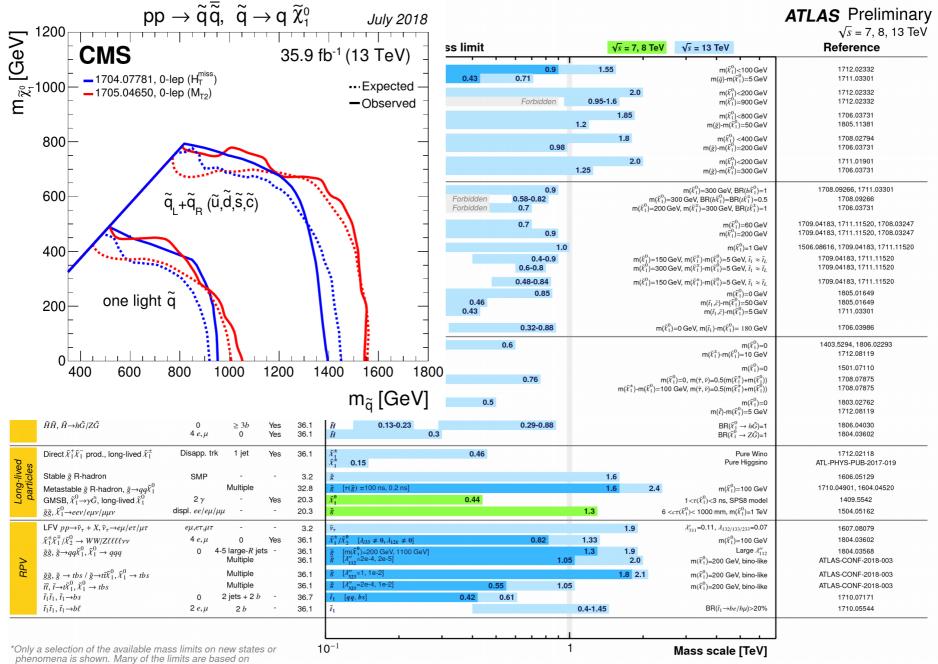
SUSY – where are we?

Ahmed Ismail University of Pittsburgh

September 21, 2018

GGI Beyond Standard Model: where do we go from here?

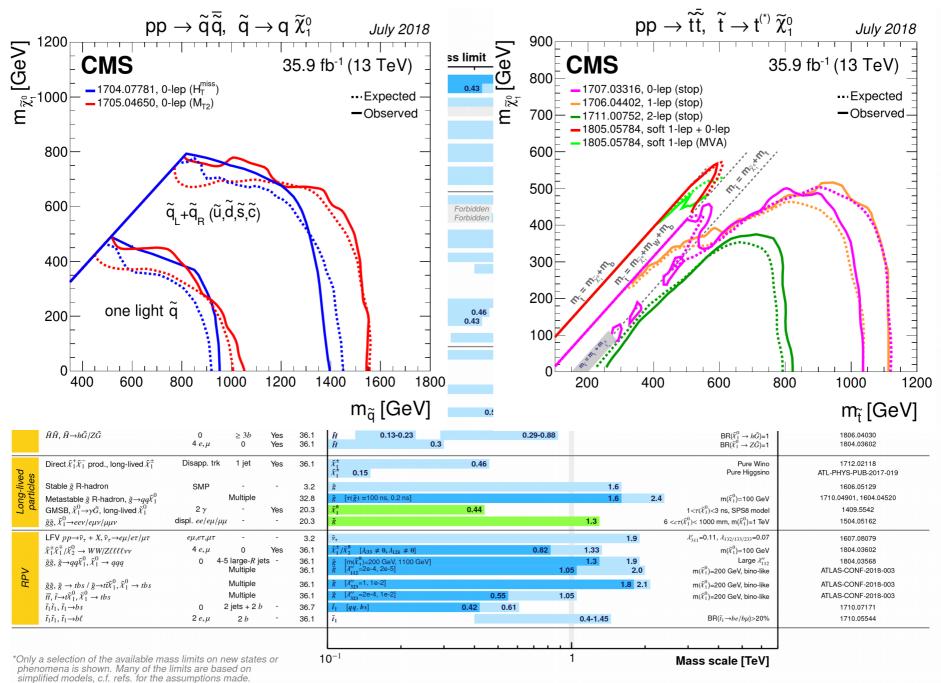
Limits


ATLAS SUSY Searches* - 95% CL Lower Limits July 2018

	TLAS SUSY Sea	rches*	- 95%		_ Lov	ver Limits			ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV
	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	¹] Mass limit	\sqrt{s} = 7, 8 TeV	$\sqrt{s} = 13 \text{ TeV}$	Reference
0	$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1		1.55	$m(ilde{\mathcal{X}}_1^0){<}100\mathrm{GeV}\ m(ilde{q}){=}5\mathrm{GeV}$	1712.02332 1711.03301
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	ğ ğ Forbidde	2.0	$m(ilde{\mathcal{X}}_1^0){<}200GeV$ $m(ilde{\mathcal{X}}_1^0){=}900GeV$	1712.02332 1712.02332
	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow}q\bar{q}(\ell\ell)\tilde{\chi}^0_1$	3 e,μ ee,μμ	4 jets 2 jets	- Yes	36.1 36.1	ie ie	1.85	$m(\tilde{\chi}_{1}^{0}) < 800 \text{GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 50 \text{GeV}$	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> , µ	7-11 jets 4 jets	Yes -	36.1 36.1	ž ž	.98	$m(ilde{\chi}_1^0) <$ 400 GeV $m(ilde{g})$ =200 GeV	1708.02794 1706.03731
u.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 <i>b</i> 4 jets	Yes -	36.1 36.1	$\tilde{\mathcal{B}}$ $\tilde{\mathcal{B}}$	2.0	$m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	1711.01901 1706.03731
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	\$\bar{b}_1\$ Forbidden 0. \$\bar{b}_1\$ Forbidden 0.58-0.82 \$\bar{b}_1\$ Forbidden 0.7	$m(\tilde{\chi}_1^0)$	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) {=} 300 \ GeV, \ BR(b\tilde{\chi}_{1}^{0}) {=} 1 \\ {=} 300 \ GeV, \ BR(b\tilde{\chi}_{1}^{0}) {=} BR(\tilde{\chi}_{1}^{+}) {=} 0.5 \\ GeV, \ m(\tilde{\chi}_{1}^{+}) {=} 300 \ GeV, \ BR(\tilde{\chi}_{1}^{+}) {=} 1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
urks tion	$\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	<i>ι</i> ¹ 0.7 <i>ιι</i> Γorbidden 0.7	3	$m(\tilde{\chi}_{1}^{0})=60 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
gen. squarks ect production	$ \begin{split} &\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0 \text{ or } t\tilde{\chi}_1^0 \\ &\tilde{t}_1\tilde{t}_1, \tilde{H} \text{ LSP} \end{split} $	0-2 <i>e</i> , μ 0	0-2 jets/1-2 <i>l</i> Multiple Multiple	b Yes	36.1 36.1 36.1	<i>ī</i> 1 <i>ī</i> 1 0.4-0. <i>ī</i> 1 Forbidden 0.6-0.8		$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ GeV, $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$, $\tilde{\iota}_{1} \approx \tilde{\iota}_{L}$ GeV, $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$, $\tilde{\iota}_{1} \approx \tilde{\iota}_{L}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
3 rd g direc	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	Multiple 2c	Yes	36.1 36.1	<i>ι</i> 0.48-0.84 <i>ι</i> 0.85		GeV, m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^{0}$)=5 GeV, $\tilde{t}_1 \approx \tilde{t}_L$ m($\tilde{\chi}_1^{0}$)=0 GeV	1709.04183, 1711.11520 1805.01649
	$t_1 t_1, t_1 \rightarrow c \chi_1 / c c, c \rightarrow c \chi_1$	0	mono-jet	Yes	36.1	\vec{l}_1 0.46 \vec{l}_1 0.43		$m(\tilde{x}_1)=0 \text{ GeV}$ $m(\tilde{x}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ $m(\tilde{x}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	Yes	36.1	ĩ ₂ 0.32-0.88	m($ ilde{\mathcal{X}}$	${}^{0}_{1}$)=0 GeV, m(\tilde{t}_{1})-m($\tilde{\chi}^{0}_{1}$)= 180 GeV	1706.03986
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	- ≥ 1	Yes Yes	36.1 36.1	$egin{array}{cccc} & \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 & & 0.6 \ & \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 & & 0.17 \end{array} \end{array}$		$m(ilde{\chi}_1^0)=0 \ m(ilde{\chi}_1^1)=10\ GeV$	1403.5294, 1806.02293 1712.08119
EW direct	$ \begin{split} &\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \text{ via } Wh \\ &\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \end{split} $	<i>ℓℓ/ℓγγ/ℓbb</i> 2 τ	-	Yes Yes	20.3 36.1	$rac{\chi_1^{*}/ \tilde{\chi}_1^0}{\chi_1^{*}/ \tilde{\chi}_2^0} extbf{0.26} extbf{0.76} \ ag{3} \ a$	$m(ilde{\chi}_1^{\pm})$ - $m(ilde{\chi}_1^0)$ =10	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){=}0 \\ \tilde{\chi}_{1}^{0}{=}0, \ m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0})) \\ 0 \ GeV, \ m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0})) \end{array}$	1501.07110 1708.07875 1708.07875
ш іј	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,μ 2 e,μ	0 ≥ 1	Yes Yes	36.1 36.1	 ℓ 0.18 		$\mathfrak{m}(ilde{\chi}_1^0){=}0$ $\mathfrak{m}(ilde{\ell}){-}\mathfrak{m}(ilde{\chi}_1^0){=}5~\mathrm{GeV}$	1803.02762 1712.08119
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 4 <i>e</i> ,µ	$\geq 3b$	Yes Yes	36.1 36.1	H 0.13-0.23 0.29-0.88 H 0.3 0.3		$ BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 $	1806.04030 1804.03602
pe s	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	$egin{array}{cccc} & \dot{\chi}_{1}^{\pm} & & 0.46 \ & \dot{\chi}_{1}^{\pm} & & 0.15 \end{array}$		Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Long-lived particles	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow q q \tilde{\chi}_1^0$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g} \tilde{g}, \tilde{\chi}_1^0 \rightarrow e e \nu / e \mu \nu / \mu \mu \nu$	SMP 2γ displ. $ee/e\mu/\mu_{p}$	- Multiple - µ -	- Yes -	3.2 32.8 20.3 20.3	\tilde{g} \tilde{g} [r(\tilde{g}) =100 ns, 0.2 ns] $\tilde{\chi}_{1}^{0}$ 0.44 \tilde{g}	1.6 1.6 2.4 1.3 6	$m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ $1 < r(\tilde{\chi}_{1}^{0}) < 3 \text{ ns, SPS8 model}$ $< cr(\tilde{\chi}_{1}^{0}) < 1000 \text{ mm, } m(\tilde{\chi}_{1}^{0})=1 \text{ TeV}$	1606.05129 1710.04901, 1604.04520 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \end{array} $	<i>eμ,eτ,μτ</i> 4 <i>e</i> ,μ 0 4-	- 0 5 large- <i>R</i> je Multiple	- Yes ts -	3.2 36.1 36.1 36.1	$ \begin{split} \tilde{Y}_{\tau} \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} & [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{g}_{\pi}^{\pm} & [m(\tilde{\chi}_{1}^{0}) = 200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{g}_{\pi}^{\pm} & [m_{12}^{-1} = 2e-4, 2e-5] \end{split} $	1.9 1.33 1.3 1.9 1.05 2.0	$\begin{split} \lambda_{311}' = & 0.11, \ \lambda_{132/133/233} = & 0.07 \\ & m(\bar{\chi}_1^0) = & 100 \ \text{GeV} \\ & \text{Large} \ \lambda_{112}'' \\ & m(\bar{\chi}_1^0) = & 200 \ \text{GeV}, \ \text{bino-like} \end{split}$	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tbs / \tilde{g} \rightarrow t\bar{k}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$ $\tilde{t}t, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$ $\tilde{t}_{1}\tilde{t}, \tilde{t}, n \rightarrow bs$ $\tilde{t}_{1}\tilde{t}, \tilde{t}, n \rightarrow bs$	0 2 e,µ	Multiple Multiple 2 jets + 2 b 2 b		36.1 36.1 36.7 36.1		1.8 2.1 1.05 0.4-1.45	m($\tilde{\chi}_1^0$)=200 GeV, bino-like m($\tilde{\chi}_1^0$)=200 GeV, bino-like BR($\tilde{\imath}_1 \rightarrow be/b\mu$)>20%	ATLAS-CONF-2018-003 ATLAS-CONF-2018-003 1710.07171 1710.05544

2

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.


Limits

simplified models, c.f. refs. for the assumptions made.

3

Limits

4

Naturalness, or should we care?

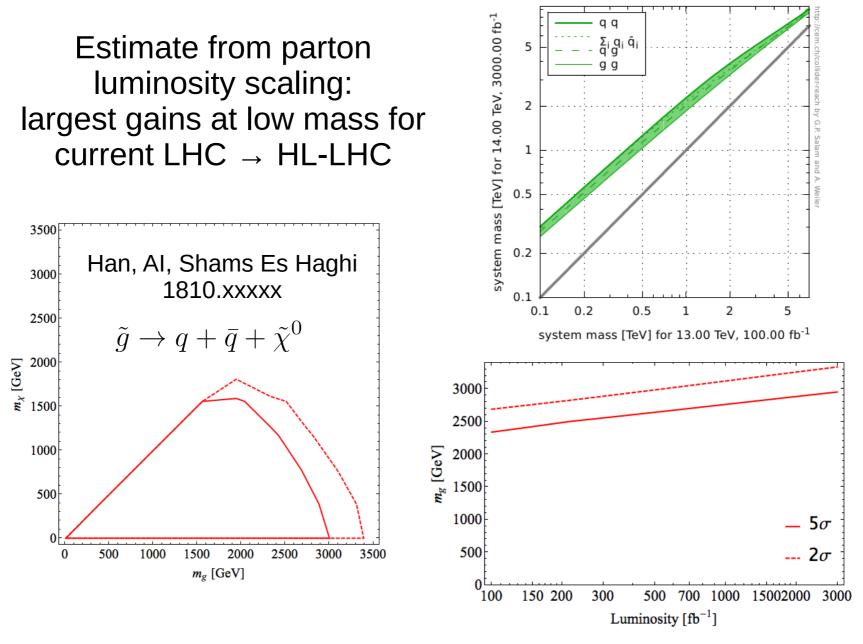
$$\Delta = \frac{\partial \log M_Z^2}{\partial \log x^i}$$

$$M_Z^2 = -2\mu^2 + 2\frac{m_{H_d}^2 - \tan^2\beta m_{H_u}^2}{\tan^2\beta - 1}$$

Barbieri, Giudice 1988

Higgsinos tree level

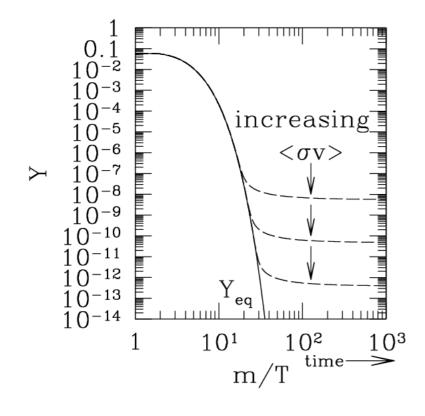
gluinos, stops loop level

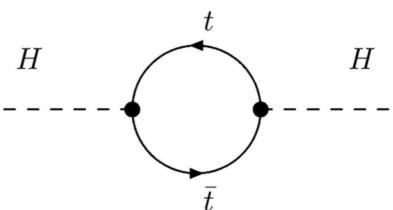

$$\Delta_{\mu} \approx 4\mu^2 / M_Z^2$$
$$\Delta_{Q_3} \approx \frac{3y_t^2 \log \Lambda / M_S}{\pi^2} \frac{M_{Q_3}^2}{M_Z^2}$$
$$\Delta_{M_3} \approx \frac{4\alpha_s y_t^2 \log^2 \Lambda / M_S}{3\pi^3} \frac{M_3^2}{M_Z^2}$$

low scales, $\Lambda < 10^6 M_s$

intermediate scales $10^6 M_s < \Lambda < 10^{13} M_s$

high scales, $\Lambda > 10^{13} M_s$


High luminosity prospects



e.g. gluino reach doesn't gain significantly after a few hundred fb⁻¹

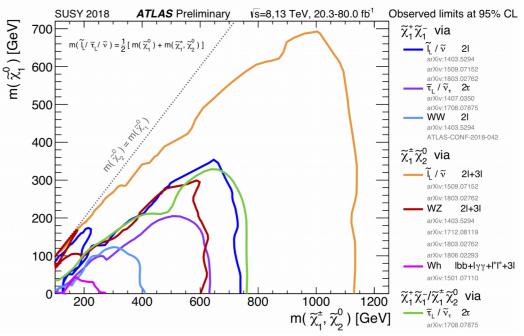
EW searches: SUSY and more

<u>Motivation 1, naturalness</u> In SUSY Higgsino mass affects fine-tuning at *tree* level

Motivation 1', naturalness top partners charged under *different* SU(3) from color, but still under EW group folded SUSY Burdman, Chacko, Goh, Harnik hep-ph/0609152 quirky little Higgs Cai, Cheng, Terning 0812.0843

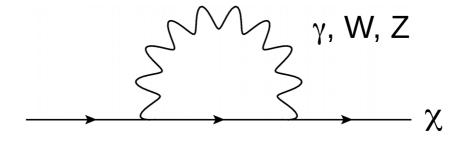
Motivation 2, dark matter Simple example of WIMP paradigm for dark matter (thermal masses tricky at LHC) 7

New electroweak states and MET


Assume:

EW multiplet odd under Z_2 symmetry, to avoid decays into SM particles that are covered by resonance searches (R-parity)

Q = 0 member of multiplet is lightest state, and hence invisible at colliders

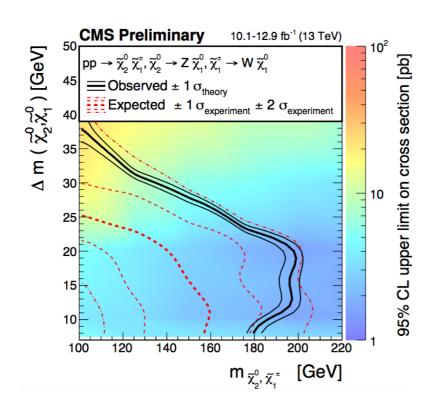

Any non-trivial SU(2)_L multiplet χ contains at least one charged particle

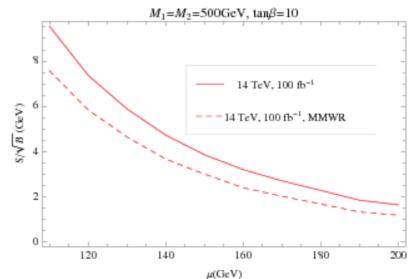
Can produce charged particle and look for decay products plus MET

Mass splitting in EW multiplets

Small mass difference from radiative corrections

$$M(\chi^+) - M(\chi^0) = \left(1 + \frac{2Y}{c_w}\right) \frac{\alpha_2}{2} M_W (1 - c_w)$$
$$\approx 166 + 189(2Y) \text{ MeV}$$

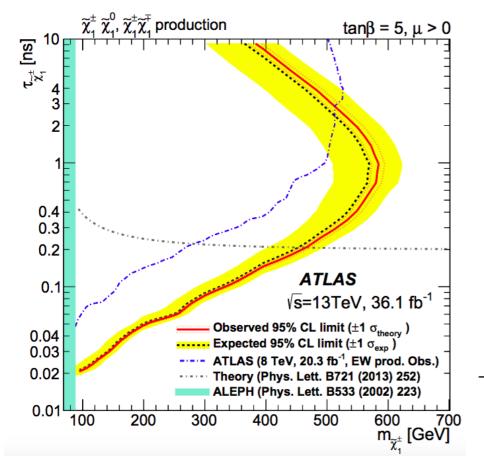

Extra splitting possible from EWSB (SUSY: mixing)


$$\mathcal{L} \supset \frac{1}{\Lambda} \left(\bar{\chi} \vec{\sigma} \chi \right) \left(H^{\dagger} \vec{\sigma} H \right) \rightarrow M(\chi^{+}) - M(\chi^{0}) \sim \frac{v^{2}}{\Lambda m_{\chi}}$$

Signatures: large splitting

For several GeV mass splittings, can still use leptons from $\chi^+ \rightarrow \chi^0 + W^*$

Schwaller and Zurita, 1312.7350; Han et al., 1401.1235; Low and Wang, 1404.0682

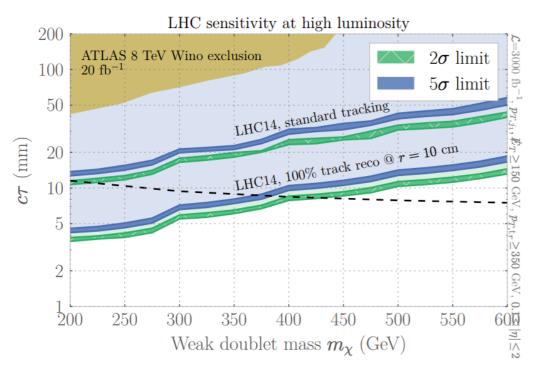


Multiple states also give leptons from off-shell Z

Standard gaugino search

Signatures: small splitting

For mass difference well below GeV, $\chi^+ \rightarrow \chi^0 + \pi^+$ gives disappearing tracks



ATLAS: insertable B-layer allows reconstruction of particles with significantly shorter lifetime, 12 cm rather than 30 cm

$$\Gamma \propto G_F^2 \Delta M^3 f_\pi^2 \sqrt{1 - \frac{m_\pi^2}{\Delta M^2}}$$
$$\tau \approx \frac{44 \text{ cm}}{n^2 - 1} \quad \text{Y} = 0 \text{ n-plet}$$

The future of disappearing track searches

Prospects for triplet increase to 0.5-0.9 TeV with full luminosity, depending on background

14 TeV, 3 ab⁻¹ 27 TeV, 15 ab⁻¹ 5σ 5 100 TeV, 30 ab⁻¹ 4 *S/6B* 95% 2 1 20% bkg. 500% bkg. 0 0 1000 2000 3000 4000 5000 6000 7000 Wino Mass $m_{\tilde{x}}$ [GeV]

Han, Mukhopadhyay, Wang 1805.00015 see also Low and Wang, 1404.0682

Getting closer to beam would improve reach further

Mahbubani, Schwaller, Zurita 1703.05327

Intermediate splittings?

For mass differences between ~0.5-5 GeV, leptons from χ⁺ decay are too soft to see in detector

But decay is prompt enough to avoid disappearing tracks!

→ alternative: go back to mono-X searches

canonical example: Higgsinos

 $\frac{8 \text{ TeV monojet limits}}{\text{ATLAS}: m_{\chi} > 103 \text{ GeV}(\text{SR4})}$

 $\mathrm{CMS}: m_{\chi} > 73\,\mathrm{GeV}\,(\mathrm{SR5}),$

Han et al., 1401.1235

Current limits comparable to LEP

Need to go beyond monojets

Future monojet sensitivity hindered by large V + jet backgrounds

Table 1: Summary of the statistical and systematic contributions to the total uncertainty on the $Z(\nu\nu)$ background.

$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) \rightarrow	>250	>300	>350	>400	>450	>500	>550
(1) $Z(\mu\mu)$ +jets statistical unc.	1.7	2.7	4.0	5.6	7.8	11	16
(2) Background	1.4	1.7	2.1	2.4	2.7	3.2	3.9
(3) Acceptance	2.0	2.1	2.1	2.2	2.3	2.6	2.8
(4) Selection efficiency	2.1	2.2	2.2	2.4	2.7	3.1	3.7
(5) R _{BF}	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Total uncertainty (%)	5.1	5.6	6.6	7.9	9.9	13	18

CMS, 1408.3583

Current background errors smaller, still above 2%

Exclusive Signal Region	EM2	EM4	EM6	EM8	EM9
Observed events (36.1 fb ⁻¹)	67475	27843	2975	512	223
SM prediction	67100 ± 1400	27640 ± 610	2825 ± 78	463 ± 19	213 ± 9
				ATLAS,	1711.03301

Multiple systematics: jet quality, pile-up, shower modelling, PDFs each near 1%

Photon final-state radiation

Even if χ^+ decays promptly and invisibly, it can still produce electroweak radiation

Take advantage of photon radiation by boosting

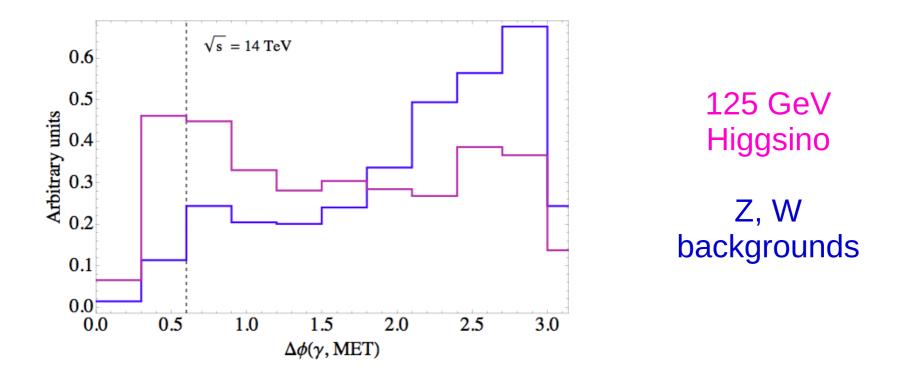
In monojet events with $p_{\tau}(j) > m_{\chi}$, jet recoils against missing energy

p

+ any radiation x^{\pm} , γ

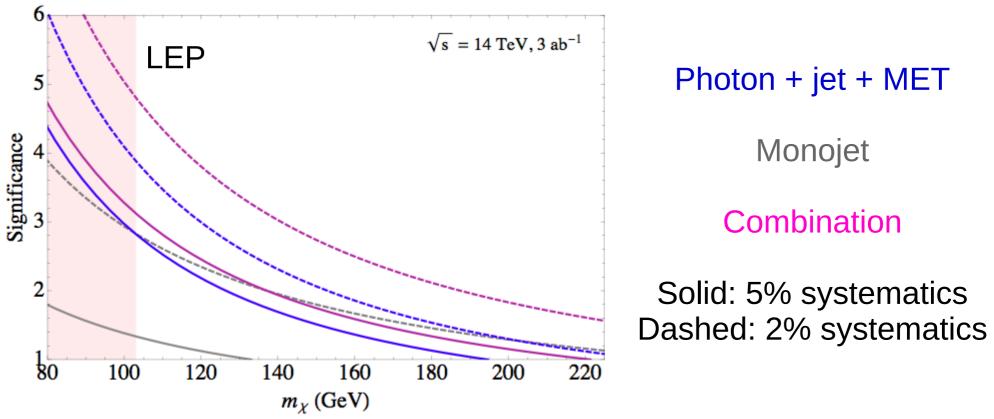
p

AI, Izaguirre, Shuve 1605.00658

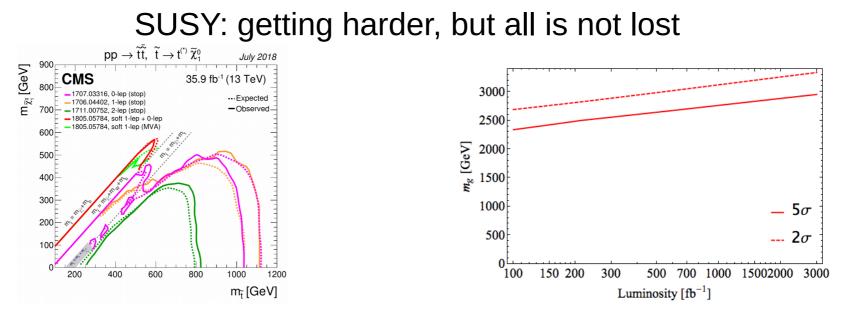

Pay statistical price of α for radiation, but benefit from low backgrounds and extra kinematic handle in γ + j + MET

Photon + jet + MET search

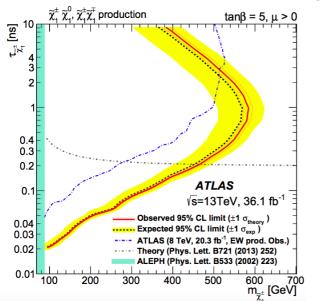
Trigger on hard jet and missing energy, then look for soft photon (15 GeV) with small angular separation from MET

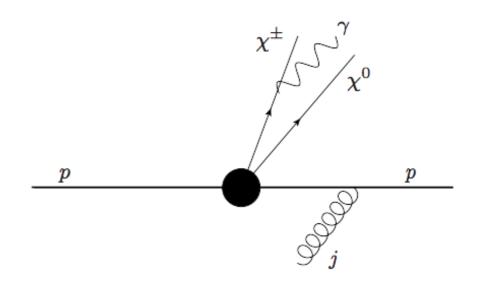

Backgrounds: $Z + \gamma + j$, $W + \gamma + j$, tops, QCD fakes

Require photon $m_T > m_W$, $p_T(j_1) / MET > 0.5$; optimize other cuts



Better limits on Higgsinos


Adding photon to monojet final state helps, improving search that is independent of model-dependent mass splitting



Summary

Interesting strategies left to pursue

Natural Supersymmetric Twin Higgs

Marcin Badziak

University of Warsaw

Based on: MB, Keisuke Harigaya JHEP 1706 (2017) 065 [1703.02122] JHEP 1710 (2017) 109 [1707.09071] PRL 120 (2018) 211803 [1711.11040]

Status of Supersymmetry in light of LHC data

- 1. The Higgs mass found to be 125 GeV
- 2. No BSM particles found
 - Can SUSY models avoid 1% (or worse) tuning?

Without tuning the spectrum (e.g. pNMSSM islands) or very low mediation scale

	125 GeV Higgs	LHC limits
MSSM	×	×
NMSSM	✓	×
	✓	×

Status of Supersymmetry in light of LHC data

- 1. The Higgs mass found to be 125 GeV
- 2. No BSM particles found
 - Can SUSY models avoid 1% (or worse) tuning?

Without tuning the spectrum (e.g. pNMSSM islands) or very low mediation scale

	125 GeV Higgs	LHC limits
MSSM	×	×
NMSSM	✓	×
	✓	×
???	✓	\checkmark

Motivation for SUSY model-building

Status of Supersymmetry in light of LHC data

- 1. The Higgs mass found to be 125 GeV
- 2. No BSM particles found
 - Can SUSY models avoid 1% (or worse) tuning?

Without tuning the spectrum (e.g. pNMSSM islands) or very low mediation scale

	125 GeV Higgs	LHC limits				
MSSM	×	×				
NMSSM	\checkmark	×				
	\checkmark	×				
SUSY Twin Higgs	✓	\checkmark				
This talk						

Twin Higgs model in a nutshell

Chacko, Goh, Harnik '05

- The Higgs is a pNGB of a global SU(4) symmetry
- SU(4) enforced by Z₂ symmetry exchanging two copies of the SM $\xrightarrow{SM} \longrightarrow H \xleftarrow{\mathbb{Z}_2} H' \xleftarrow{\text{mirror}} H$

$$V = \lambda(|H'|^2 + |H|^2)^2 - m^2(|H'|^2 + |H|^2) + \Delta\lambda(|H'|^4 + |H|^4) + \Delta m^2|H^2|$$

$$SU(4) \text{ symmetric}$$

$$SU(4) \text{ spontaneously broken to } SU(3) \longrightarrow 7 \text{ NGB}:$$

$$SU(4) \text{ breaking}$$

$$U(4) \text{ breaking}$$

$$U(4$$

Scale of SU(4) breaking: $f^2 \equiv v^2 + v'^2$ $\langle H \rangle \equiv v \quad \langle H' \rangle \equiv v'$

Fine-tuning in Twin Higgs models

• Maximal gain in fine-tuning depends on the size of λ :

 $\frac{2\lambda}{\lambda_{\rm SM}}$ $\lambda_{\rm SM} \approx 0.13$

• Large λ preferred which suggests non-perturbative UV completions of Twin Higgs model:

Composite Twin Higgs or SUSY with low Landau pole scale

Batra, Chacko '08 Geller, Telem '14 Barbieri et al '15 Low, Tesi, Wang'15 Falkowski, Pokorski, Schmaltz '06 Chang, Hall, Weiner '06 Craig, Howe '13 Katz et al. '16 MB, Harigaya '17

The Higgs mass in SUSY Twin Higgs

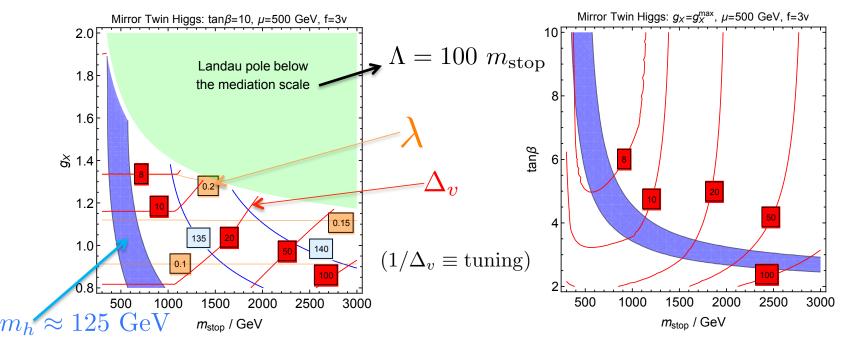
• In SUSY Twin Higgs SU(4) is broken by the EW gauge interaction

 $V_D = \frac{g^2 + {g'}^2}{8} \left[(|H_u|^2 - |H_d|^2)^2 + (|H_u'|^2 - |H_d'|^2)^2 \right] \longrightarrow \frac{g^2 + {g'}^2}{8} \cos^2\left(2\beta\right) \equiv \Delta\lambda_{\rm SUSY} \approx 0.07 \cos^2\left(2\beta\right)$

• The tree-level Higgs mass is given by

$$(m_h^2)_{\text{tree}} \approx 2 M_Z^2 \cos^2(2\beta) \left(1 - \frac{v^2}{f^2}\right) + \mathcal{O}(\Delta \lambda / \lambda)$$

- The Higgs mass enhanced by a factor of $\sqrt{2}$ (after Z₂ breaking which is needed anyway) as compared to MSSM.
- $m_h \approx 125 \text{ GeV}$ obtained at tree level in the limit of large $\tan \beta$!


SUSY U(1) D-term Twin Higgs

MB, Harigaya '17

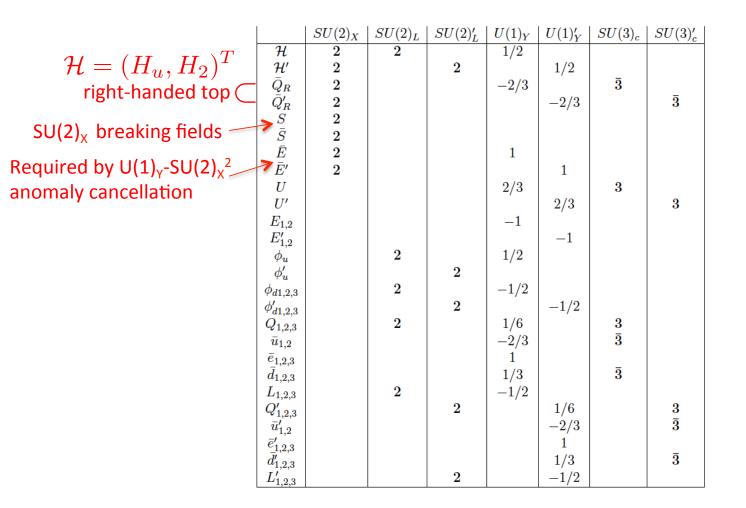
- λ grows with tan β as the Higgs mass does
- Large g_x preferred

SUSY U(1) D-term Mirror Twin Higgs

• All SM fermions have their mirror counterparts

- Correct Higgs mass can be obtained for 1 TeV stops (without stop mixing) with better than 10% tuning
- The Landau pole at O(100) TeV only slightly higher for Fraternal TH or if only 3^{rd} generation is charged under U(1)_x

SUSY U(1) D-term Twin Higgs: Summary


- The 125 GeV Higgs mass easily obtained for light or heavy stops
- Tuning at the level of 10% for low mediation scales
- Main issue: the Landau pole scale for the new interaction is low
- Can SUSY Twin Higgs model be perturbative up to high scales?

Non-abelian SUSY Twin Higgs

Slowing down the RG running of the new gauge coupling:

- Non-abelian gauge interaction preferred
- number of fields charged under the new interaction as small as possible

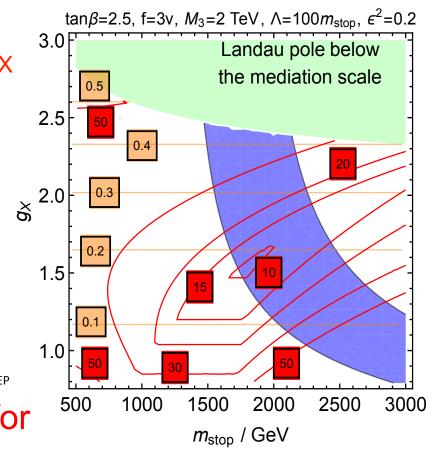
SUSY SU(2) D-term Twin Higgs

Breakdown of the SU(2)_x symmetry

$$W = \kappa Z (S\bar{S} - M^2) \quad V_{\text{soft}} = m_S^2 (|S|^2 + |\bar{S}|^2)$$
$$\langle S \rangle = \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \bar{S} \rangle = \begin{pmatrix} v_S \\ 0 \end{pmatrix}, \quad v_S = \sqrt{M^2 - m_S^2/\kappa^2}$$

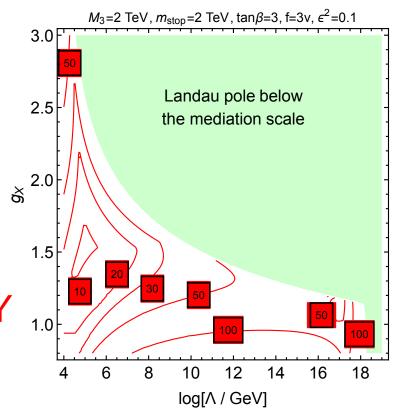
• SU(4) invariant term from D-term potential:

$$\frac{g_X^2}{8}\sin^4\beta(1-\epsilon^2)(|H|^2+|H'|^2)^2 \qquad \epsilon^2 = \frac{m_X^2}{2m_S^2+m_X^2}$$


Low mediation scale of SUSY breaking

- For Λ =100m_{stop} much larger g_X consistent with perturbativity than in the U(1) model
- For very large g_X tuning dominated by the threshold correction:

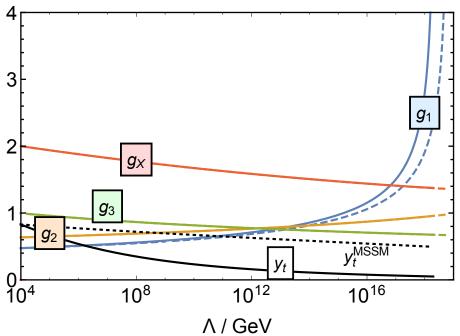
$$\left(\delta m_{H_u}^2\right)_X = 3 \frac{g_X^2}{64\pi^2} m_X^2 \ln\left(\epsilon^{-2}\right)$$


 $m_X\gtrsim 4~{
m TeV} imes g_X~{
m from~LEP}$

 10% tuning can be obtained for 2 TeV stops and gluino

High mediation scale of SUSY breaking

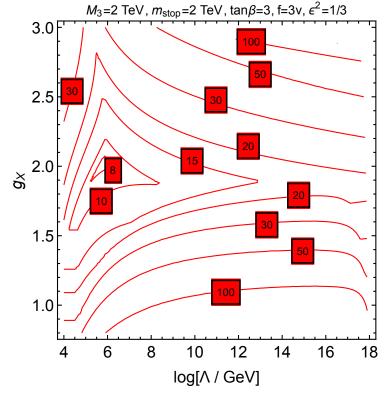
- The Landau pole for the SU(2)_X interaction is much higher than in the U(1) model
- tuning better than 5% can be obtained for mediation scale as high as 10⁷ GeV
- For gravity mediated SUSY breaking 1% tuning


Asymptotically Free SUSY Twin Higgs

The non-abelian model can be extended to make the new interaction asymptotically free! $SU(2)_{x} \times SU(2)'_{x}$ $SU(2)_X | SU(2)'_X$ 3'-2'-1' 3-2-1 $W = Y(\Sigma^2 - v_{\Sigma}^2)$ $SU(2)_{D}$ right-handed top & up (\mathcal{H} (1, 2, 1/2) $\mathbf{2}$ \mathcal{H}' $\mathbf{2}$ (1, 2, 1/2)Σ $\mathbf{2}$ $\mathbf{2}$ $S\overar{S}$ $\mathbf{2}$ $\mathbf{2}$ $\frac{S'}{\bar{S}'}$ $\mathbf{2}$ $\mathbf{2}$ \bar{Q}_R $(\bar{\mathbf{3}}, \mathbf{1}, -2/3)$ $\mathbf{2}$ $W = \kappa \Xi (S\bar{S} - M^2) + \kappa \Xi' (S'\bar{S}' - M^2)$ $V_{\text{soft}} = m_S^2 (|S|^2 + |\bar{S}|^2 + |S'|^2 + |\bar{S}'|^2)$ \bar{Q}'_R (3, 1, -2/3) $\mathbf{2}$ \bar{E} $\mathbf{2}$ (1, 1, 1) \bar{E}' 2 (1, 1, 1) $E_{1,2}$ (1, 1, -1) $E'_{1,2}$ (1, 1, -1) $\phi_u \\ \phi'_u$ (1, 2, 1/2)(1, 2, 1/2) $H_d, \phi_{d,1,2} \\ H'_d, \phi'_{d,1,2}$ (1, 2, -1/2)(1, 2, -1/2)

Twin states charged under different SU(2)s at high scales

M. Badziak (Warsaw)


Asymptotically Free SUSY Twin Higgs: RG running of couplings

- g_x asymptotically free!
- New interaction drives the top Yukawa coupling to small values at high scales – suppressed tuning from stops and gluino (this works also in non-twin SUSY see 1806.07900)

Asymptotically Free SUSY Twin Higgs

- Twin Higgs mechanism works perturbatively even for mediation around the Planck scale
- Tuning better than 5% (for 2 TeV stops and gluino) even for gravity mediation of SUSY breaking

Asymptotically Free SUSY Twin Higgs: flavor-violating top decays

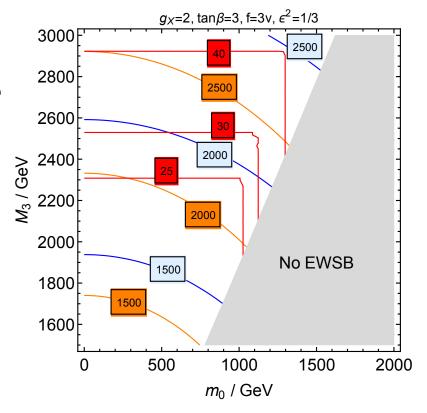
The model has non-trivial flavor structure

The top Yukawa coupling is generated via $W \sim \mathcal{H}\bar{Q}_R Q_3$ The interaction includes $\mathcal{L} = y_t H_2 \bar{u}_R Q_3$ which generates top decay to the Higgs and the up quark

$$\frac{t}{H_2} \stackrel{\mathcal{U}}{\longrightarrow} BR(t \to hu) \sim \left(\frac{\theta_{hH_2}}{0.1}\right)^2 10^{-3}$$

Sizable $BR(t \rightarrow hu)$ even for not large $H_2 - h$ mixing Current LHC limit on $BR(t \rightarrow hu) \sim 10^{-3}$ may be improved to 10^{-4} at HL-LHC

Final remarks


- LHC results should make us think harder on new SUSY model-building
- Twin Higgs and extra gauge interactions make SUSY natural (without sacrifying perturbativity below the Planck scale)
- New models mean new opportunities for pheno/cosmo
- Novel phenomenology from SUSY Twin Higgs (mostly unexplored):
 - Flavor-violating top decays
 - dark matter candidates
 - new phase transitions (1st order?, GW?)
 - Extra gauge bosons (beyond the LHC reach?)

- ...

BACKUP

Asymptotically Free SUSY Twin Higgs: spectrum for simple UV boundary conditions

- Universal scalar masses
- M₃ fixed at the EW scale

SUSY U(1) D-term Twin Higgs: perturbativity constraints

• $U(1)_{X}$ charges are a combination of $U(1)_{Y}$ and $U(1)_{B-L}$ charges to ensure anomaly cancellation (with the help of right-handed neutrinos)

 $q_X = q_Y + xq_{\rm B-L}$

- Fast RG running of g_x due to SM and twin states charged under U(1)_x
- We assume x=-1/2 to maximize the Landau pole scale for g_x

Symmetry breaking in U(1) model

• Chiral multiplets Z, P and \overline{P} with U(1)_x charges 0,q,-q, respectively:

$$W = \kappa Z (P\bar{P} - M^2)$$

 $V_{\text{soft}} = m_P^2 \left(|P|^2 + |\bar{P}|^2 \right)$

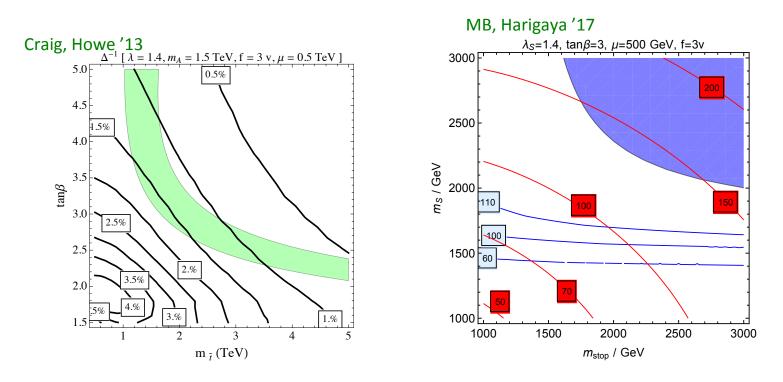
• After integrating out P and \bar{P} :

$$V_D = \frac{1}{8}g_X^2 \left(|H_u|^2 - |H_d|^2\right)^2 \left(1 - \frac{m_X^2}{2m_P^2 + m_X^2}\right)$$

$$m_P \gg m_X \Rightarrow \epsilon \ll 1$$

SUSY F-term Twin Higgs

Falkowski, Pokorski, Schmaltz; Chang, Hall, Weiner '06 Craig, Howe '13 ; Katz, Pokorski, Redigolo, Ziegler '16


 SU(4) invariant quartic term generated via Fterm of a singlet:

 $W_{SU(4)} = (\mu + \lambda_S S)(H_u H_d + H'_u H'_d) + \mu' S^2,$ $V_{SU(4)} = m_{H_u}^2 (|H_u|^2 + |H'_u|^2) + m_{H_d}^2 (|H_d|^2 + |H'_d|^2) - b(H_u H_d + H'_u H'_d + \text{h.c.}) + m_S^2 |S|^2$

• After integrating out the singlet:

$$\lambda = \lambda_S^2 \frac{\sin^2 \left(2\beta\right)}{4} \equiv \lambda_F.$$

SUSY F-term Twin Higgs

 Fine-tuning at the level of 1% - no improvement with respect to non-twinned NMSSM

(assuming very low mediation scale of SUSY breaking Λ =100m_{stop})

SUSY F-term Twin Higgs: why it is fine-tuned?

- The 125 GeV Higgs mass prefers large aneta
- λ is maximized at small aneta

In the region with the correct Higgs mass $(\tan \beta \approx 3 \text{ for 2 TeV stops})$:

1. $\lambda pprox \lambda_{ m SM}$

2. Correction from heavy singlet to $m_{H_u}^2$ is larger than the one from stops (lighter singlet gives large negative correction to m_h via Higgs-singlet mixing)

 $\lambda = \lambda_S^2 \frac{\sin^2\left(2\beta\right)}{\cdot}$