Meson Propagation in Nuclear Matter

Jochen Wambach

ECT*, Trento, Italy

Frontiers in Nuclear and Hadronic Physics

Florence, February 20 to March 3, 2017

Outline

I) Strong-Interaction Matter

- ► Thermodynamics
- Phase Transitions
- Quantum-Chromodynamics
- The QCD Phase Diagram
- ▶ The Functional Renormalization Group

II) Hadrons in QCD Matter

- The Role of Photons
- Dileptons in Heavy-Ion Collisions
- Spectral Functions from the FRG

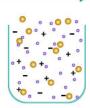
States of Matter

Physical states

Solid

The molecules that make up a solid are arranged in regular, repeating patterns. They are held firmly in place but can vibrate within a limited area.

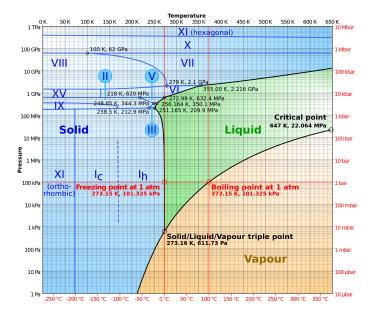
Liquid


The molecules that make up a liquid flow easily around one another. They are kept from flying apart by attractive forces between them. Liquids assume the shape of their containers.

Gas

increasing energy

The molecules that make up a gas fly in all directions at great speeds. They are so far apart that the attractive forces between them are insignificant.



Plasma

At the very high temperatures of stars, atoms lose their electrons. The mixture of electrons and nuclei that results is the plasma state of matter.

© 2011 Encyclopædia Britannica, Inc.

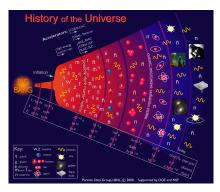
Phase Diagram of H_2O

Landau Functions

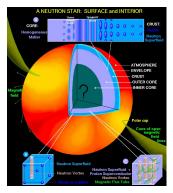
\mathcal{L}_{eff}	Spin system in $d = 3$
Fig. 6.3(a)	Ising model
Second order,	Ising model
$\frac{a}{2}\sigma^2 + \frac{b}{4}\sigma^4 - h\sigma$,	$\begin{cases} \sigma \sim M\\ (a, h) \leftrightarrow (T, H) \end{cases}$
controlled by (a, h)	

Fig. 6.3(b) First order,	Z(3) Potts model
$\frac{a}{2}\sigma^2 - \frac{c}{3}\sigma^3 + \frac{b}{4}\sigma^4 - h\sigma,$	$\begin{cases} \sigma \sim M\\ (a,h) \leftrightarrow (T,H) \end{cases}$
controlled by (a, h)	•

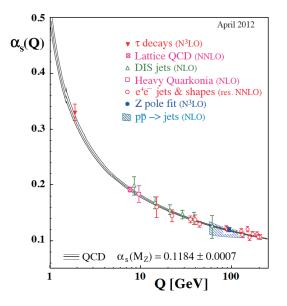
Fig. 6.5 Tricritical behavior,

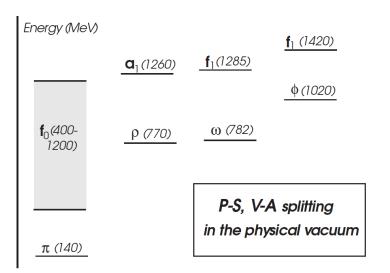

model for metamagnet

$$\frac{a}{2}\sigma^{2} + \frac{b}{4}\sigma^{4} + \frac{c}{6}\sigma^{6} - h\sigma, \qquad \begin{cases} \sigma \sim \tilde{M} \\ (a, b, h) \leftrightarrow (T, H, \tilde{H}) \end{cases}$$


controlled by (a, b, h)

Matter under Extreme Conditions

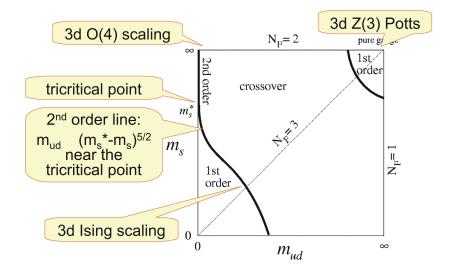

early universe ($\sim 10 \text{ ms}$)


neutron star interior

Running of the Strong Coupling Constant α_s

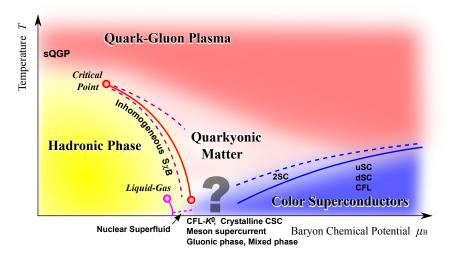
Mass-splitting of Parity Partners

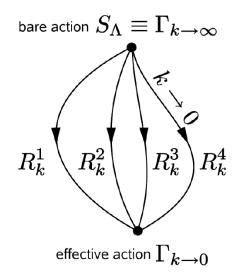
Symmetries of QCD and Breaking Pattern


symmetry	vacuum	high T	low T, high μ	order parameter	consequences
(local) color SU(3)	unbroken	unbroken	broken	diquark condensate	color super- conductivity
Z(3) center symmetry	unbroken	broken	broken	Polyakov loop	$\operatorname{confinement}/\operatorname{deconfinement}$
scale invariance	anomaly		gluon condensate	scale (Λ_{QCD}) , running coupling	
chiral symmetry $U_L(N_f) \times U_R(N_f) = U_V(1) \times SU_V(N_f) \times SU_A(N_f) \times U_A(1)$					
$U_V(1)$	unbroken	unbroken	unbroken	_	baryon number conservation
flavor $SU_V(N_f)$	unbroken	unbroken	unbroken		multiplets
$\begin{array}{c} \text{chiral} \\ SU_A(N_f) \end{array}$	broken	unbroken	broken	quark condensate	Goldstone bosons, no degenerate states with opposite parity
$U_A(1)$	anomaly		topological susceptibility	violation of intrinsic parity	

Landau Functions

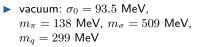
$\mathcal{L}_{\mathrm{eff}}$	Spin system in $d = 3$	QCD
Fig. 6.3(a) Second order,	Ising model	$N_c = 3, N_f = 2$
$\frac{a}{2}\sigma^2 + \frac{b}{4}\sigma^4 - h\sigma,$	$\begin{cases} \sigma \sim M\\ (a, h) \leftrightarrow (T, H) \end{cases}$	$\begin{cases} \sigma \sim \langle \bar{u}u + \bar{d}d \rangle \\ (a, h) \leftrightarrow (T, m_{ud}) \end{cases}$
controlled by (a, h)		$N_{c} = 2, N_{f} = 0$ $\begin{cases} \sigma \sim \langle L \rangle \\ (a, h) \leftrightarrow (T, 1/m_{o}) \end{cases}$
Fig. 6.3(b) First order, $\frac{a}{2}\sigma^2 - \frac{c}{3}\sigma^3 + \frac{b}{4}\sigma^4 - h\sigma$, controlled by (a, h)	Z(3) Potts model $\begin{cases} \sigma \sim M \\ (a, h) \leftrightarrow (T, H) \end{cases}$	$N_{c} = 3, N_{f} = 3$ $\begin{cases} \sigma \sim \langle \bar{u}u + \bar{d}d + \bar{s}s \rangle \\ (a, h) \leftrightarrow (T, m_{uds}) \end{cases}$ $N_{c} = 3, N_{f} = 0$ $\begin{cases} \sigma \sim \langle L \rangle \\ (a, h) \leftrightarrow (T, 1/m_{o}) \end{cases}$
Fig. 6.5 Tricritical behavior, $\frac{a}{2}\sigma^2 + \frac{b}{4}\sigma^4 + \frac{c}{6}\sigma^6 - h\sigma,$ controlled by (a, b, h)	model for metamagnet $\begin{cases} \sigma \sim \tilde{M} \\ (a, b, h) \leftrightarrow (T, H, \tilde{H}) \end{cases}$	$N_{c} = 3, N_{f} = 2 + 1$ $\begin{cases} \sigma \sim \langle \bar{u}u + \bar{d}d \rangle \\ (a, b, h) \leftrightarrow \langle T, m_{s}, m_{ud} \rangle \end{cases}$ $(a, b, h) \leftrightarrow \langle T, \mu, m_{ud} \rangle$

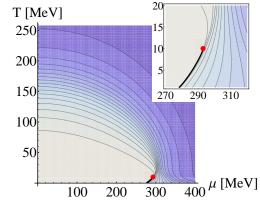

'Columbia' Plot


Phase Diagram of QCD Matter

Phase Diagram of QCD Matter

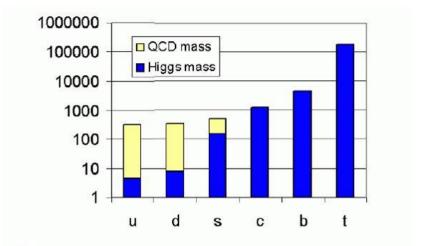
Flow

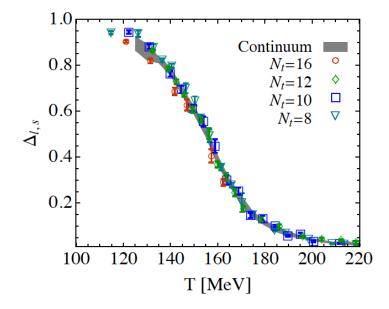

Flow



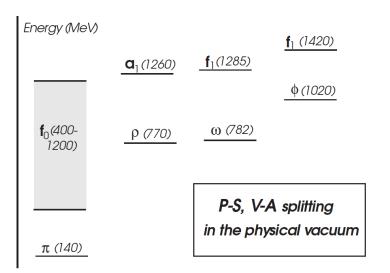
Momentum Flow of the Effective Potential

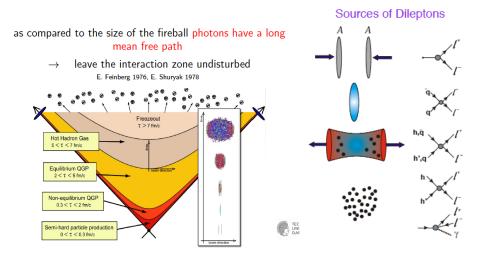
Phase diagram of the Quark-Meson Model

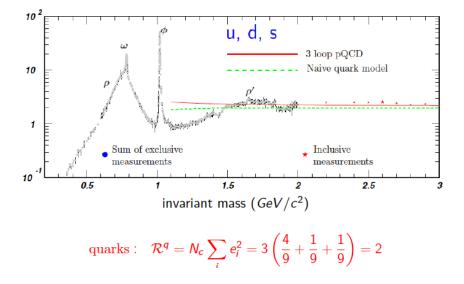

- chiral order parameter σ₀
 decreases towards higher T and μ
- a crossover is observed at $T \approx 175$ MeV and $\mu = 0$
- ▶ critical endpoint (CEP) at $\mu \approx 292$ MeV and $T \approx 10$ MeV



[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

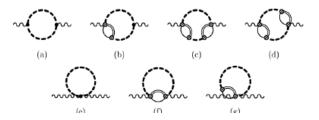

Generation of Mass in QCD


Temperature Evolution of the Chiral Condensate


Mass-splitting of Parity Partners

Heavy-ion Collisions and Photons

e^+e^- - annihilation in the vaccum



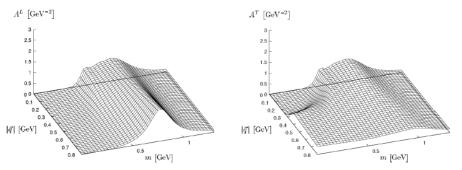
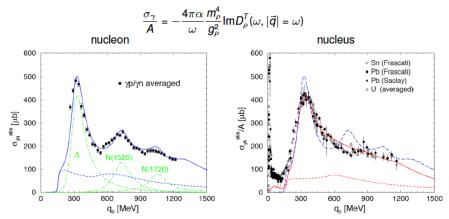
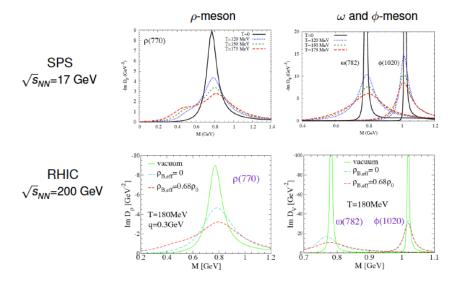
 ρ -meson selfenergy:

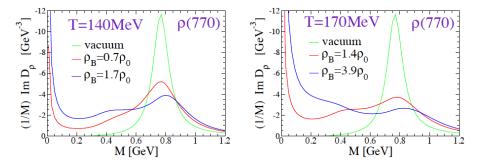
$$\Sigma_{\rho}^{L/T} = \Sigma_{\rho\pi\pi}^{L/T} + \Sigma_{\rho M}^{L/T} + \Sigma_{\rho B}^{L/T}$$

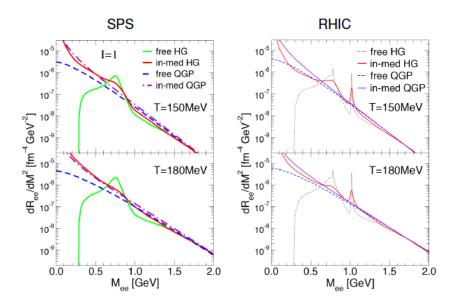
vertex corrections from dressed pions:

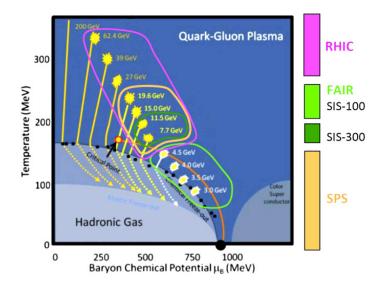
Spectral Function

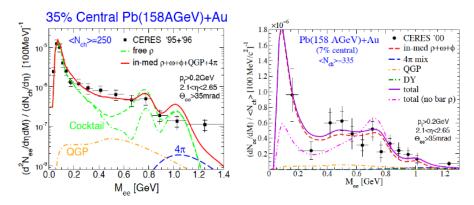
 ρ -spectral functions: (low temperature)

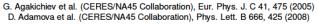





photo-absorption cross section:

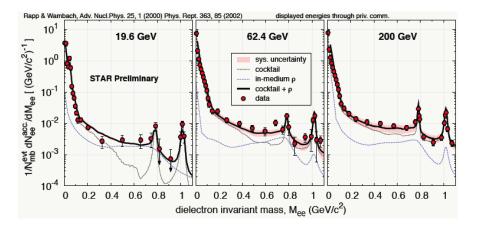

In-medium ρ -meson under HIC conditions

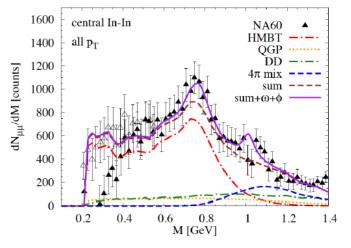

Spectral Function weighted by 1/M


Dilepton Rates



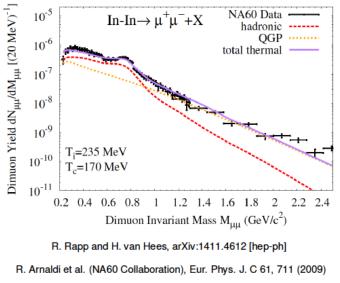
Dilepton Rates and the Phase Diagram


Dilepton Data CERES

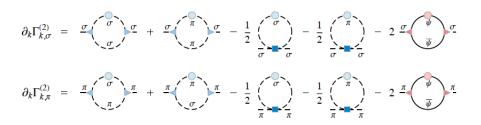


H. van Hees and R. Rapp, Nucl. Phys. A 806, 339 (2008)

Dilepton Data STAR



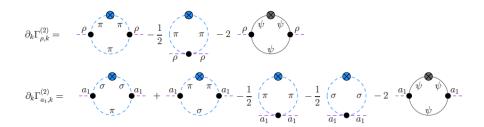
Dilepton Data SPS NA60


H. van Hees and R. Rapp, Phys. Rev. Lett. 97, 102301 (2006) S. Damjanovic, Nucl.Phys. A774, 715 (2006)

Dilepton Data SPS NA60

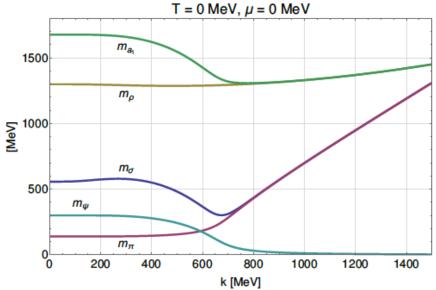
H. J. Specht (NA60 Collaboration), AIP Conf.Proc. 1322, 1 (2010)

Flow Equations for Mesonic Two-point Functions

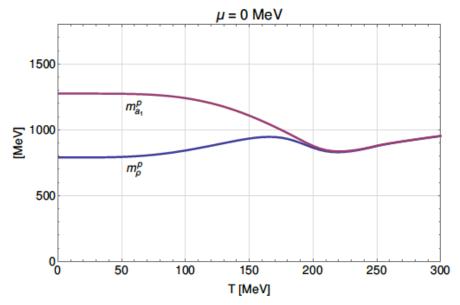

Flow of the Sigma and Pion Spectral Functions in vaccum at $\vec{q} = 0$

Sigma and Pion Spectral Function with increasing T at $\mu = 0$ and $\vec{q} = 0$

Sigma Spectral Function with increasing T at $\mu=0$


Pion Spectral Function with increasing T at $\mu=0$

Flow Equations for Vector-Meson Two-point Functions



 ρ and a_1 Spectral Function with increasing T at $\mu=0$ and $\vec{q}=0$

ho and a_1 Mass Flow

ho and a_1 Pole Masses

