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Symmetries of QCD and Breaking Pattern

here. The results are summarized in Tab. 2.3.

symmetry vacuum high T low T , high µ order parameter consequences

(local) color

SU(3)
unbroken unbroken broken

diquark
condensate

color super-
conductivity

Z(3) center
symmetry

unbroken broken broken Polyakov loop
confinement/
deconfinement

scale
invariance

anomaly
gluon

condensate
scale (ΛQCD),

running coupling

chiral symmetry UL(Nf ) × UR(Nf ) = UV (1) × SUV (Nf ) × SUA(Nf ) × UA(1)

UV (1) unbroken unbroken unbroken —
baryon number
conservation

flavor
SUV (Nf )

unbroken unbroken unbroken — multiplets

chiral
SUA(Nf )

broken unbroken broken
quark

condensate

Goldstone bosons,
no degenerate states
with opposite parity

UA(1) anomaly
topological

susceptibility
violation of

intrinsic parity

Table 2.3: Exact and approximate symmetries of QCD; note that the consequences given in the
last column are only a selection. The symmetries which hold only approximately are explicitly
broken. See main text for details.

As already mentioned in Sec. 2.1.1 the QCD Lagrangian (2.1) is invariant with respect to local
color transformations

q(x) → gq(x) := g(x) q(x)

Aµ(x) → gAµ(x) := g(x)
(
Aµ(x) + i

g∂x
µ

)
g†(x)

(2.8)

where we have introduced the local transformation

g(x) = eigΘa(x) λa/2 (2.9)

utilizing the Gell-Mann matrices λa acting on the color indices of the quarks. Θa are arbitrary
real numbers, a = 1, . . . , 8. It is the local gauge invariance with respect to color SU(3) which leads
to the fact that both the quark-gluon and the gluon-gluon interaction strength are determined
by the same coupling constant g. As a gauge theory QCD has a lot of similarities to QED.
In particular, there are QED governed systems which show a transition to a superconductor at
sufficiently low temperatures. From the point of view of symmetries, QED gauge invariance is
spontaneously broken in the superconducting phase. Electron pairs condense and the photons
obtain a (Meissner) mass, i.e. magnetic fields cannot penetrate the superconducting region.
The corresponding effect is observed for QCD: At low temperatures, but very high chemical
potentials one enters the regime of color superconductivity. Quark pairs condense and this
diquark condensate serves as an order parameter of spontaneously broken color SU(3). For
more details see Sec. 3.5.

A symmetry which is closely interrelated with the local color symmetry is the center symmetry
(for a recent introductory report see [10]). Some formal considerations are necessary to identify
this symmetry: First we note that in the definition of the partition function in (2.5) the very
same state appears as a bra and as a ket vector (since it has to represent the trace). In the path
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Landau Functions
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’Columbia’ Plot
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Phase Diagram of QCD Matter
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Phase Diagram of QCD Matter
The phase diagram of dense QCD 5

Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on SχB patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the SχB pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB � T ) and that at asymptotically high density (µB � ΛQCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of effective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc � 270 MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s
quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV− 200 MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB �= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as
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Flow
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Flow

The average action Γk corresponds to an integration over all modes of the quantum fields with
Euclidean momenta larger than the infrared cutoff scale, i.e., q2 > k2. The modified Legendre
transform guarantees that the only difference between Γk and Γ is the effective IR cutoff ∆kS
and thus only quantum fluctuations with momenta larger than k are included.

Figure 4.33: The effective average action Γk as an interpolation between the bare action in the
UV and the full effective action Γ in the IR.

In the limit k → 0, the infrared cutoff is removed and the effective average action becomes
the full quantum effective action Γ containing all quantum fluctuations. Thus, for any finite
infrared cutoff k the integration of quantum fluctuations is only partially done. The influence of
modes with momenta q2 < k2 is not considered. This scenario is visualized in Fig. 4.33 where
the k-dependent effective average action Γk as an interpolation between the bare action in the
ultraviolet and the full effective action in the infrared is shown.

In the limit k → ∞ the effective average action matches the bare or classical action. In a
theory with a physical UV cutoff Λ, we therefore associate Γk=Λ with the bare action because no
fluctuations are effectively taken into account. As the scale k is lowered, more and more quantum
fluctuations are taken into account. As a consequence, Γk can be viewed as a microscope with a
varying resolution whose length scale is proportional to 1/k. It averages the pertinent fields over
a d-dimensional volume with size 1/kd and permits to explore the system on larger and larger
length scales. In this sense, it is closely related to an effective action for averages of fields, hence
its denotation as effective average action becomes manifest. Thus, for large scale k one has a
very precise spatial resolution, but one also investigates effectively only a small volume 1/kd.
For lower k the resolution is smeared out and the detailed information of the short distance
physics is lost. However, since the observable volume is increased, long distance effects such as
collective phenomena which play an important role in statistical physics become more and more
visible.

The ’decimation’ idea, presented above, is in close analogy to a repeated application of the
so-called block-spin transformation on a lattice invented by Kadanoff et al. [649]. This trans-
formation is based on integrating out the fluctuations with short wavelengths and a subsequent
rescaling of the parameters which govern the remaining long-range fluctuations such as the mass,
coupling constant etc. On the sites of a coarse lattice more and more spin-blocks are averaged
over. Hence, in the language of statistical physics, the effective average action can also be
interpreted as a coarse grained free energy with a coarse graining scale k.
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Momentum Flow of the Effective Potential

(Loading movie...)
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Phase diagram of the Quark-Meson Model

I chiral order parameter σ0

decreases towards higher T and µ

I a crossover is observed at
T ≈ 175 MeV and µ = 0

I critical endpoint (CEP) at
µ ≈ 292 MeV and T ≈ 10 MeV

I vacuum: σ0 = 93.5 MeV,
mπ = 138 MeV, mσ = 509 MeV,
mq = 299 MeV 100 200 300 400
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[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]
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Generation of Mass in QCD
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Temperature Evolution of the Chiral Condensate
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Mass-splitting of Parity Partners
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Heavy-ion Collisions and Photons
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e+e− - annihilation in the vaccum
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Vector-meson Selfenergies
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Spectral Function
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Photo-absorption as a Test
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In-medium ρ-meson under HIC conditions
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Spectral Function weighted by 1/M
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Dilepton Rates

28 / 42



Dilepton Rates and the Phase Diagram
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Dilepton Data CERES
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Dilepton Data STAR
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Dilepton Data SPS NA60

32 / 42



Dilepton Data SPS NA60
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Flow Equations for Mesonic Two-point Functions
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Flow of the Sigma and Pion Spectral Functions

in vaccum at ~q = 0
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spectral_flow_vac.mp4
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Sigma and Pion Spectral Function

with increasing T at µ = 0 and ~q = 0
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spectral_T_eps0.mp4
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Sigma Spectral Function with increasing T at µ = 0
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sigma_mu0_T_3D.mp4
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Pion Spectral Function with increasing T at µ = 0
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pion_mu0_T_3D.mp4
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Flow Equations for Vector-Meson Two-point
Functions
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ρ and a1 Spectral Function with increasing T

at µ = 0 and ~q = 0
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ρ and a1 Mass Flow
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ρ and a1 Pole Masses
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