '18

RECASTING DIRECT DETECTION LIMITS

heavy mediator

We minimized the differential rate « quadratic distance »

$$\Delta^{2} = \frac{1}{R_{\rm exp}^{2}} \int dE \,\epsilon(E)^{2} \left(\left(\frac{dR}{dE} \right) - \left(\frac{dR_{\chi}}{dE} \right) \right)^{2}$$

XENON1T efficiency

DIRECT DETECTION IS TESTING FREEZE IN

Hambye, M.T., Vandecasteele, Vanderheyden '18

SIDM : RUTHERFORD SCATTERING AGAIN

« As big as a barn » for $\, m_{\gamma'} \,$ in MeV range

DIRECT DETECTION & SIDM PARAMETER SPACE

Hambye, M.T., Vandecasteele, Vanderheyden '18

Hambye, M.T., Vandecasteele, Vanderheyden '18

PART II

SOLAR MASS BH FROM SIDM

$v_{\rm DM} \sim 200 \text{ km/s}$

DM (not to the scale)

Neutron Star (not to the scale)

 $\frac{m_{\rm NS} \sim m_{\odot}}{N_B \sim 10^{57}}$

$DM + NS \rightarrow BH$

assumes DM does not annihilate (asymmetric DM)

ASYMMETRIC DM

CAPTURE OF DM IN NS

Capture rate

Goldman & Nussinov (1989) - Kouvaris (2008)

$$\frac{dN_{\rm acc}}{dt} = \sqrt{6\pi} \, \frac{\rho_{\rm dm}}{m_{\rm dm} v_{\rm dm}} \, \frac{R_{\star} R_{\rm Sch}}{1 - R_{\rm Sch}/R_{\star}} \, {\rm Min}\left(\frac{\sigma}{\sigma_{\rm cr}}, 1\right)$$

Critical cross section $\sigma_{\rm cr} = 0.45 \, m_n \, R_\star / M_\star \approx 1.3 \times 10^{-45} \, {\rm cm}^2$ (neutron star)

Maximal mass captured

$$M_{\rm acc} \sim 10^{-15} M_{\odot}$$

 $N_{\rm acc} \approx 10^{39} ({\rm TeV}/m_{\rm dm})$

$DM + NS \rightarrow BH$

$SIDM + NS \rightarrow BH$

candidates that alleviate CDM issues

#	α	$rac{\mu}{ m MeV}$	$rac{m}{\mathrm{TeV}}$	$rac{\sigma_{10}}{m}$	$\frac{\sigma_{100}}{m}$	$N_{ m cr}$	$N_{ m Ch}$	$rac{M_{ m Ch}}{ m M_{\odot}}$
1	10^{-3}	10	1	0.1	$1.6\cdot 10^{-3}$	$5\cdot 10^{35}$	$2\cdot 10^{37}$	10^{-17}
2	10^{-4}	2	0.2	4.5	$4.5\cdot 10^{-3}$	$2\cdot 10^{35}$	$7\cdot 10^{40}$	10^{-14}
3	10^{-4}	1	1	0.2	$5.6\cdot 10^{-5}$	$3\cdot 10^{33}$	$6\cdot 10^{35}$	10^{-18}
4	10^{-3}	3	0.2	6.4	$2.3 \cdot 10^{-1}$	$2 \cdot 10^{35}$	$7\cdot 10^{39}$	10^{-15}

fraction of NS transformed into BH

SOLAR MASS BINARY MERGERS

Detectors	BNS range (Mpc)	BNS detections (per year)
LIGO/Virgo	105/80	4 - 80 (2020 +)
KAGRA	100	11 - 180 (2024 +)
\mathbf{ET}	$\sim 5 \cdot 10^3 \ (z \approx 2)$	$O(10^3 - 10^7)$

INTERMEDIATE REGIME : RECOMBINATION

Region.II (m_{DM} = 200GeV, κ =10⁻⁸, α' =10^{-2.4})

CONSTRAINTS ON MILLICHARGED PARTICLES

CONSTRAINTS ON DARK PHOTON

WIMPS THAT WOULD DEVOUR STARS

PRIMORDIAL BLACK HOLES ?

