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The Diagrammatic Coaction: Motivation

e Many Feynman diagrams evaluate to Multiple polylogarithms (MPLs).
MPLs admit a coaction, which maps complicated objects into simpler ones.
The coaction has many applications including simplifying expressions and taking
discontinuities.

e Can Feynman integrals themselves be endowed with a coaction?

The idea that there should be a Hopf Algebra on Feynman graphs / integrals that reproduces
the one on MPLs was an inspiration for research over many years [Kreimer, Brown].

At one loop we now have an explicit construction in dimensional regularisation with a
simple graphical interpretation involving contractions and cuts.

* This algebraic structure encodes the analytic properties of the integrals.
It facilitates e.g. performing analytic continuation and deriving differential equations.
It also provides a new perspective on cuts and Master Integrals.

 Can it be extended to higher loops?



Coaction on Multiple Polylogs

 Multiple Polylogarithms (MPLs) are iterated integrals of the form:
dt

z
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weight n weight n—1
e They form an algebra with the action 4 x 4 — A: G(a@;z)G(b2)= > G(G2),
gealllb
e Define a coaction: A - A® H A(G(Cz2)) = Gbz) ® Gp(cz) ,
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weight |b| weight |&] —|b]
a4. 1 a 1
0 > 2 0 Vg 2z
as a2 as a2
left: modify the integrand right: modify the contour to
retaining only the poles in b encircle the polesin b
(keeping the original contour). (keeping the original integrand)

e This allows to derive functional identities by simple algebra.

Goncharov, Brown, Goncharov-Spradlin-Vergu-Volovich, Duhr, ...



The Master Formula

* Inspired by the coaction on MPLs we define a coaction on integrals:

s([) =5 oo -

 We have inserted a complete set of master integrands w; and corresponding
master contours 7y; — these basis elements are paired according to:

Pss(/ wj) :5733'7
Vi

e P, is asemi-simple projector: it retains semi-simple objects A(z) =z ® 1
including 7T and rational functions (and complete elliptic integrals) but
eliminates logs and polylogs.



Properties of the coaction

e Q@iven a basis of paired integrand Ww; and contour 7y; the coaction on
integrals is defined by

()5 e -

reproducing the properties of the coaction on MPLs.

* Discontinuities act on the first entry

(ol ) o[ e] -

— this is useful for taking discontinuities.

* Differentiation acts on the second entry

s )) =2 fureol] .

— useful for deriving differential equations.



Diagrammatic Coaction at one loop

* To translate the coaction A (/ w) = Z/wi@)/ w
Y i Y Vi

to Feynman diagrams we need to fix a basis.

* At one loop, a convenient basis of uniform weight Feynman integrals is:

D n—1
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Jn:eVEG/dk Dzz{g]—ze

D 2 ;
imD/2 =0 (k_Qj) _m?

e This fixes the basis for the first entries in the coaction: for a given integral J,
these are the diagram itself and all its possible contractions.

* Next we need to identify the corresponding contours encircling poles,
defining the second entries. These are cuts!
First guess: cut all propagators that aren’t contracted in the first entry.
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Diagrammatic Coaction at one loop —
example: the three-mass triangle

* The diagrammatic coaction for a three-mass triangle with massless
propagators (to all orders in dimensional regularisation):
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 (Can be verified, order-by-order in € to reproduce the coaction on MPLs

* Defining 2z=p;/p; and (1-2)(1—2)=p3/p;

11—z

1 —
At leading order in € : T(z,%) = —2Liz(2) + 2Li2(2) — In(2Z) In ( Z)

AlT(z,2)]=T(22)®1+1®T(2,2) +In(—p3) ®In

1—2 2 zZ(1—2)
+In(—p3) ®In —+ In(—p3) ® In A7)

1 — 2

* We see how the 3 channel discontinuities are captured by the 3 bubbles.



Diagrammatic Coaction at one loop —
example: the three-mass triangle

 The diagrammatic coaction for a three-mass triangle:

(<] <o <L
R o

AlT(z,2)] = T(2,2)®1+ 1@ T(2.2) +In(-p )®1n1 (1 - 2)

2(1—2)

+Jn( )@dn—+4n(gﬁ)®h1

* The trivial term with the full triangle on the second entry is recovered (to
all orders) though the “pole-cancellation identity”:

which in general takes the form: Z CiJn + Z Ci Jp, = —eJ, mod i

i€ [n] i1<j€[n]



The Diagrammatic Coaction at one loop:
the general case

* Translating the coaction on integrals

A([YCU)EZ:/YWi(X)/Viw Pss(Liwj)—éij,
o [

0ACCEq

to Feynman diagrams

JGC ,,

* The first entry in the diagrammatic coaction are .J;.: graphs whose edges
that are not in the subset C are contracted.

* What is the corresponding contour ¢ defining the second entry?
* The general solution: e = ['coo  for |C| odd
I'c  for |C| even

where TI'c encircles the poles in C while I'c encircles in addition the branch
point at infinite momentum (it’s a second type Landau singularity).



Coaction for one loop Feynman diagrams

one loop can be recast in terms of ordinary cuts!

* This is owing to the (homology) relations:

For even |Cl: Cooodn = Z Coidn +

Z ch I

z<j€

For odd |C|Z C(joojn = —QCojn — Z C(jzjn
ien]\C

D. Fotiadi and F. Pham (1966); Abreu et al. 1702.03163

* The diagrammatic coaction at one loop:

A(Jg) =

2.
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It turns out contours that encircle the branch point at infinite momentum at
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= if |C] is odd

0 if |C|is even




Coaction for one loop Feynman diagrams

* The diagrammatic coaction at one loop, expressed in terms of cuts:

/wC®/ WEG +
v Yo

A(Jg) = Z Jao @ (chg + ac Z Ccng>
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if |C] is odd
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with { 0 if |C] is even

e Example: bubble with two massive propagators

A(/ w12) :/ w12®/ w12
Ty Ty Ty
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—|—/ m@(/-l— / >w12
F@ F1 F12
1
+/ wz@(/ +—/ >w12
Ty [y 2 I'12

Wi Vi

W12 ['12
1

w1 | 't + 512 =11
1

wo | I'o+ 5112 = Do

S Ao el e s
Qs (<1<
Qs (- 1<)

satisfy



Coaction for one loop Feynman diagrams:
the two-mass hard box

A(Jg) = Z Ja. @ (CCJG—I-aC Z Ccejc;)

@#CQEG eEEg\C

: if|C]is odd
ac —

0 if |C|is even

with

The diagrammatic coaction for the two-mass hard box:
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Differential equations from the coaction

* @Given that differentiation only acts on the second entries:

s o)) = [wealf 4],

we can derive differential equations from the diagrammatic coaction by
focusing on the weight 1 component on the second entry.

* For example, for a pentagon we get:
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Coaction on hypergeometric functions

* We have seen that the diagrammatic coaction holds order-by-order in €,
recovering the coaction on MPLs.

e Can it be established directly for the Hypergeometric functions? Yes!

(Ruth Britto’s talk last week)
Example: Gauss Hypergeometric function 2F1

wi = 2% (1 — )01 — zz)dx @ v1 = [0, 1]

wo = (1 — )% (1 — z2) " 1Tedx @ v2 = 0,1/2]

The period matrix is readily diagonal, so suitable normalization yields: P, ( / wj> = 0;;
-

A/w:/w1®/w—l—/w2®/w
Y1 Y1 Y1 Y1 Y2
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Coaction on Appell functions

* A similar construction can be applied to generalised Hypergeometrics.
Let’s consider Appell F3, depending on two variables.

L m e 'ty
F3(0470476767/77$7y)_F(B)F(B/)F(,Y_ﬁ_ﬁl)x

1 1—v
/ / WP 1 = — )P N — ) T (1 = o) dudu
0 Jo

e The coaction can be obtained from A (L w) = Z[y“’i ®Li”

Re(v) /w with w = Py O =u (1 — zu)(1 — yv)¥%(1 — u — v)9°
Y
’ basis of 2-forms;  va = dlog(u) Adlog(v) =
wbe = dlog(l— zu) A dlog(v) = — Gl
. Yeq = dlog(l —xu) Adlog(l —yv) = (11325?(/&?;@)
g paa = dlog(u) A dlog(1 — yv) = — Ly

period matrix: Py [, ®or | ab  bc cd  ad
a abg = 0 0 0
beg 0 ;= O 0
b cdg 0 0 —= 0

1 o adg 0 0 0 -1

* The result for the coaction can be fully expressed in terms of Appell F3.



Coaction on hypergeometric functions
— application to one loop diagrams

A(2F1(1,1—|—€,2—€,£E)) :2F1(17€71_€7$)® 2F1(1,1—|—€,2—€,£E)

1
+2F1(171+672_€7:E)® 2F1 (17671_67_>
T

a sum of two 2F1s



Diagrammatic Coaction at two loops

* The double triangle can be written in terms of two 3F2 and a 2F1

 This system has 6 master integrands and contours, out of which only
one is of the top topology.

LA}
A
o

A

A
Yo

 This coaction was verified directly in terms of hypergeometric functions!

* The correspondence between 1st and 2nd entries is just as at one loop.
All 1st entries are two loop diagrams — in 2nd entries cuts affect both loops.



Diagrammatic Coaction at two loops

* |n contrast to one loop, where the maximal cut is unique, many
two-loop diagrams have multiple maximal cuts (multiple master

integrals at the top topology).

* We verified in several non-trivial examples that the second entries Iin
the coaction can all be expressed in terms of cuts of the original graph.

Uncut integral Maximal cut

_@_ 2 F 1 (2 masters) 2 F 1 (2 masters)
—@— F 4 (4 masters) F 1 (3 masters)
—4[ F4 (4 masters) o 7 (2 masters)




Conclusions

We construct a coaction on integrals based on pairing between master integrands and master
contours. This reproduces the coaction on MPLs upon expansion.

It also extends naturally to hypergeometric functions including all Appell functions. In each
case, left entries span the space of functions related by integer shifts, while right entries span
the space of solutions to the differential equation.

It also translates into a coaction of Feynman integrals for any one loop diagram, with any mass
configuration. Relations between cuts (homology) are essential to establish it.

The diagrammatic coaction leads to straightforward derivation of discontinuities and differential
equations.

Recently we used the coaction on hypergeometric functions to find the coaction of several
non-trivial two-loop diagrams.
The general diagrammatic coaction at two loops is not yet known.

New features at two loops include multiple Master Integrals at the top topology (several
maximal cuts) and elliptic polylogs.
Both these features are present in hypergeometric functions.



