Elliptic Polylogarithms

Brenda Penante

In collaboration with J. Broedel, C. Duhr, F. Dulat, L. Tancredi

Amplitudes in the LHC era Galileu Galilei Institute, Florence

Oct 30th, 2018

Bernhard's Cross Section Machine

Bernhard's Cross Section Machine

Bernhard's Cross Section Machine

Intro

- Feynman integrals are crucial ingredients of scattering amplitudes, which in turn enter cross sections
- They evaluate to "special functions" which contain the physics in their analytic structure
- Most well studied case: Multiple Polylogarithms (MPLs) (all 1-loop examples and most 2-loop examples without internal masses)

n times

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \qquad a_i \in \mathbb{C}$$
$$\operatorname{Li}_n(z) = G(0, \dots, 0, 1; z) \qquad G(\underbrace{0, \dots, 0}; z) = \frac{1}{n!} \log^n z$$

Lots of nice properties:

Shuffle algebra:
$$G(a_1, \ldots, a_k; z) G(a_{k+1}, \ldots, a_{k+l}; z) = \sum_{\sigma \in \Sigma(k,l)} G(a_{\sigma(1)}, \ldots, a_{\sigma(k+l)}; z)$$

Total differential:
$$dG(a_1, \ldots, a_n; z) = \sum_{i=1}^n G(a_1, \ldots, \hat{a}_i, \ldots, a_n; z) d\log \frac{a_{i-1} - a_i}{a_{i+1} - a_i}$$

• MPLs: Weight = number of integrations

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \qquad a_i \in \mathbb{C}$$
$$G(\underbrace{0, \dots, 0}_{n \text{ times}}; z) = \frac{1}{n!} \log^n z \qquad G(; z) \equiv 1$$

Weight 1 $i\pi = \log(-1)$ Weight n $G(a_1, \dots, a_n; z)$ $\zeta_n = -G(\vec{0}_{n-1}, 1; 1)$

MPLs are *pure*

What do you mean "Pure"?

• Definition based on total differential – Henn '13 –

of integrations

A pure function of weight n is a function whose total derivative can be expressed in terms of pure functions of weight n-1 (times algebraic one-forms)

algebraic

$$dG(a_1, \dots, a_n; z) = \sum_{i=1}^n G(a_1, \dots, \hat{a}_i, \dots, a_n; z) d \log \frac{a_{i-1} - a_i}{a_{i+1} - a_i}$$

weight *n* weight *n* - 1

What do you mean "Pure"?

• Definition based on residues

Arkani-Hamed, Bourjaily
 Cachazo, Trnka '12 –

An integral is pure if all of its non-vanishing residues are the same up to a sign

"Integrals with unit leading singularity"

• Ex: 4-mass box

$$= \frac{2}{st} \left[\frac{1}{\epsilon^2} - \frac{\log(st)}{\epsilon} + \log(-s)\log(-t) - \frac{2\pi^2}{3} \right]$$

 $=\pm\frac{1}{s}$

(weight of ϵ is -1: $q^{\epsilon} = e^{\epsilon \log(q)}$)

What do you mean "Pure"?

• Definition based on residues

Arkani-Hamed, Bourjaily
 Cachazo, Trnka '12 –

An integral is pure if all of its non-vanishing residues are the same up to a sign

"Integrals with unit leading singularity"

Pure Feynman Integrals, when properly normalised

- Are expressible in terms of pure functions
- Satisfy a differential equation system in canonical form

Pure integrals evaluate to pure functions

Differential equations in canonical form – Henn '13 –

Matrix of "dlog" forms

 $dF = \epsilon \, dAF$

Vector of master integrals

For MPLs: Natural solution in terms of pure functions G as an expansion in ϵ

 $F = P \exp \left| \epsilon \int^{a} dA \right|$

What to do when the integral cannot be evaluated in terms of MPLs?

Ex: 2-loop massive sunrise in d=2

Two of the master integrals satisfy a coupled system First master integral satisfies a 2nd order DE:

$$D\left(\frac{d^2}{da^2}, \frac{d}{da}\right)S_{111} = R(a) \qquad a = \frac{p^2}{m^2}$$

Homogeneous solution:

$$\mathbf{K}(x) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-xt^2)}}$$

(complete elliptic integral of the 1st kind)

By now we know lots of examples that don't fit into the MPL framework: [see Jake's talk]

Goal: Develop a class of functions which is applicable in general for FI of the elliptic kind (next-to-simplest):

Elliptic generalisations of MPLs to functions on the elliptic curve w/ log singularities
Well defined notion of weight / purity

Purity: Why bother?

- Meaning not entirely understood even in the MPL case
- Nevertheless, shows underlying structure Eg. N=4 SYM:

anomalous dimensions, amplitudes, certain form factors, etc

L-loops ↔ Weight 2L functions "Uniform transcendentality"

- Organisational principle: functional identities among functions of fixed weight
- "Maximal transcendentality principle"

– Kotikov, Lipatov, Onishchenko, Velizhanin '04 –

Purity: Why bother?

Total differential:
$$dG(a_1, \ldots, a_n; z) = \sum_{i=1}^n G(a_1, \ldots, \hat{a}_i, \ldots, a_n; z) d\log \frac{a_{i-1} - a_i}{a_{i+1} - a_i}$$

Symbol:
$$S(G(a_1, ..., a_n; z)) = \sum_{i=1}^n S(G(a_1, ..., \hat{a}_i, ..., a_n; z)) \otimes \frac{a_{i-1} - a_i}{a_{i+1} - a_i}$$

- Goncharov, Spradlin, Vergu, Volovich '10 -

Length $n \longrightarrow n$ -fold tensor product

- Taming analytical expressions, functional identities
- Symbol bootstrap with MPL ansatz in N=4 SYM

Caron-Huot, Dixon, Drummond, Duhr, Harrington, Henn,
 McLeod, Papathanaseou, Pennington, Spradlin, von Hippel –

Purity: Why bother?

Differential equations in canonical form

Matrix of "dlog" forms $dF = \epsilon \, dA \, F$ Vector of master integrals

For MPLs: natural solution in terms of pure functions G

To-do: develop a general framework also for elliptic integrals — Adams, Weinzierl / Adams, Chaubey, Weinzierl '18 —

The real world: N=4 Super Yang-Mills

Conjecturally of uniform (maximal) weight

Elliptic integrals (and beyond) are known to appear:

 Caron-Huot, Larsen '12 / Nandan, Paulos, Spradlin, Volovich '14 / Bourjaily, McLeod, Spradlin, von Hippel, Wilhelm '17—

 $a_0 \frac{\text{The elliptic double box. } b_0}{\text{and more generally traintracks}}$

- Bourjaily, He, McLeod, von Hippel, Wilhelm '18 -

We'd like to give an elliptic meaning to these statements!

Define *pure* elliptic MPLs (eMPLs)

We seek to generalise the following to the elliptic case:

A function is called pure if it is unipotent and its total differential involves only pure functions and one-forms with at most logarithmic singularities.

(Unipotent: total diff has no homogeneous term)

Log singularities

$$dG(a_1, \dots, a_n; z) = \sum_{i=1}^n G(a_1, \dots, \hat{a}_i, \dots, a_n; z) d\log \frac{a_{i-1} - a_i}{a_{i+1} - a_i}$$

Pure Unipotent

Elliptic Polylogarithms on the torus

– Brown, Levin '11, Broedel, Mafra, Matthes, Schlotterer '14 –

torus: \mathbb{C}/Λ $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ ω_2 / ω_1 Modular group: $SL(2, \mathbb{Z})$ $\begin{pmatrix} \omega_2'\\ \omega_1' \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} \omega_2\\ \omega_1 \end{pmatrix}$ $\tau = \frac{\omega_2}{\omega_1} \rightarrow \frac{a\tau + b}{c\tau + d}$

Elliptic Polylogarithms on the torus

– Brown, Levin '11, Broedel, Mafra, Matthes, Schlotterer '14 –

Kernels defined through generating function:

$$F(z,\alpha,\tau) = \frac{1}{\alpha} \sum_{n \ge 0} g^{(n)}(z,\tau) \alpha^n = \frac{\theta'_1(0,\tau)\theta_1(z+\alpha,\tau)}{\theta_1(z,\tau)\theta_1(\alpha,\tau)}$$

Odd Jacobi theta function

Kernels have at most simple poles at lattice points

 $\tilde{\Gamma}$ form a basis for all eMPLs

Elliptic Polylogarithms on the torus

– Brown, Levin '11, Broedel, Mafra, Matthes, Schlotterer '14 –

Kernels defined through generating function:

$$F(z,\alpha,\tau) = \frac{1}{\alpha} \sum_{n \ge 0} g^{(n)}(z,\tau) \alpha^n = \frac{\theta_1'(0,\tau)\theta_1(z+\alpha,\tau)}{\theta_1(z,\tau)\theta_1(\alpha,\tau)}$$

$$\frac{1}{\alpha} \sum_{n \ge 0} f^{(n)}(z,\tau) \alpha^n = \exp\left[2\pi i\alpha \frac{\mathrm{Im}z}{\mathrm{Im}\tau}\right] F(z,\alpha,\tau)$$

holomorphic, double periodic

 $g^{(n)}(z, au)$

Like MPLs, Γ satisfy nice properties

Total differential without homogeneous term (= unipotent) – Broedel, Duhr, Dulat, Penante, Tancredi, 2018–

$$\begin{split} d\widetilde{\Gamma} \left(A_{1} \cdots A_{k}; z, \tau \right) &= \sum_{p=1}^{k-1} (-1)^{n_{p+1}} \widetilde{\Gamma} \left(A_{1} \cdots A_{p-1} \stackrel{0}{_{0}} A_{p+2} \cdots A_{k}; z, \tau \right) \, \omega_{p,p+1}^{(n_{p}+n_{p+1})} \\ &+ \sum_{p=1}^{k} \sum_{r=0}^{n_{p+1}} \left[\begin{pmatrix} n_{p-1} + r - 1 \\ n_{p-1} - 1 \end{pmatrix} \widetilde{\Gamma} \left(A_{1} \cdots A_{p-1}^{[r]} \hat{A}_{p} \, A_{p+1} \cdots A_{k}; z, \tau \right) \, \omega_{p,p-1}^{(n_{p}-r)} \right] \\ &- \begin{pmatrix} n_{p+1} + r - 1 \\ n_{p+1} - 1 \end{pmatrix} \widetilde{\Gamma} \left(A_{1} \cdots A_{p-1} \, \hat{A}_{p} \, A_{p+1}^{[r]} \cdots A_{k}; z, \tau \right) \, \omega_{p,p+1}^{(n_{p}-r)} \right] \\ &A_{i}^{[r]} \equiv \begin{pmatrix} n_{i} + r \\ z_{i} \end{pmatrix} \, A_{i}^{[0]} \equiv A_{i} \\ &\omega_{ij}^{(n)} = (dz_{j} - dz_{i}) \, g^{(n)}(z_{j} - z_{i}, \tau) + \frac{n \, d\tau}{2\pi i} \, g^{(n+1)}(z_{j} - z_{i}, \tau) \end{split}$$

Important: $g^{(n)}(z,\tau)$ have at most simple poles for $z = m + n\tau, m, n \in \mathbb{Z}$

Like MPLs, Γ satisfy nice properties

Total differential without homogeneous term (= unipotent) – Broedel, Duhr, Dulat, Penante, Tancredi, 2018–

$$\begin{split} l\widetilde{\Gamma} \left(A_{1} \cdots A_{k}; z, \tau \right) &= \sum_{p=1}^{k-1} (-1)^{n_{p+1}} \widetilde{\Gamma} \left(A_{1} \cdots A_{p-1} \stackrel{0}{_{0}} A_{p+2} \cdots A_{k}; z, \tau \right) \; \omega_{p,p+1}^{(n_{p}+n_{p+1})} \\ &+ \sum_{p=1}^{k} \sum_{r=0}^{n_{p}+1} \left[\begin{pmatrix} n_{p-1}+r-1 \\ n_{p-1}-1 \end{pmatrix} \widetilde{\Gamma} \left(A_{1} \cdots A_{p-1}^{[r]} \; \hat{A}_{p} \; A_{p+1} \cdots A_{k}; z, \tau \right) \; \omega_{p,p-1}^{(n_{p}-r)} \right] & \text{ one-forms w/} \\ &\text{ log singularities} \\ &- \begin{pmatrix} n_{p+1}+r-1 \\ n_{p+1}-1 \end{pmatrix} \widetilde{\Gamma} \left(A_{1} \cdots A_{p-1} \; \hat{A}_{p} \; A_{p+1}^{[r]} \cdots A_{k}; z, \tau \right) \; \omega_{p,p+1}^{(n_{p}-r)} \right] \end{split}$$

A function is called pure if it is unipotent and it has at most logarithmic singularities.

 $\tilde{\Gamma}$ are pure!

So, we can use as guiding principle

An elliptic Feynman integral is pure if it is pure when expressed in terms of $\tilde{\Gamma}$

Linear combination of $\tilde{\Gamma}$ with coefficients being rational numbers

Why bother defining another version of eMPLs?

Elliptic curves

$$y^2 = (x - a_1)(x - a_2)(x - a_3)(x - a_4) \equiv P_4(x)$$

Vector of branch points of $y: \vec{a} = (a_1, a_2, a_3, a_4)$

Periods:

$$\omega_1 = 2c_4 \int_{a_2}^{a_3} \frac{dx}{y} = 2 \operatorname{K}(\lambda) \qquad \omega_2 = 2c_4 \int_{a_1}^{a_2} \frac{dx}{y} = 2i \operatorname{K}(1-\lambda)$$

$$\lambda = \frac{(a_1 - a_4)(a_2 - a_3)}{(a_1 - a_3)(a_2 - a_4)} \qquad c_4 = \frac{1}{2}\sqrt{(a_1 - a_3)(a_2 - a_4)}$$

Elliptic Curves and Torii

 $\tau = \frac{\omega_2}{\omega_1}$

vs.
$$y^2 = (x - a_1)(x - a_2)(x - a_3)(x - a_4) \equiv P_4(x)$$

Kappa function $\kappa(., \vec{a}) : \mathbb{C}/\Lambda_{\tau} \to \mathbb{C}$ $(c_4\kappa'(z))^2 = (\kappa(z) - a_1)(\kappa(z) - a_2)(\kappa(z) - a_3)(\kappa(z) - a_4)$ $y^2 = P_4(x)$ $(x, y) = (\kappa(z), c_4\kappa'(z))$

Desired properties for eMPLs:

1. Pure eMPLs on the elliptic curve

Feynman integrals are more naturally studied on the elliptic curve (simpler functions of kinematic dof)

2. Definite Parity

Integrands are rational functions, result should not depend on choice of branch for the square root $y^2 = P_4(x)$

$$(x,y) \to (x,-y) \qquad \longleftrightarrow \qquad z \to -z$$

Basis of $\tilde{\Gamma}$ does not have definite parity

$$\tilde{\Gamma}(\begin{array}{cc}n_1 & \dots & n_k\\z_1 & \dots & z_k\end{array}; z) = \int_0^z dz' g^{(n_1)}(z'-z_1) \tilde{\Gamma}(\begin{array}{cc}n_2 & \dots & n_k\\z_2 & \dots & z_k\end{aligned}; z) \qquad g^{(n)}(-z,\tau) = (-1)^n g^{(n)}(z,\tau)$$

To summarise:

We define a basis of eMPLs on the elliptic curve such that

1. They form a basis for all eMPLs

2. They are pure

3. They have definite parity

4. They manifestly contain ordinary MPLs

$$\mathcal{E}_4(\overset{n_1}{\underset{c_1}{\ldots}} \overset{n_k}{\underset{c_k}{\ldots}}; x, \vec{a}) = \int_0^x dt \,\Psi_{n_1}(c_1, t, \vec{a}) \,\mathcal{E}_4(\overset{n_2}{\underset{c_2}{\ldots}} \overset{n_k}{\underset{c_k}{\ldots}}; t, \vec{a})$$
$$n_i \in \mathbb{Z}$$

 $n_i \in \mathbb{Z}$ is a label

 $c_i \in \mathbb{C}$ indicate punctures (for $n_i \neq 0$)

Infinitely many kernels, Ψ_n but only $|n| \le 2$ typically appear in explicit problems

$$\mathcal{E}_4(\stackrel{n_1}{\underset{c_1}{\dots}}, \stackrel{n_k}{\underset{c_k}{\dots}}; x, \vec{a}) = \int_0^x dt \,\Psi_{n_1}(c_1, t, \vec{a}) \,\mathcal{E}_4(\stackrel{n_2}{\underset{c_2}{\dots}}, \stackrel{n_k}{\underset{c_k}{\dots}}; t, \vec{a})$$
$$n_i \in \mathbb{Z}$$

$$dx \Psi_{\pm n}(c, x, \vec{a}) = dz_x \left[g^{(n)}(z_x - z_c, \tau) \pm g^{(n)}(z_x + z_c, \tau) - \delta_{\pm n, 1} \left(g^{(1)}(z_x - z_*, \tau) + g^{(1)}(z_x + z_*, \tau) \right) \right]$$

Recall: $g^{(i)}(z,\tau)$ are the kernels of the eMPLs Γ

$$\mathcal{E}_4(\stackrel{n_1}{\underset{c_1}{\ldots}} \stackrel{n_k}{\underset{c_k}{\ldots}}; x, \vec{a}) = \int_0^x dt \,\Psi_{n_1}(c_1, t, \vec{a}) \,\mathcal{E}_4(\stackrel{n_2}{\underset{c_2}{\ldots}} \stackrel{n_k}{\underset{c_k}{\ldots}}; t, \vec{a})$$
$$n_i \in \mathbb{Z}$$

$$dx \Psi_{\pm n}(c, x, \vec{a}) = dz_x \left[g^{(n)}(z_x - z_c, \tau) \pm g^{(n)}(z_x + z_c, \tau) - \delta_{\pm n, 1} \left(g^{(1)}(z_x - z_*, \tau) + g^{(1)}(z_x + z_*, \tau) \right) \right]$$

1. They form a basis for all eMPLs

(one-to-one correspondence with basis of Γ)

$$\mathcal{E}_4(\stackrel{n_1}{\underset{c_1}{\dots}}, \stackrel{n_k}{\underset{c_k}{\dots}}; x, \vec{a}) = \int_0^x dt \,\Psi_{n_1}(c_1, t, \vec{a}) \,\mathcal{E}_4(\stackrel{n_2}{\underset{c_2}{\dots}}, \stackrel{n_k}{\underset{c_k}{\dots}}; t, \vec{a})$$
$$n_i \in \mathbb{Z}$$

$$dx \Psi_{\pm n}(c, x, \vec{a}) = dz_x \left[g^{(n)}(z_x - z_c, \tau) \pm g^{(n)}(z_x + z_c, \tau) - \delta_{\pm n, 1} \left(g^{(1)}(z_x - z_*, \tau) + g^{(1)}(z_x + z_*, \tau) \right) \right]$$

(Linear combination of $\tilde{\Gamma}$ with numeric coefficients)

$$\mathcal{E}_4(\stackrel{n_1}{\underset{c_1}{\dots}}, \stackrel{n_k}{\underset{c_k}{\dots}}; x, \vec{a}) = \int_0^x dt \,\Psi_{n_1}(c_1, t, \vec{a}) \,\mathcal{E}_4(\stackrel{n_2}{\underset{c_2}{\dots}}, \stackrel{n_k}{\underset{c_k}{\dots}}; t, \vec{a})$$
$$n_i \in \mathbb{Z}$$

$$dx \Psi_{\pm n}(c, x, \vec{a}) = dz_x \left[g^{(n)}(z_x - z_c, \tau) \pm g^{(n)}(z_x + z_c, \tau) - \delta_{\pm n, 1} \left(g^{(1)}(z_x - z_*, \tau) + g^{(1)}(z_x + z_*, \tau) \right) \right]$$

3. They have definite parity V

(Recall
$$g^{(n)}(-z,\tau) = (-1)^n g^{(n)}(z,\tau)$$
)

$$\mathcal{E}_4(\stackrel{n_1}{\underset{c_1}{\ldots}} \stackrel{n_k}{\underset{c_k}{\ldots}}; x, \vec{a}) = \int_0^x dt \,\Psi_{n_1}(c_1, t, \vec{a}) \,\mathcal{E}_4(\stackrel{n_2}{\underset{c_2}{\ldots}} \stackrel{n_k}{\underset{c_k}{\ldots}}; t, \vec{a})$$
$$n_i \in \mathbb{Z}$$

$$dx \Psi_{\pm n}(c, x, \vec{a}) = dz_x \left[g^{(n)}(z_x - z_c, \tau) \pm g^{(n)}(z_x + z_c, \tau) - \delta_{\pm n, 1} \left(g^{(1)}(z_x - z_*, \tau) + g^{(1)}(z_x + z_*, \tau) \right) \right]$$
$$dx \Psi_1(c, x, \vec{a}) = \frac{dx}{x - c}, \qquad c \neq \infty$$

4. They manifestly contain ordinary MPLs

Making it explicit

$$\begin{split} \Psi_0(0, x, \vec{a}) &= \frac{c_4}{\omega_1 y} \\ \Psi_1(c, x, \vec{a}) &= \frac{1}{x - c}, \\ \Psi_{-1}(c, x, \vec{a}) &= \frac{y_c}{y(x - c)} + Z_4(c, \vec{a}) \frac{c_4}{y}, \\ \Psi_1(\infty, x, \vec{a}) &= -Z_4(x, \vec{a}) \frac{c_4}{y}, \\ \Psi_{-1}(\infty, x, \vec{a}) &= \frac{x}{y} - \frac{1}{y} \left[a_1 + 2c_4 G_*(\vec{a}) \right] \end{split}$$

$$y_c = \sqrt{P_4(c)}$$

Nothing comes without a price — explicit dependence on

$$G_*(\vec{a}) \equiv \frac{1}{\omega_1} g^{(1)}(z_*, \tau) \quad \text{and} \quad Z_4(c, \vec{a}) \quad \text{Transcendental function}$$

Image of $-\infty$ on the torus with pole at $c \to \infty$

In general transcendental, but simplify in specific applications

Length and weight

For MPLs, notion of weight and length are straightforward Length = weight = # of integrations (except for $i\pi$) For eMPLs, they are not the same!

Semi-simple vs. unipotent

Unipotent: total differential has no homogeneous term

 ω_i : periods

 η_i : quasi-periods

 $\omega_1\eta_2 - \omega_2\eta_1 = -i\pi$

(Legendre)

$$\begin{pmatrix} \omega_1 & \omega_2 \\ \eta_1 & \eta_2 \end{pmatrix} = \begin{pmatrix} \omega_1 & 0 \\ \eta_1 & -i\pi/\omega_1 \end{pmatrix} \begin{pmatrix} 1 & \tau \\ 0 & 1 \end{pmatrix} \qquad \tau = \frac{\omega_2}{\omega_1}$$
semi-simple unipotent

$$\mathbf{v}_1, \eta_1, i\pi/\omega_1$$

Semi-simple periods have length 0 Unipotent periods have length = # of integrations

Roughly speaking:

Weight:

Empirically, by requiring relations between uniform weight functions, we postulate:

We'll see in applications that using these definitions, results are of uniform weight

Other properties that work the same way as for MPLs:

• Shuffle

$$\mathcal{E}_4(A_1 \cdots A_k; x, \vec{a}) \, \mathcal{E}_4(A_{k+1} \cdots A_{k+l}; x, \vec{a}) = \sum_{\sigma \in \Sigma(k,l)} \mathcal{E}_4(A_{\sigma(1)} \cdots A_{\sigma(k+l)}; x, \vec{a})$$

- Unipotent Symbol
- Shuffle preserving regularisation of $\mathcal{E}_4(\cdots \stackrel{\pm 1}{0}, x, \vec{a})$

Analogue of
$$G(\underbrace{0,\ldots,0};z) = \frac{1}{n!} \log^n z$$

n times

Name	Unipotent	Length	Weight
Rational Functions	No	0	0
Algebraic Functions	No	0	0
$i\pi$	No	0	1
ζ_{2n}	No	0	2n
ζ_{2n+1}	Yes	0	2n+1
$\log x$	Yes	1	1
$\operatorname{Li}_n(x)$	Yes	n	n
$G(c_1,\ldots,c_k;x)$	Yes	k	k
ω_1	No	0	1
η_1	No	0	1
au	Yes	1	0
$g^{(n)}(z, au)$	No	0	n
$h_{N,r,s}^{(n)}(au)$	No	0	n
$Z_4(c,ec{a})$	No	0	0
$G_*(\vec{a})$	No	0	0
$\mathcal{E}_4(\begin{smallmatrix} n_1 & & n_k \ c_1 & & c_k \end{smallmatrix} ; x, ec{a})$	Yes	k	$\sum_{i} n_i $
$\widetilde{\Gamma}({ {n_1 \ \ n_k \ z_1 \ \ z_k \ ; z, au })$	Yes	k	$\sum_{i} n_i$
$I\left(\begin{smallmatrix}n_1 & N_1 \\ r_1 & s_1\end{smallmatrix}\right \dots \left \begin{smallmatrix}n_k & N_k \\ r_k & s_k\end{smallmatrix}; \tau\right)$	Yes	k	$\sum_i n_i$

THE COMPLETE LIST

Applications

- Broedel, Duhr, Dulat, Penante, Tancredi (to appear) -

Applications

- Broedel, Duhr, Dulat, Penante, Tancredi (to appear) -

– Henn, Smirnov '13 –

Step by step

1. Start from Feynman parametric integral

2. Do as many integrals as possible in terms of MPLs G

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t)$$

3. Reach a representation of the type $I = \int_0^1 \frac{dx}{y} \times (\text{bunch of Gs})$

4. Rewrite (bunch of Gs) as $\Psi_n(\ldots, x, \vec{a})\mathcal{E}_4(\ldots; x, \vec{a})$

5. Integrate in terms of eMPLs

$$\mathcal{E}_4({}^{n_1}_{c_1} \dots {}^{n_k}_{c_k}; x, \vec{a}) = \int_0^x dt \,\Psi_{n_1}(c_1, t, \vec{a}) \,\mathcal{E}_4({}^{n_2}_{c_2} \dots {}^{n_k}_{c_k}; t, \vec{a})$$

Ex 1: Sunrise first master

Semi-simple Unipotent
We can write:
$$S_1(p^2, m^2) = -\frac{\omega_1}{(p^2 + m^2)c_4} T_1(p^2, m^2)$$

$$\operatorname{Cut}[S_1(p^2, m^2)_{|D=2}] = -\frac{\omega_1}{(p^2 + m^2) c_4}$$

$$S_{1}(p^{2}, m^{2}) = \operatorname{Cut}[S_{1}(p^{2}, m^{2})|_{D=2}] \times T_{1}(p^{2}, m^{2}) \qquad \begin{array}{l} \text{Just like} \\ \text{non-elliptic} \\ \text{case} \end{array}$$
$$T_{1}(p^{2}, m^{2}) = \left(\frac{m^{2}}{-p^{2}}\right)^{-2\epsilon} \left[T_{1}^{(0)} + \epsilon T_{1}^{(1)} + \mathcal{O}(\epsilon^{2})\right]$$

$$T_1(p^2, m^2) = \left(\frac{m^2}{-p^2}\right)^{-2\epsilon} \left[T_1^{(0)} + \epsilon T_1^{(1)} + \mathcal{O}(\epsilon^2)\right]$$

$$T_1^{(0)} = 2\mathcal{E}_4\left(\begin{smallmatrix} 0 & -1 \\ 0 & \infty \end{smallmatrix}; 1, \vec{a}\right) + \mathcal{E}_4\left(\begin{smallmatrix} 0 & -1 \\ 0 & 0 \end{smallmatrix}; 1, \vec{a}\right) + \mathcal{E}_4\left(\begin{smallmatrix} 0 & -1 \\ 0 & 1 \end{smallmatrix}; 1, \vec{a}\right)$$

$$\begin{split} T_{1}^{(1)} &= -4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{3} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{1} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{2} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} \\ &- 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{3} & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{2} & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{2} & 1 \end{bmatrix}; 1, \vec{a}) \\ &+ 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & \infty & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & \infty & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 6\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & \infty \end{bmatrix}; 1, \vec{a}) + 6\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & \infty \end{bmatrix}; 1, \vec{a}) \\ &- 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}; 1, \vec{a}) - 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a}) + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; 1, \vec{a} \end{pmatrix} + \mathcal$$

$$\vec{a} = \left(\frac{1}{2}(1+\sqrt{1+\rho}), \frac{1}{2}(1+\sqrt{1+\bar{\rho}}), \frac{1}{2}(1-\sqrt{1+\bar{\rho}}), \frac{1}{2}(1-\sqrt{1+\bar{\rho}})\right) \qquad \rho = -\frac{4m^2}{(m+\sqrt{-p^2})^2} \quad \text{and} \quad \overline{\rho} = -\frac{4m^2}{(m-\sqrt{-p^2})^2}$$

$$T_1(p^2, m^2) = \left(\frac{m^2}{-p^2}\right)^{-2\epsilon} \left[T_1^{(0)} + \epsilon T_1^{(1)} + \mathcal{O}(\epsilon^2)\right]$$

$$T_1^{(0)} = 2\mathcal{E}_4\left(\begin{smallmatrix} 0 & -1 \\ 0 & \infty \end{smallmatrix}; 1, \vec{a}\right) + \mathcal{E}_4\left(\begin{smallmatrix} 0 & -1 \\ 0 & 0 \end{smallmatrix}; 1, \vec{a}\right) + \mathcal{E}_4\left(\begin{smallmatrix} 0 & -1 \\ 0 & 1 \end{smallmatrix}; 1, \vec{a}\right)$$

$$\begin{split} T_{1}^{(1)} &= -4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{3} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{1} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & \infty \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 4\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{1} & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{1} & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & a_{4} & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & a_{4} & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} - 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 2\mathcal{E}_{4} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 \end{pmatrix}; 1, \vec{a} \end{pmatrix} + 3\mathcal{E}_{4} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 \end{pmatrix}; 1,$$

 $\operatorname{Cut}[S_2(p^2, m^2)_{|D=2}]$

$$T_2(p^2, m^2) = \left(\frac{m^2}{-p^2}\right)^{-2\epsilon} \left[T_2^{(0)} + \epsilon T_2^{(1)} + \mathcal{O}(\epsilon^2)\right]$$
$$T_2^{(0)} = 2\mathcal{E}_4(\frac{-2}{\infty}; 1, \vec{a}) + \mathcal{E}_4(\frac{-2}{0}; 1, \vec{a}) + \mathcal{E}_4(\frac{-2}{1}; 1, \vec{a})$$

Uniform weight 2!

Ex 2: $t\bar{t}$ production – Tancredi, von Manteuffel '17 –

Massive loop m

 k_1 k_2

 $a = m^2/S$

 $I = \int \frac{d^d k_1 d^d k_2}{(i\pi)^4} \frac{1}{\prod_{i=1}^6 D_i} \qquad \begin{array}{l} p_1^2 = p_2^2 = 0\\ S = -2(p_1 \cdot p_2) \end{array}$

 $D_1 = k_1^2 - m^2, \quad D_3 = (k_1 - p_1)^2 - m^2, \quad D_5 = (k_1 - k_2 - p_1)^2,$ $D_2 = k_2^2 - m^2, \quad D_4 = (k_2 - p_2)^2 - m^2, \quad D_6 = (k_2 - k_1 - p_2)^2$

In terms of pure eMPLs \mathcal{E}_4 :

$$I = \frac{32\omega_1}{q^2(1+\sqrt{1-16a})} [T_0(a) + 3T_-(a) + 5T_+(a) + \mathcal{O}(\epsilon)]$$

 $T_{a} = -\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 - \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 0 & 1 \end{pmatrix}; 1 - \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \frac{1}{2}\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 - \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 1 & 1 \end{pmatrix}; 1 + \frac{1}{2}\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \frac{1}{2}\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E$

$$\begin{split} T_{-} &= -\frac{3}{2}\zeta_{2}\,\mathcal{E}_{4}(\frac{-1}{\infty};r_{-}) + \zeta_{2}\mathcal{E}_{4}\left(\frac{-1}{\infty}\frac{0}{0};r_{-}\right) - 2\mathcal{E}_{4}(\frac{-1}{\infty}\frac{-1}{\infty};r_{-})\,\mathcal{E}_{4}\left(\frac{0}{0}\frac{-1}{\infty};1\right) \\ &+ \mathcal{E}_{4}\left(\frac{-1}{\infty}\frac{0}{0}\frac{1}{0}\frac{1}{0};r_{-}\right) + \mathcal{E}_{4}\left(\frac{-1}{0}\frac{0}{0}\frac{1}{0}\frac{1}{1};r_{-}\right) - \mathcal{E}_{4}\left(\frac{-1}{0}\frac{0}{0}\frac{1}{0}\frac{1}{0};r_{-}\right) - \mathcal{E}_{4}\left(\frac{-1}{0}\frac{0}{0}\frac{1}{0}\frac{1}{1};r_{-}\right) \\ &+ \mathcal{E}_{4}\left(\frac{-1}{0}\frac{1}{0}\frac{0}{0}\frac{1}{1};r_{-}\right) - \mathcal{E}_{4}\left(\frac{-1}{0}\frac{1}{0}\frac{0}{0}\frac{1}{0};r_{-}\right) + \mathcal{E}_{4}\left(\frac{1}{0}\frac{-1}{0}\frac{0}{0}\frac{1}{1};r_{-}\right) - \mathcal{E}_{4}\left(\frac{1}{1}\frac{-1}{0}\frac{0}{0}\frac{1}{1};r_{-}\right) \\ &- \mathcal{E}_{4}\left(\frac{-1}{0}\frac{0}{0}\frac{1}{1};r_{-}\right)\log(r_{-}) + \mathcal{E}_{4}\left(\frac{-1}{0}\frac{0}{0}\frac{1}{0};r_{-}\right)\log(1-r_{-}) \end{split}$$

$$T_{+} = \frac{\pi}{4} \left(\mathcal{E}_{4} \begin{pmatrix} 1 & -1 \\ 0 & \infty \end{pmatrix}; r_{+} \right) + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 \\ 1 & \infty \end{pmatrix}; r_{+} - 4 \left(\mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 \\ 0 & \infty & 0 \end{pmatrix}; r_{+} \right) + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 \\ 1 & \infty & 0 \end{bmatrix}; r_{+} \right) \\ - \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & \infty & 1 & 0 \end{bmatrix}; r_{+} + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & \infty & 0 & 1 \end{bmatrix}; r_{+} - \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & \infty & 1 & 0 \end{bmatrix}; r_{+} + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & \infty & 0 & 1 \end{bmatrix}; r_{+} \right)$$

$$\vec{b} = \left(0, \frac{1}{2}(1 - \sqrt{1 - 16a}), \frac{1}{2}(1 + \sqrt{1 - 16a}), 1\right) \qquad r_{\pm} = \frac{1}{2}(1 - \sqrt{1 \pm 4a}) \qquad a = \frac{m^2}{(-q^2)^2}$$

In terms of pure eMPLs \mathcal{E}_4 :

$$I = \frac{32\omega_1}{q^2(1+\sqrt{1-16a})} [T_0(a) + 3T_-(a) + 5T_+(a) + \mathcal{O}(\epsilon)]$$

 $T_{a} = -\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 - \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 0 & 1 \end{pmatrix}; 1 - \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \frac{1}{2}\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 - \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 1 & 1 \end{pmatrix}; 1 + \frac{1}{2}\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \frac{1}{2}\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 1 & 0 \\ 0 & \infty & 1 & 0 \end{pmatrix}; 1 + \frac{1}{2}\mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & \infty & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; 1 + \mathcal{E}_{4}\begin{pmatrix} 0 & 0 &$

$$\begin{aligned} T_{-} &= -\frac{3}{2}\zeta_{2}\,\mathcal{E}_{4}\left(\begin{smallmatrix} -1\\\infty \end{smallmatrix};r_{-}\right) + \zeta_{2}\mathcal{E}_{4}\left(\begin{smallmatrix} -1&0\\\infty &0 \end{smallmatrix};r_{-}\right) - 2\mathcal{E}_{4}\left(\begin{smallmatrix} -1&-1\\\infty &\infty \end{smallmatrix};r_{-}\right)\mathcal{E}_{4}\left(\begin{smallmatrix} 0&-1\\0 &\infty \end{smallmatrix};1\right) \\ &+ \mathcal{E}_{4}\left(\begin{smallmatrix} -1&0&1&1\\\infty &0&0&1 \end{smallmatrix};r_{-}\right) + \mathcal{E}_{4}\left(\begin{smallmatrix} -1&0&1&1\\\infty &0&0&1 \end{smallmatrix};r_{-}\right) - \mathcal{E}_{4}\left(\begin{smallmatrix} -1&0&1&1\\\infty &0&1&0 \end{smallmatrix};r_{-}\right) - \mathcal{E}_{4}\left(\begin{smallmatrix} -1&0&1&1\\\infty &0&0&1 \end{smallmatrix};r_{-}\right) \\ &+ \mathcal{E}_{4}\left(\begin{smallmatrix} -1&1&0&1\\\infty &0&0&1 \end{smallmatrix};r_{-}\right) - \mathcal{E}_{4}\left(\begin{smallmatrix} -1&1&0&1\\\infty &1&0&0 \end{smallmatrix};r_{-}\right) + \mathcal{E}_{4}\left(\begin{smallmatrix} 1&-1&0&1\\0 &\infty &0&1 \end{smallmatrix};r_{-}\right) - \mathcal{E}_{4}\left(\begin{smallmatrix} 1&-1&0&1\\1 &\infty &0&0 \end{smallmatrix};r_{-}\right) \\ &- \mathcal{E}_{4}\left(\begin{smallmatrix} -1&0&1\\\infty &0&1 \end{smallmatrix};r_{-}\right)\log(r_{-}) + \mathcal{E}_{4}\left(\begin{smallmatrix} -1&0&1\\\infty &0&0 \end{smallmatrix};r_{-}\right)\log(1-r_{-}) \end{aligned}$$

$$T_{+} = \frac{i\pi}{4} \left(\mathcal{E}_{4} \begin{pmatrix} 1 & -1 \\ 0 & \infty \end{pmatrix}; r_{+} \right) + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 \\ 1 & \infty \end{pmatrix}; r_{+} - 4 \left(\mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 \\ 0 & \infty & 0 \end{pmatrix}; r_{+} \right) + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 \\ 1 & \infty & 0 \end{pmatrix}; r_{+} \right) \\ - \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & \infty & 1 & 0 \end{pmatrix}; r_{+} + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & \infty & 0 & 1 \end{pmatrix}; r_{+} - \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & \infty & 1 & 0 \end{pmatrix}; r_{+} + \mathcal{E}_{4} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & \infty & 0 & 1 \end{pmatrix}; r_{+} \right)$$

Uniform weight 4!

Back to the real world

The elliptic double box of N=4 SYM

 Caron-Huot, Larsen '12 / Nandan, Paulos, Spradlin, Volovich '14 / Bourjaily, McLeod, Spradlin, von Hippel, Wilhelm '17 –

Uniform weight 4, as expected!

Conclusions

• First step into defining a concept of purity and uniform weight in the elliptic case, worked out several examples

- Both conceptual and practical relevance in the end we are interested in computing amplitudes and obtaining reliable analytical expressions
- Purity is of great relevance in the MPL case (differential equations), hopefully soon we will have a similar understanding for elliptic Feynman integrals too
- Not the end, integrals with multiple elliptic curves, more complicated geometries, etc. Adams, Chaubey, Weinzierl '18 [Jake's talk]
- Lots to do still, but we are definitely moving forward!

Conclusions

- First step into defining a concept of purity and uniform weight in the elliptic case, worked out several examples
- Both conceptual and practical relevance in the end we are interested in computing amplitudes and obtaining reliable analytical expressions
- Purity is of great relevance in the MPL case (differential equations), hopefully soon we will have a similar understanding for elliptic Feynman integrals too
- Not the end, integrals with multiple elliptic curves, more complicated geometries, etc. Adams, Chaubey, Weinzierl '18 [Jake's talk]
- Lots to do still, but we are definitely moving forward!

