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We discuss spontaneous symmetry breaking of global supersymmetry for a single scalar superfield in an arbitrary K~ihler man- 
ifold. We show that when the curvature of the manifold goes to infinity (or, equivalently, the masses of the scalar partners of the 
goldstino go to infinity ) a non-linear realization of supersymmetry is obtained. The model can be described, in perfect analogy to 
the ordinary a-models, by means ofa supersymmetric constraint on the superfield q), of the form q)2 = 0. The non-linear realiza- 
tion we obtain is different from that of Volkov and Akulov. The differences among the two realizations are discussed. 

1. Introduction 

The problem of non-l inear  realizations of super- 
symmetry was raised in 1973 by Volkov and Akulov 
(AV) [ 1 ] who tried to interpret the neutr ino as the 
Goldstone particle associated to the breaking of su- 
persymmetry. The AV non-l inear  realization can be 
thought of as obtained from the supersymmetry 
transformation in superspace ~ (we will restrict our- 
selves to N =  1 supersymmetry)  

0-- ,0 '= 0+  e, 0--,0' = 0+  f, (1.1) 

xt, ~x'~, =x~, + i0a~, ~-- i~a~, ~ ( 1.2 ) 

by extension to spinor fields through a correspond- 
ence ~,~ (x ) - - ,  x /2 fO~.  The non-l inear  t ransformation 
is 

gt~ (x ' )  = g/,~ (x) + x/2fe,~, ( 1.3 ) 

where f the parameter measuring the symmetry 
breaking, is a constant of d imension 2, and x'~, is re- 

cr Partially supported by the Swiss National Foundation. 
"t We follow here the notation used in ref. [2], except that our 

metricisgj .... (1, - 1, - 1, - 1). 

lated to x~, by eq. ( 1.2 ), where again we substitute the 
local fields g/ ,(x) for the superspace coordinates 0~. 
It is not difficult to show that the transformations 
( 1.3 ) close off-shell the standard N =  1 algebra of the 
supercharges of the Poincar6 superalgebra. Similarly 
as for the bosonic case, this non-l inear  realization 
corresponds to the use of coordinates of the coset 
space G / H  (G and H here being respectively the 
super-Poincar6 and the Poincar6 groups) as local 
fields describing the massless excitations (which is 
here the goldstino field q/~ (x ) ) .  

In the bosonic case it is also usual to obtain a non- 
linear realization of the symmetry group G by start- 
ing with a set of scalar fields belonging to a linear rep- 
resentation of G and by fixing a special point in the 
linear space (the vacuum state). The generators of G 
are naturally split in two sets: those leaving the vac- 
uum invariant  (generators of H),  and their orthogo- 
nal ones with respect to the Killing metric (we as- 
sume here, for the sake of simplicity, that G is a 
simple, compact, Lie group). Acting on the vacuum 
with the elements of G / H  one constructs a G-invar-  
iant submanifold of the linear space (the orbit of the 
vacuum) .  The coordinates of this manifold can be 
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Supergravity is next natural step after General Relativity

For cosmology we need General Relativity

Superstring theory is believed to be the most fundamental 
theory we know 

However, string theory has an emergent concept of space-time. 
To use it in the context of the 4-dimensional General Relativity 
and cosmology requires many intermediate steps 

If in these steps some amount of supersymmetry, maximal or 
minimal or intermediate, is preserved, one finds consequences 
for cosmology, potentially supportable or falsifiable by 
observations

What part of observations is important for fundamental physics?

Early Universe inflation and current Universe acceleration: 
dark energy



New in supersymmetry : 
Fundamental role of a non-linearly realized supersymmetry
1972 Volkov, Akulov

Antoniadis, Dudas, Ferrara, Sagnotti, Volkov-Akulov-Starobinsky supergravity 2014
Ferrara, RK, Linde, Cosmology with Nilpotent superfields, 2014

The discovery of dark energy and an observational success of early universe inflation, 
associated with de Sitter or nearly de Sitter spaces support Volkov-Akulov non-linearly 
realized supersymmetry from the sky 

This is in a contrast to a non-discovery of a low-energy linearly realized 
supersymmetry at LHC

Zwirner, Dall’Agata, Bergshoeff, Van Proeyen, Freedman, Roest, Porrati, Sagnotti, Dudas, 
Antoniadis, Bandos, Tonin, Sorokin, Kuzenko, Kehagias, Riotto, Argurio, Quevedo, Uranga

Wrase, Vercnocke, Scalisi, Yamada,Farakos, McDonough, Carrasco, Martucci, Murli, Karlsson, Westphal, 
Delacretaz, Gorbenko, Senatore, Cribiori, Tournoy, Garcia del Moral,  Parameswaran,  Quiroz, Zavala 

Recent: VA is suitable for inflation and dark energy with spontaneously broken supersymmetry

1978-1979 Rocek, Lindstrom;  Ivanov, Kapustnikov
1983 Samuel, Wess
1989, Casalbuoni,  De Curtis,  Dominici,  Feruglio, Gatto
2009 Komargodski, Seiberg
2010 Kuzenko, Tyler



Known to be negative in pure supergravity, without 
scalar fields (Townsend, 1977)

Cosmological Constant in Supergravity

Supergravity with a positive cosmological constant without 
scalars was not known (till 2015)

L < 0     AdS

L > 0     dS



Standard linear N=1 SUSY Non-linear N=1 SUSY

1 Majorana fermion 1 complex scalar 1 Majorana fermion 2 Majorana fermions

Wess-Zumino, 1974: minimal SUSY with a
(Golfand,Likhtman, 1971) 
Majorana fermion and a complex scalar

They are solved by

F = −f

(

1 +
G

2

4f4
∂2G2 −

3

16f8
G2G

2
∂2G2∂2G

2

)

,

F = −f

(
1 +

G2

4f4
∂2G

2 −
3

16f8
G2G

2
∂2G2∂2G

2
)

.

(3.5)

Upon substituting this solution back in (3.3) we find

LAV = −f2 + i∂µGσµG +
1

4f2
G

2
∂2G2 −

1

16f6
G2G

2
∂2G2∂2G

2
. (3.6)

This is equivalent to the Akulov-Volkov Lagrangian [1]. We conclude that (3.1) is a simple

description of the AV Lagrangian.

What is the equation of motion which follows from (3.1)? To answer this question we

add a superpotential term 1
2λX2

NL to (3.1) in order to implement the constraint where λ

is a Lagrange multiplier chiral superfield. Now the equations of motion are X2
NL = 0 and

1
4D

2
XNL = λXNL + f . The first is our constraint and the second determines G and F .

However, if we multiply the second equation by XNL and use the constraint, we derive

XNLD
2
XNL = 4fXNL . (3.7)

This equation contains less information than the full equation of motion. It determines F

but does not determine G. One way to think about it, is as the variation equation of the

Lagrangian (3.1) under δXNL = χXNL with an infinitesimal chiral superfield χ.

Rocek used (3.7) to constrain his Goldstino superfield [4]. We see that our formalism

leads to this equation as a consequence of the equation of motion. However, it is important

to stress that once we include corrections to (3.1), or terms with additional fields (see

below), the equations of motion are modified and (3.7) no longer holds. Therefore, for the

minimal theory our on shell description coincides with that of [4]. When various corrections

are added both descriptions are valid but they differ by field redefinitions.

It is again instructive to compare this discussion with the theory of pions. The theory

(3.1) appears free but the constraint makes it nonlinear. This is similar to the leading

order Lagrangian for pions which is not free only because the field U is constrained to be

unitary.

Both theories (3.1) and the leading order pion Lagrangian are subject to higher deriva-

tive corrections. In the case of pions the leading order term has two derivatives and the
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L m = m(FA + GB -½ i ~ O )  

and 

Lg = g [ F ( A 2 - B  2) + 2GAB - ig-~(A - V5 B) t~]. 

Here A and B are respectively a scalar and a pseudo- 
scalar field, ~k is a Majorana spinor and F and G are 
auxiliary fieldst 2. A possible further invariant 

L x = ;kF 

can always be eliminated by a shift in the field A or 
by a shift followed by a 3'5 rotation followed by a 
shift, depending on whether m 2 - 4g~, is positive or 
negative. The auxiliary fields satisfy the equations 
of  motion 

F + mA + g ( A 2 - B 2 ) =  O and G + mB ÷  2gAB=O 

which can be used to eliminate them from the La- 
grangian. The result is 

L =-½(~)taA) 2-½ (~ )  B) 2 -½ i ~ 3 ' " ~  I~ 
- }m2A 2 -½m 2 B  2 -½ i m~ ,O  

- gmA (A 2 + 82)- -g2(A2+ 2) 2- ig (A-3'sa),. 

The equality of the masses and the relations among 
the various couplings are consequences of  the invar- 
iance under supergauge transformations. It is re- 
markable that this Lagrangian appears to be renor- 
malizable even when the masses and coupling con- 
stants are not independent and that the relations 
among them are preserved by renormalization. Fur- 
thermore the theory turns out to be less divergent 
when the above relations are satisfiedt 3. For in- 
stance, the quadratic divergence of  the mass renor- 
malization for the scalar and pseudoscalar fields can- 
cels among the various diagrams contributing to it. 
Similarly the logarithmic divergence of  the vertex 
correction to the spinor-scalar or the spinor-pseudo- 
scalar interaction also cancels between the two dia- 
grams where a scalar or a pseudoscalar is exchanged, 
leaving a finite vertex correction. All these state- 

t 2 We find it convenient  to use the  Majorana representat ion 
with real -r#'s, (,,go) 2 = - 1 ,  (~,s)2 = _ 1. 

i -3 The au thors  are very grateful to B.W. Lee for point ing 
out  first the  occurrence o f  cancellations and also the fact 
tha t  relations among  couplings are preserved in the one- 
loop approximat ion .  

ments have been verified first (in the one-loop approx- 
imation) using the Lagrangian in the form obtained 
by eliminating the fields F and G. 

In order to prepare the way for a future systematic 
treatment of  higher orders, it seems preferable to de- 
scribe the renormalization procedure for the original 
Lagrangian containing the fields F and G, rather than 
after elimination of  those fieldst 4 . If  one takes 
Lo+L m as unperturbed Lagrangian, one finds, in addi- 
tion to the usual propagatorst s , 

( A A )  = (BB) = A c, 

propagators for the auxiliary fields 

(FF)  = (GG) = [~A 
c 

and mixed propagators 

( A F )  = (BG) = - m A  c. 

Contrary to the more complicated situation for the 
Lagrangian without F and G, it now turns out that 
the only renormalization needed in the one-loop ap- 
proximation is a logarithmically divergent wave func- 
tion renormalization Z, the same for all fields A, B, 
~, F and G. One finds Z = 1 - 4g2I, where I is the 
logarithmically divergent intdgral 

I=--if d4k ~ 1 - I j~-~ 
(270 4 (k2+m2) 2 16rr 2 - - "  

For instance, no diagonal mass for the field A and B 
is generated. The quadratic divergence of  the self-ener- 
gy cancels among the various diagrams and the remain- 
ing logarithmically divergent self-energy is proportion- 
al to p2. Similarly, the spinor self-energy is propor- 
tional to 7Upu and the corrections to the off-diagonal 
mass terms tuFA and mGB add up to zero. Therefore, 
the only mass renormalization is that due to the 
wave-function renormalization and the renormalized 
mass m r is given by m r = mZ. The corrections to the 
couplings gFA 2, - g F B  2 and 2gGAB add up to zero, 
while the vertex corrections to the interactions 
- i g ~ d / A  and ig~75 ~bB add up to finite values and 

~4 In this fo rm the theory  can be regularized (for instance 
by the me thod  of  Pauli-Vil lars)  wi thout  spoiling super- 
gauge invariance. Therefore,  the Ward identit ies following 
f rom supergauge invariance are expected to be satisfied in 
per turbat ion theory.  The authors  are very grateful to J. 
Iliopoulos for a discussion o f  these points.  

l "s Here A c is the  usual F e y n m a n  propagator,  (u _ m2) Ac  = 
64(x-x').  
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LHC, as of September 2018

No SUSY partners yet

Gravity NO-GO for de Sitter
Local supergravity, with de Sitter vacua
(without scalars) was constructed in 2015

AdS/CFT studies

L =
L =

Bergshoeff, Freedman, RK, Van Proeyen;
Hasegawa, Yamada

Volkov, Akulov, 1972 Non-linearly realized 

supersymmetry: only fermions are present

p
g⇤ = �p

g 3 eK |W |2  0
p
g⇤ =

p
g(f2 � 3 eK |W |2) > 0

d=4

L = �detE
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2010 inflection model
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Early Universe,  CMB: PLANCK 2018 versus  WMAP 2010

2005 N-flation
r=0.13

With tiny exception

(after a billion dollars spent)



In Planck 2018 there are 2+  interesting models in the sweet spot of data
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2013, supergravity a-attractors, 
RK, Linde, Roest;  Ferrara, Porrati
Include Higgs and Starobinsky, a=1

2003, KKLMMT, appendix C and
Encyclopaedia Inflationaris

V = V0

⇣
1� µ4

�4

⌘

ns = 1� 5

3

1

N

r < 10�6Stringy version?

Can  be validated by the B-mode detection: 
Detection means determination of  the 
Curvature of the moduli space from the sky

Cannot be invalidated:
Next 2 decades only, at best 

Fibre inflation, Quevedo et al

a=2, ½, 2008

r > 10�4
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Encyclopaedia Inflationaris, 2013
one of their 192 figures for 74 models 

Here is an alpha-attractor model (red line), a 
KKLMMT model (green) and a KKLMMT model with 
a cut-off near small phi (purple). Since inflation takes 
place at the shoulders of the plateau region close to 
the exit from the plateau region, it is not surprising 
that all these models fit Planck 2018 data very well.

Supersymmetric version of this model
Including volume stabilization:
work in progress: RK, Linde, Yamada
using Geometric Inflation

KKLMMT, appendix C and 
Encyclopaedia Inflationaris



• Maximal supersymmetry and B-modes
• M-theory in d=11 
• Superstring theory in d=10 
• N=8 supergravity in d=4

2016, Ferrara and RK

Scalars are coordinates of the coset space in N=8 supergravity in d=4 G

H
=

E7(7)

SU(8)

ds2 = k
dTdT̄

(T + T̄ )2
, k = 1, 2, 3, 4, 5, 6, 7

Geometries with discreet number of unit size Poincaré disks are possible when 
consistent reduction of supersymmetry is performed. Upon identification of their 
moduli one finds

= 3 a

At least one disk and no more than seven

N=55 e-foldings

E7(7)(R) � [SL(2,R)]7

r ⇡ {1.3, 2.6, 3.9, 5.2, 6.5, 7.8, 9.1}⇥ 10�3

ns ⇡ 0.963



Planck and BK14 data set tight constraints on α attractors (Kallosh et al. 2013; Ferrara et al. 
2013). We obtain αE1  < 32 and  αE2 < 16 at 95% CL for the E- model. We obtain slightly tighter 
95 % CL bounds for the T-model, i.e., αT1 < 12 and αT2 < 10. 

Given the relation |RK| = 2/(3α) between the curvature of the Kahler geometry RK  and α in 
some of the T-models motivated by supergravity, Planck and BK14 data imply a lower bound 
on|RK |, which is still in the low-curvature regime. The discrete set of values α = i/3 with an 
integer i in the range [1,2,3,4,5,6,7] motivated by maximal supersymmetry (Ferrara & Kallosh
2016; Kallosh, Linde, Wrase, & Yamada 2017) is compatible with the current data. 

From Planck 2018 

T

T

E

Figure 1: This Figure is taken from [16], it represents a forecast of CMB-S4 constraints in the ns � r plane

for a fiducial model with r = 0.01. Here the grey band shows predictions of the sub-class of ↵-attractor models

[2, 3, 4]. We have added to this figure a blue circle with the letter T inside it corresponding to a highest

preferred value 3↵ = 7 and the purple one corresponding to the lowest preferred value 3↵ = 1 in a seven-disk

geometry. All intermediate cases 3↵ = {1, 2, 3, 4, 5, 6, 7} are between these two. They all describe the class

of ↵-attractor models with V ⇠ tanh
2
('/

p
6↵), so-called quadratic T -models. The quadratic E-models with

V ⇠ (1 � e
p

2/3↵'
)
2
tend to be slightly to the right of the T -models, see [2]. We show them as a navy circle

with the letter E inside it.

by requiring that

3↵ = 7 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 ⌘ ⌧
3↵ = 6 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 ⌘ ⌧ , ⌧7 = const
3↵ = 5 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 ⌘ ⌧ , ⌧6 = ⌧7 = const
3↵ = 4 : ⌧1 = ⌧2 = ⌧3 = ⌧4 ⌘ ⌧ , ⌧5 = ⌧6 = ⌧7 = const
3↵ = 3 : ⌧1 = ⌧2 = ⌧3 ⌘ ⌧ , ⌧4 = ⌧5 = ⌧6 = ⌧7 = const
3↵ = 2 : ⌧1 = ⌧2 ⌘ ⌧ , ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 = const
3↵ = 1 : ⌧1 ⌘ ⌧ , ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 = const (4.17)

We illustrate in Fig. 1 the features of ↵-attractor models [2, 3, 4] with the seven-disk geometry
using the recent discussion of B-modes in the CMB-S4 Science Book [16]. We show in Fig. 1
predictions of ↵-attractor models with seven-disk geometry in the ns � r plane for N ⇠ 55, for
the minimal value 3↵ = 1 and for the maximal value 3↵ = 7.

5 Values of 3↵ in string theory

Here we will show how to derive the 7-disk geometry (4.13) in string theory. We start with
the derivation of non-compact symmetries in string theory following [17], [18]. The toroidal

7

a

ns = 1� 2

N
, r = ↵

12

N2

CMB-S4

Seven new targets
For B-mode satellites



No-go theorems on dS prohibit linearly realized 
supersymmetry. 

New N=1 dS supergravity has a non-linearly realized
supersymmetry. 

Bergshoeff, Freedman, RK, Van Proeyen
Hasegawa, Yamada  

2015, pure dS supergravity

dS supergravity

dS supergravity, general: a nilpotent multiplet interacting with arbitrary chiral and vector 
multiplets with local non-linearly realized supersymmetry

p
g⇤ =

p
g(f2 � 3 eK |W |2) > 0

RK, Wrase, Schillo, van der Woerd, Linde, Van Poeyen, Freedman, Roest



dS supergravity in our observable d=4 has a non-linearly realized supersymmetry

Includes all chiral and vector standard unconstrained multiplets

+ a chiral nilpotent multiplet, equivalent to a presence of the anti-D3 brane uplift

Simplest case: bosonic action K = �3 log
�
T + T̄

�
+ SS̄ ,

W = W0 +A exp(�aT ) + µ2S
Complicated fermionic action

Wrase, RK 2014

RK, Wrase 2018, 1808.09427 anti-Dp brane uplift

15 years after KKLT (2003) when we learned that anti-D3 brane can uplift the minimum 

S2=0

Wrap any anti-Dp brane on a (p-3) cycle, whenever available, 

each time there is an uplifter :  a nilpotent superfield in dS supergravity action

The situation is like: d=4 supergravity with F-term potential has many versions, some of 

them are derived via flux compactification on calibrated manifolds from d=10 supergravity 

with local sources, Dp-branes and Op-planes.

Now we observe that general type dS supergravity has many versions, some of them

are derived via flux compactification on calibrated manifolds from d=10 supergravity with 

local sources, Dp-branes and Op-planes as well as anti-Dp-branes.



Anti-D3 Brane Induced Geometric Inflation: 

Kahler function G Cremmer, Ferrara, Girardello,  Julia,  
Scherk,  van Nieuwenhuizen, Van Proeyen, 
from  1978

Model Building Paradise 

We are interested in anti-D3 brane interaction with Calabi-Yau moduli Ti .  In 
supergravity we expect some interaction between the nilpotent superfield S, 
representing KKLT type anti-D3 brane, and Calabi-Yau moduli Ti

G(T i, T̄ i;S, S̄)

stability of each model and show the absence of tachyons. The bisectional curvature of
these geometric models will play a role in the stability analysis.

We will develop a general class of D3 induced geometric inflation with multiple moduli
in CY bulk interacting with D3 nilpotent multiplet S. It is important that the D3 induced
geometric inflation models have a non-vanishing gravitino mass, W does not vanish during
and at the exit from inflation. In this case, one can use the advantage of a geometric Kähler
function formalism where

G ⌘ K + logW + log W̄ , V = eG(G↵�̄
G↵G�̄ � 3) (1.1)

and study various interesting application of the new models. Here the index ↵ includes the
directions S and Ti.

The role of the Kähler function G was recognized starting with [10] when supergravity
models interacting with matter were first constructed. It was shown there that the action
is fully determined by the Kähler function. However, in some cosmological models, for
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might vanish. For these models it was more useful to employ the Kähler potential and the
superpotential W since the Kähler function G has a singularity at W = 0. Meanwhile, the
analysis of metastable de Sitter vacua with spontaneously broken supersymmetry was based
mostly on the analysis using the Kähler function G, see for example, [13]. Comparative to
this analysis, the new ingredient here is the fact that the S superfield is nilpotent and that
we will use it for developing inflationary models with the exit to de Sitter minima. Our
Hermitian Kähler function will be of the form

G(Ti, T̄i;S, S̄) = G0(Ti, T̄i) + S + S̄ + GSS̄(Ti, T̄i)SS̄ , (1.2)

which we will show will describe the general case of supergravity models with one nilpotent
multiplet and non-vanishing superpotentials.

We will show below that, in general, from the knowledge of the potential V(Ti, T̄i) and
the T -dependent Kähler function G0(Ti, T̄i) it is possible to recover the S-field geometry

GSS̄(Ti, T̄i)dSdS̄. (1.3)

Whereas the complete formula will be given below in eq. (2.13), here we would like to
point out that under certain conditions the relation between the S-field geometry and the
potential simplifies significantly. If the gravitino mass is constant throughout inflation at
S = 0, and supersymmetry is unbroken in the Ti directions, i.e. during inflation

eG(Ti,T̄i) = |m3/2|
2 = const , GTi(Ti, T̄i) = 0 , (1.4)
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The Kahler potential and the superpotential of the N = 1 d=4  effective supergravity 
theory are

4. SUPERSYMMETRY CONDITIONS OF A SUGRA BACKGROUND

In fact, the choice of a suitable set of expansion forms is a difficult problem (see e.g.
[135, 136] for a discussion of the constraints on such a set). There are two ways to go
about it. First one can ask for a consistent truncation, which means that every solution of
the 4D effective theory should lift to a 10D solution (where the 10D fields are constructed
from the 4D ones using the reduction ansatz). Secondly, one can take a more physical
approach and expand in a set of modes that have a much lower mass with respect to the
others, and are thus the only ones to be excited in the low-energy theory. In practice,
identifying such a set is quite difficult. In some cases however, there is a natural set of
such expansion forms. For instance, in the case of coset manifolds G/H it has been shown
that expanding in forms that are invariant under the action of the group G leads to a
consistent truncation [137]. This has been used to construct the effective theory in [95].

In this subsection, which should be considered more as a foretaste, we will avoid
the issue of the reduction altogether. Rather we will present the Kähler potential and
superpotential of the N = 1 description, but keep all the KK-modes. So effectively
we end up with a “4D” theory with an infinite amount of fields. To be really useful this
should still be supplemented with a reduction ansatz, which should be substituted into the
expressions (4.40) and (4.41) for the Kähler potential and the superpotential respectively.
We will not derive these expressions, but provide an a posteriori justification by deriving
the F-terms and comparing with the supersymmetry conditions (4.14).

In an N = 1 theory the scalar fields sit in chiral multiplets (and their complex conju-
gate anti-chiral multiplets). There is thus a complex structure, splitting the scalar fields
into holomorphic and anti-holomorphic fields. In our case, it turns out [93] that the
holomorphic scalar fields should be found in the expansions of

eBZ = e3A−ΦeBΨ2 , eBT = eB
(

e−ΦReΨ1 − iC
)

, (4.39)

where C are the RR-potentials. First we note that the degrees of freedom in the pure
spinor Ψ1 combine with the degrees of freedom in the RR-potentials into chiral multiplets.
Secondly, the fields are most accurately described in the B-twisted description, which
makes the degrees of freedom in the B-field explicit. It is however also possible to express
the Kähler potential and the superpotential in the untwisted picture, which we will do in
the following.

The Kähler potential and the superpotential of the N = 1 4D effective theory are then
given by

K = − ln 4

∫

M
e−4A|C|−6H(ReZ)− 2 ln 4

∫

M
e2AH(ReT ) + 3 ln(8κ210) , (4.40)

W =
i

4κ210

∫

M
⟨C−3Z,dHT ⟩ . (4.41)

where the Hitchin function H(ReΨ) is defined in eq. (3.62). The Hitchin function can be
related to the Mukai pairing as follows

H(ReΨ) =
i

4
⟨Ψ, Ψ̄⟩ , (4.42)

keeping in mind that on the right-hand side, ImΨ should be determined from ReΨ through
eq. (3.64). This leads to an expression of the Kähler potential that is more widely used in
the literature, albeit less accurate. The variation of the Hitchin function is given by [8]

δH(ReΨ) = ⟨δ(ReΨ), ImΨ⟩ . (4.43)
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H(ReΨ) is the Hitchin function, related to the Mukai pairing
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4. SUPERSYMMETRY CONDITIONS OF A SUGRA BACKGROUND

One could have used different 4D spinors ζ(1,2)+ in the decomposition of ϵ1,2 respectively,
leading to an N = 2 effective theory in four dimensions. In the presence of RR-fluxes,

the supersymmetry variations (B.7) relate ϵ1 and ϵ2 and therefore also ζ(1)+ and ζ(2)+ . The
solutions, as opposed to the effective theory, therefore generically only have N = 1. In
fact, we will assume the presence of orientifolds — the necessity of which we will discuss

in a moment — relating ζ(1)+ and ζ(2)+ also off-shell and leading to an N = 1 effective 4D
theory.

The two internal chiral spinors η(1)+ and η(2)+ , on the other hand, are fixed spinors that
characterize the background geometry. Indeed, as explained in the previous chapter they
define a reduction of the structure group of the generalized tangent bundle TM ⊕ TM∗

from SO(6,6) to SU(3)×SU(3). Supersymmetry therefore imposes first a constraint on
the topology of the generalized tangent bundle. We will now see how to reformulate
the supersymmetry conditions (B.7) as a differential constraint on this SU(3)×SU(3)-
structure.

Suppose η(1)+ and η(2)+ have the same norm |a|2 = ||η(1)+ ||2 = ||η(2)+ ||2, which as we will
see in section 5.3 is a necessary condition for the background to allow for supersymmetric
D-branes. We define the pure spinors Ψ1 and Ψ2 using the Clifford map as in eq. (3.91)
(appropriately normalized and with an extra phase factor for convenience):

Ψ1 = Ψ∓ = − 8i

|a|2
η(1)+ η(2)†∓ , Ψ2 = Ψ± = − 8i

|a|2
η(1)+ η(2)†± , (4.5)

for type IIA/IIB. Note that the positive-chirality and the negative-chirality pure spinor
are interchanged when going from type IIA to IIB.

Differential conditions for supersymmetry

In [10] it was found that the supersymmetry conditions (B.7) can be rewritten as the
following elegant conditions on the pure spinors

dH
(

e4A−ΦReΨ1
)

= e4AF̃ , (4.6a)

dH
(

e3A−ΦΨ2) = 0 , (4.6b)

dH
(

e2A−ΦImΨ1
)

= 0 . (4.6c)

The calculation is quite long-winded and technical so we do not repeat it here. While
the original reference does not contain a lot of detail, we refer to [78, Appendix B] and
[79, Appendix A] for more elaboration. We will given an interpretation of each of these
conditions in terms of a D-brane calibration in section 5.3.

It follows immediately from (4.6b) that e3A−ΦΨ2 is a generalized Calabi-Yau structure
à la Hitchin (definition 3.9), and in particular that the associated generalized complex
structure J2 is integrable. On the other hand, because of the presence of the RR-fluxes,
the generalized almost complex structure J1 associated to Ψ1 is not integrable. See figure 3.
This means that although Ψ1 and Ψ2 define an SU(3)×SU(3)-structure they do not satisfy
the appropriate integrability to form a generalized Calabi-Yau geometry à la Gualtieri
(definition 3.15). Some proposals for Exceptional Generalized Complex Geometry have
been made in [80, 81, 82, 83], that can possibly also include the RR-fields in a more natural
way. However, we will see that the present formalism already does quite a good job in
describing supersymmetric backgrounds and D-branes probing them.
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Pure spinor polyforms

globally defined nowhere-vanishing normalized internal Killing spinors η

Such a constraint follows from the -symmetric D-brane action when the local -symmetry

�✓(�) = (1 + �p)(�) (2)

is gauge-fixed as proposed in [15]. In this context eq. (1) is an algebraic equation defining
the Killing spinor.

The condition for supersymmetry (1) is universal and applies to all types of branes, fun-
damental strings, solitonic NS5-branes, D-branes and M-branes. Thus we expect that the
results of this paper apply beyond the case of anti-D-branes in SU(3)-structure compactifi-
cations. Supersymmetric (world-volume) configurations are solutions of the Born-Infeld field
equations which satisfy eq. (1) for some non-vanishing ✏. The part of the bulk supersymmetry
preserved by such a configuration depends on the number of linearly independent solutions
of equation (1) in terms of ✏.

In [16] the Killing spinor equations associated with the -symmetry transformations of
the worldvolume brane actions were studied. It was shown that these Dirac-Born-Infeld type
systems are associated with calibrations, and that all the world-volume solitons associated
with calibrations are supersymmetric.

The norms of the internal two Killing spinors admitted by the compactification manifold
are equal to each other, so that calibrated Dp-branes are admitted by the manifold. In such
case, using these spinors one can construct some polyforms bilinear in spinors and use a
language common to both type IIA and IIB theory. In particular, the existence of globally
defined nowhere-vanishing spinors allows one to construct a globally defined real two-form J
and a complex three-form ⌦ as certain bilinears of these spinors. As a result there is a very
nice dictionary between the string theory models with fluxes and localized sources based on
10d supergravity, and K and W of the four dimensional N = 1 supergravity.

In [3–5] a concise way of packing this dictionary is proposed, based on pure spinors which
are polyforms  1 =  ⌥ and  2 =  ± for IIA/IIB. This concise formula for K and W
depends on these two polyforms, on the properties of the compactification manifold, on the
RR potentials C, on the NSNS 2-form B and on the dilaton. The explicit formula for K
and W is given for example in eqs. (4.40), (4.41) in [4]. It involves specific combinations
of polyforms involving the Hitchin function, Mukai pairing and other objects of generalized
complex geometry.

We will refer to these expressions in [4] as

KIIA/IIB = K(zi, z̄i) , WIIA/IIB = W (zi) (3)

When specified to the type IIA or type IIB case, these produce the well known K and
W , which we will present in detail below, see Appendix. K is a real function of the chiral
multiplets zi, z̄i and W is a holomorphic function of the chiral multiplets zi. This summarizes
the steps shown above as 1 and 2. Now we would like to explain our step 3. This step was
actively studied in string theory for the D3-brane, see for example [17–19].

Here we will include anti-Dp-branes as the ingredients of the string theory models in ten
dimensions, with any p, not just p = 3. One might worry that Dp-branes and anti-Dp-branes,
when wrapped on the same cycle, are moving towards each other in the compact space and
could quickly annihilate. While this is somewhat model dependent, we like to stress that
our general results do not require the presence of Dp-branes. We can satisfy the tadpole
condition using Op-planes, fluxes and anti-Dp-branes only. In such a case there are certainly
many examples without perturbative instabilities, like for example setups with a single anti-
Dp-brane, potentially even placed on top of an Op-plane. All anti-Dp-branes we include are
pseudo-calibrated [17], so that

(1 + �p)✏ = 0 , (4)

3

Here the scalar potential is a combination of F-term and D-term parts and is given by

V = eK
�
Ki|̄DiWDjW � 3|W |

2
�
+

1

2
(Ref)�1↵�D↵D� . (17)

This action is determined by the real Kähler potential K, the holomorphic superpotential W
and the holomorphic gauge kinetic function f↵� . These depend on the complex scalar fields zi

that arise from dimensionally reducing the metric as well as the other ten dimensional string
fields. As mentioned above, for an SU(3)-structure manifold we can use the Killing spinors to
construct a Kähler (1,1)-form J and a holomorphic (3,0) form ⌦ (see [1] for details). These
contain the Kähler and complex structure moduli. Additionally, we get in the NSNS sector
scalar fields from the Kalb-Ramond field B and the dilaton e�. The parameters that enter
the scalar potential from the NSNS sector are the H-flux as well as so called metric fluxes
that encode the curvature of the SU(3)-structure manifold. The scalars and parameters that
arise in the RR-sector depend on whether we are studying type IIA or type IIB and on the
particular orientifold projection. We will discuss them in detail in the appendix A.

Generically, the e↵ective scalar potential derived from 10d for compactifications with a
warped metric is given for example in eq. (4.4) in [17], see the notation there. Namely the
density of the 4d potential consists of 2 parts, the one from the classical 10d supergravity
action with fluxes

Ṽe↵ =

Z

M6

dVol6e
4A

n
e�2�[�R6 +

1

2
H2

� 4(d�)2 + 8r2A+ 20(dA)2]�
1

2
F̃ 2

o
(18)

and the part from the local sources

V
loc
e↵ =

X

i

⌧i
⇣Z

⌃i

e4A��

q
det(g|⌃i + Fi �

Z

⌃i

Cel
|⌃i ^ eFi

�
(19)

Here the localized sources are D-branes and O-planes, where for the O-planes we have to set
Fi = 0 . As above for

p
↵0 = 1/2⇡ one has ⌧Dp = 1, ⌧Op = �2p�5. Many examples of this

setup and relations to the concept of calibrated D-branes can be found in [17]. We present
the relevant cases in the next sections.

This concludes a short review of flux compactifications of type II supergravity on SU(3)-
structure manifolds in the presence of calibrated (i.e. supersymmetric) sources (see for ex-
ample [1, 2] for more details).

3 Adding pseudo-calibrated anti-Dp-branes

Practically in all string theory models of compactification from 10d the goal was to find the
ingredients of standard N = 1 supergravity, i. e. to find K and W for unconstrained chiral
multiplets and identify the potential (17) associated with ‘full fledged string theory models’.
In [17] an important step was made to accommodate the KKLT construction in this setting.
At that time adding an anti-D3-brane, even pseudo-calibrated, meant that supersymmetry of
the kind available in standard supergravity becomes broken down to N = 0. The additional
terms in the potential, the so called uplifting term in KKLT, Vup = 8D

(Im⇢)3 were not part of

the potential in (17) and only the bosonic term Vup was presented.
Since then the manifestly supersymmetric version of the KKLT uplifting was proposed

in the form in which the anti-D3-brane [24] is represented by a nilpotent multiplet S with
S2 = 0, corresponding to VA non-linearly realized supersymmetry. In this case the new K

6

There is a
dictionary
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Before presenting  the general new rules, let us look at an example

4 dS vacua in type IIA dS supergravity

We are now focusing on the particular case of massive type IIA flux compactification to
which we can add anti-D6-branes as explained in subsection 3.2. This case is particularly
simple since all moduli can be stabilized (see [26] for a review of this particular class of
compactifications). However, it has never been possible to find (meta-) stable dS vacua
in this context. All example of dS critical points have always had at least one tachyonic
direction with large slow-role parameter |⌘| & O(1) [27]. This had lead people to investigate
whether there are no-go theorem’s in this case that forbid stable dS vacua [27–30]. Two for
us important insights have emerged from these studies: 1) The obstinate tachyonic direction
involves the 3-cycle moduli [27, 29, 30]. 2) In the limit of very small positive value of the
potential, the tachyonic direction seems be connected to the sGoldstino [27,29–31].

Our new term that appears in the action does involve the 3-cycles since we can wrap
them with anti-D6-branes, so the new term should have an e↵ect on the tachyonic direction.
Furthermore, since the anti-D6-branes break supersymmetry they will modify the sGoldstino
direction. For dominant SUSY breaking from anti-D6-branes, the Goldstino will be the
worldvolume fermion on the anti-D6-brane, which is encoded in the nilpotent field S2 = 0.
This Goldstino has no scalar partner and therefore there is no sGoldstino that is at the risk of
being tachyonic.5 The explicit no-go theorem [30] that predicts a tachyonic field with ⌘  �

4
3

in standard type IIA compactifications is circumvented in the more general dS supergravity,
due to the presence of anti-D6-branes.

Given the above it might not be guaranteed that the tachyonic direction can be absent
in these models, however, we will provide a simple intuitive reason for why this is actually
the case. Let us restrict to the case of a model with a single 3-cycle modulus Im(Z) (or more
generally this Im(Z) could be the linear combination of 3-cycle moduli that is tachyonic).
Then near the dS saddle point at Im(Z) = Im(Z0) the potential without the anti-D6-branes
has the form Vtachyon / V0 � (Im(Z) � Im(Z0))2, for some V0 > 0. The positive new term
from the anti-D6-branes in equation (34) above has an implicit Im(Z) dependence from
e4�4 / 1/Im(Z)4, so that it scales like Vup / 1/Im(Z)3. The combination of these terms then
generically has a dS minimum for an appropriately chosen number of anti-D6-branes, as is
shown in figure 1.

We study this for the simplest known example and find indeed for appropriately tuned
parameters that the obstinate tachyon is absent. In the truncation to left-invariant fields,
there is no other tachyon, so it is possible that this is the first stable dS vacuum in this
context. In order to know for sure, one has to check that there are no other light fields that
have a negative mass, see section 3.1 of [32] for a discussion of this point.

In this simplest model the unstable dS vacua that were previously found in [33, 34] can
be shown to all lie at small volume and large string coupling [26] so that one expects large ↵0

and string loop corrections. The anti-D6-brane contributions shift the positions of the vacua
so that one has to analyze the full moduli space in this model to check whether dS vacua in
a trustworthy regime could exist. There are of course also many more models that one can
study in this new context. We leave a more detailed analysis to the future [35].

4.1 The isotropic S
3
⇥ S

3
/Z2 ⇥ Z2 example

Probably the simplest example of compactifications of type II string theory is the compacti-
fication on T 6/Z2 ⇥Z2, where one identifies the three T 2 in T 6. After this identification this

5The supersymmetry on the anti-D6-branes is non-linearly realized. The fermions on the worldvolume do not
simply get mapped into a boson under these transformations (see for example [22] for more details).
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Figure 1: The extra term from an anti-D6-brane can lead to a stable minimum near a dS saddle

point. The dashed blue potential Vtachyon with the maximum is the standard potential when only

calibrated D6-branes and O6-planes are present. The uplift due to anti-D6 brane Vup / 1/Im(Z)
3
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model has only three complex moduli, whose imaginary parts correspond to a single volume
modulus, a single complex structure modulus and the dilaton.6 We compactify on this space
and include in the NSNS sector H-flux, denoted by h below, as well as metric fluxes. The
latter are being equivalent to adding curvature and we choose them in such a way that the
internal space is actually S3

⇥ S3. This model has been studied in [27, 29, 30, 32–34, 36–41].
The only non-trivial fluxes we can add in the RR sector are F0 and F2 fluxes, whose param-
eter we denote by f0 and f2. Furthermore, we do an O6-orientifold projection and now allow
for the addition of N

D6,K , K = 1, 2 anti-D6-branes on the two even 3-cycles. In our notation
the Kähler and superpotential take the form
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⇥
�i(Z1

� Z̄1)
⇤
� 3 ln

⇥
�i(Z2

� Z̄2)
⇤
� ln

"
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In this model there are no D-terms. The internal volume is 8V6 = i(t � t̄)3 and the four
dimensional dilaton is e�4�4 = e�4�

V
2
6 = 28Im(Z1)Im(Z2)3. We have used S2 = 0 to rewrite

� 3 ln [�i(t� t̄)]+
SS̄

(t� t̄)3N
D6,K(ZK � Z̄K)

= � ln

"
i(t� t̄)3 � i
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N
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#
. (37)

The scalar potential of this model is not too complicated and we have actually been able to
minimize it analytically in terms of the parameters. We have found that for suitable chosen
values of the parameters we do indeed find stable dS solutions in our truncated model, i.e.
the addition of anti-D6-branes has removed the tachyon, see figure 2.

We have explicitly checked that no other of the left-invariant moduli directions are tachy-
onic and that there are indeed metastable dS solutions in this truncation. There is a large

6This model is the harmonic oscillator of compactifications and is often called ‘STU-model’ in the literature.
We reserve S for the nilpotent field here and also label the other moduli di↵erently.
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New rules 

for dS supergravity in d=4 derived using flux compactification of d=10 string theory models
with local sources, including calibrated Dp-branes/O-planes + 

pseudo-calibrated anti-Dp-branes wrapped on supersymmetric cycles

since the -symmetry on the world-volume of the anti-Dp-branes has the form

�✓(�) = (1� �p)(�) . (5)

This means supersymmetry is non-linearly realized on the world-volume fields and sponta-
neously broken. The inclusion of anti-Dp-branes to a string theory model in addition to
Op-planes and maybe Dp-branes was viewed in the past as a compactification to N = 0 in
d = 4, since the anti-Dp-branes preserve the supersymmetry opposite to the one preserved by
Dp-branes and Op-planes.

Here we will show that, in fact, one should view this step as a general way of relating
string theory models, with calibrated and pseudo-calibrated branes, to four dimensional dS
supergravity [6–14]. It means that via such compactifications we obtain a supergravity ac-
tion, which in addition to unconstrained multiplets has also a nilpotent one. The nilpotent
multiplet represents non-linearly realized Volkov-Akulov supersymmetry [24]. The action of
dS supergravity interacting with matter has a local non-linearly realized supersymmetry.

Our step 4 is to give the modifications of K and W due to the presence of the nilpotent
multiplet. The new action has a non-linearly realized N = 1 supersymmetry, which is a
hallmark of dS supergravity. Our main results are the new K and W , which depend also on a
nilpotent multiplet S, in addition to unconstrained chiral multiplets zi. They are generically
of the form

Knew(zi, z̄i;S, S̄) = K(zi, z̄i) +K
SS̄

(zi, z̄i)SS̄ ,

W new(zi, S) = W (zi) + µ2S . (6)

We will show that the nilpotent field metric, K
SS̄

(zi, z̄i) is computable: for each set of in-
gredients in the so-called ‘full-fledged string theory models’ one can compute K

SS̄
(zi, z̄i) as

function of the overall volume, the dilaton and the volume moduli of the supersymmetric
cycles on which the anti-Dp-branes are wrapped. In IIB we will have four cases

D9 on a 6-cycle , D7 on 4-cycles , D5 on 2-cycles , D3 on a 0-cycle . (7)

In type IIA for SU(3) structure manifolds there are no non-trivial closed 1-forms [1]. Serre
duality then implies that there are no 5-forms either. Poincare duality then implies that
there are no non-trivial 1- and 5-cycles that can be wrapped by a Dp-branes. Thus, from all
potential cases

D8 on 5-cycles , D6 on 3-cycles , D4 on 1-cycles , (8)

only one survives
D6 on 3-cycles . (9)

Since the nilpotent multiplet does not have a scalar component, the new potential has an
additional term but still depends on the same closed string moduli.1 The new F-term potential
acquires an additional nowhere vanishing positive term, as always associated with Volkov-
Akulov non-linearly realized supersymmetry

V new(zi, z̄i) = V (zi, z̄i) + eK(zi,z̄i)
|DSW |

2 , (10)

where
|DSW |

2
⌘ DSWKSS̄(zi, z̄i)DSW . (11)

1We are setting the open string moduli on the anti-Dp-branes to zero for simplicity. They can be included into
the general dS supergravity using additional constrained multiplets, see for example [25, 26] as well as [20].
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Modifications of K and W due to the presence of the nilpotent multiplet. The new action has 
a non-linearly realized N = 1 supersymmetry, which is a hallmark of dS supergravity. 
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Type II compactifications with calibrated sources and pseudo-calibrated anti-Dp-branes 

The reason why in the KKLT case the presence of D3-branes and O3-planes which were
constrained by a tadpole condition, was not leading to an uplift term, is due to the fact that
these were calibrated: they preserved the same symmetry as the background, (1 � �p)✏ = 0.
Meanwhile, the anti-D3-branes are pseudo-calibrated, they preserve the symmetry opposite
to that of the background and the D3-branes/O3-planes, (1 + �p)✏ = 0.

The concept of calibrated Dp-branes and pseudo-calibrated pseudo-calibrated anti-Dp-
branes is totally general. From this perspective, in dS supergravity constructions there is
no need to restrict ourselves to anti-D3-branes as an exclusive source of Volkov-Akulov non-
linearly realized supersymmetry. Any D-brane has a non-linearly realized supersymmetry and
therefore one has to look at the general case of including pseudo-calibrated anti-Dp-branes,
wrapped on supersymmetric cycles, as new local sources, and check the tadpole condition, as
suggested in point 3 in the Introduction.

From all possible Dp-branes with p � 3 we can get uplift terms, i.e. positive new terms
in the 4d scalar potential, if there are supersymmetric (p� 3)-cycles on our compactification
manifold. In type IIB there are 6-, 4-, 2-, 0-cycles, therefore we will have an uplift term due
to anti-D9-, anti-D7-, anti-D5-, anti-D3-branes. In type IIA on SU(3)-structure manifolds
there are only 3-cycles and therefore only anti-D6-branes can give rise to a new positive uplift
term in the scalar potential.

Let us now repeat the general derivation of the four dimensional action at the beginning
of section 2 but now we also include anti-Dp-branes. The action is

S = SII +NOpSOp +NDpSDp +N
Dp

S
Dp

, (21)

We again split each of the above terms into two parts and use that S
Dp

= SDBI
Dp

� SCS
Dp

S = S̃II+

Z
Cp+1^(dF8�p�H^F6�p)+NOp(S

DBI
Op +SCS

Op)+NDp(S
DBI
Dp +SCS

Dp)+N
Dp

(SDBI
Dp �SCS

Dp) .

(22)
Varying the action with respect to Cp+1 leads now to the following (integrated) tadpole
cancellation condition

Z
dF8�p �H ^ F6�p = �2p�5NOp +NDp �N

Dp
. (23)

Once we satisfy this tadpole cancellation condition the remaining part of the action that now
will give rise to a new 4d N = 1 dS supergravity action is

SdS�SUGRA = S̃II +NOpS
DBI
Op +NDpS

DBI
Dp +N

Dp
SDBI
Dp . (24)

The above action is actually related to the standard supergravity action in equation (15) in
a very simple way. Let us assume for example that we satisfy the new tadpole condition in
equation (23) by not changing the fluxes on the left-hand-side nor NOp, but simply by adding
an additional N

Dp
Dp-branes so that NDp ! NDp +N

Dp
. Then we find that the new action

has the form
SdS�SUGRA = Sstandard�SUGRA + 2N

Dp
SDBI
Dp . (25)

So the new action is actually related to the old one by adding twice the DBI action for the
anti-Dp-brane. This result holds in full generality also in the absence of any Dp-branes. In
this case one has to adjust the fluxes because of the tadpole condition in equation (23). This
adjustment of the fluxes then modifies S̃II exactly in the right way to give the new term in
the dS supergravity action.

Therefore, for all anti-Dp-branes we find that they lead to a new contribution to the scalar
potential in four dimensions that is in string frame of the form

V
Dp

= 2N
Dp,↵

TDp

Z

⌃↵

dp�3⇠e��
p
det (G+B � 2⇡↵0F ) , (26)
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Dp
SDBI
Dp . (25)

So the new action is actually related to the old one by adding twice the DBI action for the
anti-Dp-brane. This result holds in full generality also in the absence of any Dp-branes. In
this case one has to adjust the fluxes because of the tadpole condition in equation (23). This
adjustment of the fluxes then modifies S̃II exactly in the right way to give the new term in
the dS supergravity action.

Therefore, for all anti-Dp-branes we find that they lead to a new contribution to the scalar
potential in four dimensions that is in string frame of the form

V
Dp

= 2N
Dp,↵

TDp

Z

⌃↵

dp�3⇠e��
p

det (G+B � 2⇡↵0F ) , (26)
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The reason why in the KKLT case the presence of D3-branes and O3-planes which were
constrained by a tadpole condition, was not leading to an uplift term, is due to the fact that
these were calibrated: they preserved the same symmetry as the background, (1 � �p)✏ = 0.
Meanwhile, the anti-D3-branes are pseudo-calibrated, they preserve the symmetry opposite
to that of the background and the D3-branes/O3-planes, (1 + �p)✏ = 0.

The concept of calibrated Dp-branes and pseudo-calibrated pseudo-calibrated anti-Dp-
branes is totally general. From this perspective, in dS supergravity constructions there is
no need to restrict ourselves to anti-D3-branes as an exclusive source of Volkov-Akulov non-
linearly realized supersymmetry. Any D-brane has a non-linearly realized supersymmetry and
therefore one has to look at the general case of including pseudo-calibrated anti-Dp-branes,
wrapped on supersymmetric cycles, as new local sources, and check the tadpole condition, as
suggested in point 3 in the Introduction.

From all possible Dp-branes with p � 3 we can get uplift terms, i.e. positive new terms
in the 4d scalar potential, if there are supersymmetric (p� 3)-cycles on our compactification
manifold. In type IIB there are 6-, 4-, 2-, 0-cycles, therefore we will have an uplift term due
to anti-D9-, anti-D7-, anti-D5-, anti-D3-branes. In type IIA on SU(3)-structure manifolds
there are only 3-cycles and therefore only anti-D6-branes can give rise to a new positive uplift
term in the scalar potential.

Let us now repeat the general derivation of the four dimensional action at the beginning
of section 2 but now we also include anti-Dp-branes. The action is

S = SII +NOpSOp +NDpSDp +N
Dp

S
Dp

, (21)

We again split each of the above terms into two parts and use that S
Dp

= SDBI
Dp

� SCS
Dp

S = S̃II+

Z
Cp+1^(dF8�p�H^F6�p)+NOp(S

DBI
Op +SCS

Op)+NDp(S
DBI
Dp +SCS

Dp)+N
Dp

(SDBI
Dp �SCS

Dp) .

(22)
Varying the action with respect to Cp+1 leads now to the following (integrated) tadpole
cancellation condition

Z
dF8�p �H ^ F6�p = �2p�5NOp +NDp �N

Dp
. (23)

Once we satisfy this tadpole cancellation condition the remaining part of the action that now
will give rise to a new 4d N = 1 dS supergravity action is

SdS�SUGRA = S̃II +NOpS
DBI
Op +NDpS

DBI
Dp +N

Dp
SDBI
Dp . (24)

The above action is actually related to the standard supergravity action in equation (15) in
a very simple way. Let us assume for example that we satisfy the new tadpole condition in
equation (23) by not changing the fluxes on the left-hand-side nor NOp, but simply by adding
an additional N

Dp
Dp-branes so that NDp ! NDp +N

Dp
. Then we find that the new action

has the form
SdS�SUGRA = Sstandard�SUGRA + 2N

Dp
SDBI
Dp . (25)

So the new action is actually related to the old one by adding twice the DBI action for the
anti-Dp-brane. This result holds in full generality also in the absence of any Dp-branes. In
this case one has to adjust the fluxes because of the tadpole condition in equation (23). This
adjustment of the fluxes then modifies S̃II exactly in the right way to give the new term in
the dS supergravity action.

Therefore, for all anti-Dp-branes we find that they lead to a new contribution to the scalar
potential in four dimensions that is in string frame of the form

V
Dp

= 2N
Dp,↵

TDp

Z

⌃↵

dp�3⇠e��
p
det (G+B � 2⇡↵0F ) , (26)
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for all anti-Dp-branes a new contribution to the scalar potential in four 
dimensions in string frame is  of the form 

The reason why in the KKLT case the presence of D3-branes and O3-planes which were
constrained by a tadpole condition, was not leading to an uplift term, is due to the fact that
these were calibrated: they preserved the same symmetry as the background, (1 � �p)✏ = 0.
Meanwhile, the anti-D3-branes are pseudo-calibrated, they preserve the symmetry opposite
to that of the background and the D3-branes/O3-planes, (1 + �p)✏ = 0.

The concept of calibrated Dp-branes and pseudo-calibrated pseudo-calibrated anti-Dp-
branes is totally general. From this perspective, in dS supergravity constructions there is
no need to restrict ourselves to anti-D3-branes as an exclusive source of Volkov-Akulov non-
linearly realized supersymmetry. Any D-brane has a non-linearly realized supersymmetry and
therefore one has to look at the general case of including pseudo-calibrated anti-Dp-branes,
wrapped on supersymmetric cycles, as new local sources, and check the tadpole condition, as
suggested in point 3 in the Introduction.

From all possible Dp-branes with p � 3 we can get uplift terms, i.e. positive new terms
in the 4d scalar potential, if there are supersymmetric (p� 3)-cycles on our compactification
manifold. In type IIB there are 6-, 4-, 2-, 0-cycles, therefore we will have an uplift term due
to anti-D9-, anti-D7-, anti-D5-, anti-D3-branes. In type IIA on SU(3)-structure manifolds
there are only 3-cycles and therefore only anti-D6-branes can give rise to a new positive uplift
term in the scalar potential.

Let us now repeat the general derivation of the four dimensional action at the beginning
of section 2 but now we also include anti-Dp-branes. The action is

S = SII +NOpSOp +NDpSDp +N
Dp

S
Dp

, (21)

We again split each of the above terms into two parts and use that S
Dp

= SDBI
Dp

� SCS
Dp

S = S̃II+

Z
Cp+1^(dF8�p�H^F6�p)+NOp(S

DBI
Op +SCS

Op)+NDp(S
DBI
Dp +SCS

Dp)+N
Dp

(SDBI
Dp �SCS

Dp) .

(22)
Varying the action with respect to Cp+1 leads now to the following (integrated) tadpole
cancellation condition

Z
dF8�p �H ^ F6�p = �2p�5NOp +NDp �N

Dp
. (23)

Once we satisfy this tadpole cancellation condition the remaining part of the action that now
will give rise to a new 4d N = 1 dS supergravity action is

SdS�SUGRA = S̃II +NOpS
DBI
Op +NDpS

DBI
Dp +N

Dp
SDBI
Dp . (24)

The above action is actually related to the standard supergravity action in equation (15) in
a very simple way. Let us assume for example that we satisfy the new tadpole condition in
equation (23) by not changing the fluxes on the left-hand-side nor NOp, but simply by adding
an additional N

Dp
Dp-branes so that NDp ! NDp +N

Dp
. Then we find that the new action

has the form
SdS�SUGRA = Sstandard�SUGRA + 2N

Dp
SDBI
Dp . (25)

So the new action is actually related to the old one by adding twice the DBI action for the
anti-Dp-brane. This result holds in full generality also in the absence of any Dp-branes. In
this case one has to adjust the fluxes because of the tadpole condition in equation (23). This
adjustment of the fluxes then modifies S̃II exactly in the right way to give the new term in
the dS supergravity action.

Therefore, for all anti-Dp-branes we find that they lead to a new contribution to the scalar
potential in four dimensions that is in string frame of the form

V
Dp

= 2N
Dp,↵

TDp

Z

⌃↵

dp�3⇠e��
p
det (G+B � 2⇡↵0F ) , (26)

7α labels the different (p − 3)-cycles Σα that are wrapped by the anti-Dp-branes and 
TDp denotes their tension

Pseudo-calibrated anti-Dp-branes in type IIB 

where ↵ labels the di↵erent (p � 3)-cycles ⌃↵ that are wrapped by the anti-Dp-branes and
TDp denotes their tension. In the next two sections we will work out exactly how this new
term can be included in the Kähler and superpotential via a nilpotent chiral superfield. For
simplicity we do not include the worldvolume scalar fields on the anti-Dp-branes, like the
gauge field or the position moduli in our discussion. It should be possible to include them
using other constrained multiplets as in [25, 26]. Note however that these moduli could be
absent in some cases, if we for example place a single anti-Dp-brane on top of an Op-plane.

In all cases we will find that

V new(zi, z̄i) = V (zi, z̄i) + eK(zi,z̄i)DSWKSS̄(zi, z̄i)DSW (27)

and the dictionary between string theory models with anti-Dp-branes and dS supergravity
with a nilpotent multiplet will be established.

3.1 Pseudo-calibrated anti-Dp-branes in type IIB

The calibration condition for p = 3, 5, 7, 9, is given in [2] in the paragraph between (2.185)
and (2.186). It allows us to rewrite the new positive term in the scalar potential, given above
in (26), as

V
Dp

= 2N
Dp,↵

TDp

Z

⌃↵

dp�3⇠e��Re
�
eJ+iB

�
. (28)

Explicitly this means (see appendix A for our notation)

V
D3 = 2N

D3TD3

Z
d0⇠e�� = 2N

D3TD3Im(⌧) ,

V
D5 = 2N

D5,↵TD5

Z

⌃↵

d2⇠e��J = 2N
D5,↵TD5Im(t↵) ,

V
D7 = 2N

D7,↵TD7

Z

⌃↵

d4⇠
1

2
e�� (J ^ J �B ^B) = �2N

D7,↵TD7Im(T↵) ,

V
D9 = 2N

D9TD9

Z

X

d6⇠e��

✓
1

6
J ^ J ^ J �

1

2
J ^B ^B

◆
= �2N

D9TD9Im(T ) . (29)

So we see that there is a nice unifying description.
Now we go to the 4d Einstein frame.3 Above we have already identified the correct moduli

in Einstein frame so that this rescaling changes all the above expressions only due to the
R
d4x

p
�gs4 =

R
d4x

q
�gE4

e
4�

V2
6
=

R
d4x

q
�gE4 e

4�4 factor in the DBI action. Here we defined

in the last equation the four dimensional dilaton �4 = ��
1
2 ln(V6).

For the anti-D3-brane this gives the usual (unwarped) expression, if we use that for a
single Kähler modulus in 4d Einstein frame we have 23V2

6 = ie3�(T � T̄ )3,

V
D3 = 2N

D3TD3Im(⌧)
e4�

V2
6

= 2N
D3TD3

e3�

V2
6

= 2N
D3TD3

23

i(T � T̄ )3
. (30)

For all cases we have simply

V
D3 = �iTD3ND3(⌧ � ⌧̄)e4�4 ,

V
D5 = �iTD5ND5,↵(t

↵
� t̄↵)e4�4 ,

V
D7 = iTD7ND7,↵(T

↵
� T̄↵)e4�4 ,

3The 10d action in string frame contains the term S �
R
d10x

p
�gs10e

�2�R4 =
R
d4x

p
�gs4R4V6e�2� =R

d4x
p

�gE4 R4. Here we have only redefined the 4d metric gs4 ! e2�gE4 /V6.
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V
D9 = iTD9ND9(T � T̄ )e4�4 . (31)

Let us introduce the shorthand notation for all cases above

V
Dp

= 2TDpe
4�4Im� , (32)

where Im� = {N
D3Im⌧, N

D5,↵Imt↵,�N
D7,↵ImT↵,�N

D9ImT } is a positive, real linear com-
bination of the respective complex moduli in the particular setups.

We can then obtain the above expression V
Dp

from

K = Kbefore + ieKbefore
e�4�4

(�� �̄)
SS̄ ,

W = Wbefore + µ2S , (33)

where µ4 = TDp. For the particular case of an anti-D3-brane this agrees with the previously
derived equation (3.40) in [20].

3.2 Pseudo-calibrated anti-Dp-branes in type IIA

Spacetime filling Dp-branes in type IIA wrap an odd dimensional internal cycle, this leaves
us only with the case of anti-D6-branes, since there are no non-trivial 1- and 5-cycles.

The calibration condition for D6-branes is given in [2] in equation (2.184). It allows us to
rewrite the new term in the scalar potential, given above in (26), as 4

V
D6 =

2N
D6,KTD6

V2
6

Z

⌃K

e3�
p
V6Re⌦ = 2N

D6,KTD6e
4�4Im(ZK) . (34)

We again can write this new term by including a nilpotent chiral multiplet S coupled to the
other fields. In particular, one finds that

K = Kbefore + ieKbefore
e�4�4

N
D6,K(ZK � Z̄K)

SS̄ ,

W = Wbefore + µ2S . (35)

where µ4 = TD6.

4 dS vacua in type IIA dS supergravity

We are now focusing on the particular case of massive type IIA flux compactification to which
we can add anti-D6-branes as explained in subsection 3.2. This case is particularly simple since
all moduli can be stabilized (see [30] for a review of this particular class of compactifications).
However, it has never been possible to find (meta-) stable dS vacua in this context. All
example of dS critical points have always had at least one tachyonic direction with large slow-
role parameter |⌘| & O(1) [31]. This had lead people to investigate whether there are no-go
theorem’s in this case that forbid stable dS vacua [31–34]. Two for us important insights
have emerged from these studies: 1) The obstinate tachyonic direction involves the 3-cycle
moduli [31, 33, 34]. 2) In the limit of very small positive value of the potential, the tachyonic
direction seems be connected to the sGoldstino [31,33–35].

4We use slightly di↵erent conventions compared to [2]. We take i
R
⌦ ^ ⌦̄ = 1 (see eqn. (2.12) of [29]) instead

of [2] where i
R
⌦ ^ ⌦̄ = V6. Hence we have an extra factor of

p
V6. As discussed above, we get an extra factor e

4�

V2
6

from going to 4d Einstein frame.
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Answer IIB

V
D9 = iTD9ND9(T � T̄ )e4�4 . (31)

Let us introduce the shorthand notation for all cases above

V
Dp

= 2TDpe
4�4Im� , (32)

where Im� = {N
D3Im⌧, N

D5,↵Imt↵,�N
D7,↵ImT↵,�N

D9ImT } is a positive, real linear com-
bination of the respective complex moduli in the particular setups.

We can then obtain the above expression V
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from

K = Kbefore + ieKbefore
e�4�4
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SS̄ ,

W = Wbefore + µ2S , (33)

where µ4 = TDp. For the particular case of an anti-D3-brane this agrees with the previously
derived equation (3.40) in [20].

3.2 Pseudo-calibrated anti-Dp-branes in type IIA

Spacetime filling Dp-branes in type IIA wrap an odd dimensional internal cycle, this leaves
us only with the case of anti-D6-branes, since there are no non-trivial 1- and 5-cycles.

The calibration condition for D6-branes is given in [2] in equation (2.184). It allows us to
rewrite the new term in the scalar potential, given above in (26), as 4

V
D6 =
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D6,KTD6
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V6Re⌦ = 2N
D6,KTD6e
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other fields. In particular, one finds that

K = Kbefore + ieKbefore
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D6,K(ZK � Z̄K)

SS̄ ,

W = Wbefore + µ2S . (35)

where µ4 = TD6.

4 dS vacua in type IIA dS supergravity

We are now focusing on the particular case of massive type IIA flux compactification to which
we can add anti-D6-branes as explained in subsection 3.2. This case is particularly simple since
all moduli can be stabilized (see [30] for a review of this particular class of compactifications).
However, it has never been possible to find (meta-) stable dS vacua in this context. All
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⌦ ^ ⌦̄ = 1 (see eqn. (2.12) of [29]) instead

of [2] where i
R
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p
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4�
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6

from going to 4d Einstein frame.
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We are now focusing on the particular case of massive type IIA flux compactification to which
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However, it has never been possible to find (meta-) stable dS vacua in this context. All
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all moduli can be stabilized (see [30] for a review of this particular class of compactifications).
However, it has never been possible to find (meta-) stable dS vacua in this context. All
example of dS critical points have always had at least one tachyonic direction with large slow-
role parameter |⌘| & O(1) [31]. This had lead people to investigate whether there are no-go
theorem’s in this case that forbid stable dS vacua [31–34]. Two for us important insights
have emerged from these studies: 1) The obstinate tachyonic direction involves the 3-cycle
moduli [31, 33, 34]. 2) In the limit of very small positive value of the potential, the tachyonic
direction seems be connected to the sGoldstino [31,33–35].

4We use slightly di↵erent conventions compared to [2]. We take i
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⌦ ^ ⌦̄ = 1 (see eqn. (2.12) of [29]) instead
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3.2 Pseudo-calibrated anti-Dp-branes in type IIA

Spacetime filling Dp-branes in type IIA wrap an odd dimensional internal cycle, this leaves
us only with the case of anti-D6-branes, since there are no non-trivial 1- and 5-cycles.

The calibration condition for D6-branes is given in [2] in equation (2.184). It allows us to
rewrite the new term in the scalar potential, given above in (26), as 4
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We again can write this new term by including a nilpotent chiral multiplet S coupled to the
other fields. In particular, one finds that

K = Kbefore + ieKbefore
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D6,K(ZK � Z̄K)

SS̄ ,

W = Wbefore + µ2S . (35)

where µ4 = TD6.

4 dS vacua in type IIA dS supergravity

We are now focusing on the particular case of massive type IIA flux compactification to which
we can add anti-D6-branes as explained in subsection 3.2. This case is particularly simple since
all moduli can be stabilized (see [30] for a review of this particular class of compactifications).
However, it has never been possible to find (meta-) stable dS vacua in this context. All
example of dS critical points have always had at least one tachyonic direction with large slow-
role parameter |⌘| & O(1) [31]. This had lead people to investigate whether there are no-go
theorem’s in this case that forbid stable dS vacua [31–34]. Two for us important insights
have emerged from these studies: 1) The obstinate tachyonic direction involves the 3-cycle
moduli [31, 33, 34]. 2) In the limit of very small positive value of the potential, the tachyonic
direction seems be connected to the sGoldstino [31,33–35].

4We use slightly di↵erent conventions compared to [2]. We take i
R
⌦ ^ ⌦̄ = 1 (see eqn. (2.12) of [29]) instead

of [2] where i
R
⌦ ^ ⌦̄ = V6. Hence we have an extra factor of

p
V6. As discussed above, we get an extra factor e

4�

V2
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from going to 4d Einstein frame.
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Specific example with anti-D6 was shown in Figures before where the presence of
anti-D6 removed the obstinate tachyon. 



Anti-D3 uplifter is not an exceptional case anymore, as it was during the last 15 years.

For dark energy/inflation  we need de Sitter  or near de Sitter vacua. Now we found many 
more opportunities in the Landscape based on any pseudo-calibrated anti-Dp-brane which 
upon wrapping supersymmetric cycles of dimension (p-3) becomes an uplifter.

String theory models resulting in de Sitter  supergravity in d=4 with non-linearly realized 
supersymmetry use any of such pseudo-calibrated anti-Dp-branes.

Arguably, the discovery of dark energy and an observational success of early universe 
inflation, associated with de Sitter or nearly de Sitter spaces, may be viewed as an 
experimental discovery of the Volkov-Akulov non-linearly realized supersymmetry 

from the sky 

Non-perturbative string theory has Volkov-Akulov non-linearly realized symmetry on
the world-volume of its extended objects, M-branes and  D-branes, but not at the 
world-sheet of the string.


