

EFTs from the soft limits of scattering amplitudes

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP) University of California, Davis

with Clifford Cheung, Karol Kampf, Jiri Novotny, Chia-Hsien Shen, Congkao Wen

Amplitudes in the LHC era, GGI, October 31, 2018

Motivation

- Tree-level amplitudes of massless particles in EFTs
- Normally not considered: bad powercounting, problems with loops
- Standard procedure: Lagrangian
 Symmetry
 Properties of amplitudes

Motivation

- In this talk: opposite approach
 - Start with generic Lagrangian with free couplings
 = free parameters in the amplitude
 - Impose kinematical constraints: fix all parameters
 - Find corresponding theory
 - Construct recursion relations to calculate amplitudes
- Classify interesting EFTs, perhaps find some new ones
- It is easier to impose kinematical constraints on amplitudes than to search in space of all symmetries

Typical example

Single scalar

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + c_4 (\partial \phi)^4 + c_6 (\partial \phi)^6 + c_8 (\partial \phi)^8 + \dots$$

Is there a symmetry which fixes relates these couplings?

6pt amplitude

$$A_6 = \longrightarrow \longleftarrow \longrightarrow$$

$$A_6 = \sum c_4^2 \frac{(\dots)}{s_{123}} + c_6(\dots)$$

Impose kinematical condition on A_6

EFT setup

Three point interactions

Consider scalar field theory given by

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \mathcal{L}_{int}(\phi, \partial \phi, \dots)$$

- * Simplest interaction is 3pt but there are no 3pt amplitudes except for $\mathcal{L}_{int} = \lambda \phi^3$
- * Any derivatively coupled term can be written as $\mathcal{L}_{int} = (\Box \phi)(\dots)$ and removed by EOM

Fundamental interaction

Let us start with a 4pt interaction term

 $\mathcal{L}_{int} = \lambda_4(\partial^m \phi^4) \longrightarrow \text{many terms}$

Four point amplitude: special kinematics

Six point amplitude: presence of contact terms

• For $\mathcal{L}_{int} = \lambda_4 \phi^4$ no contact terms possible

EFT setup

We consider the infinite tower of terms

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \lambda_4 (\partial^m \phi^4) + \lambda_6 (\partial^{2m-4} \phi^6) + \dots$$

 Even if we start with the 4pt term we can do field redefinitions and generate infinite tower

* We get a generic amplitude $A_n(\lambda_4, \lambda_6, ...)$

Find constraints which uniquely specifies all couplings

On-shell constructibility

On the pole the amplitude must factorize

- Contact terms vanish on all poles: not detectable
- Therefore, EFT amplitudes are not specified only by factorization - unfixed kinematical terms

$$\frac{s_{12}s_{56}}{s_{123}} \sim \frac{(s_{12} + s_{123})s_{56}}{s_{123}}$$
 on the pole

On-shell constructibility

- Naively, this problem arises also in YM theory
- In fact, the contact terms there is completely fixed

Contact term Imposing gauge invariance fixes it

 In our case, contact terms are unfixed with free parameters, there is no gauge invariance

Extra constraints

- If we want to fix the amplitude completely we have to impose additional constraints!
- It must link the contact terms to factorization terms

None of them satisfy condition X

 Natural condition for EFTs at low energies Soft limit $p \to 0$

Simplest case

Free theory

- * Single scalar field ϕ
- Minimal derivative coupling

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + c_4 \phi^2 (\partial \phi)^2 + c_6 \phi^4 (\partial \phi)^2 + \dots$$

Looks like interesting interacting theory but it is not

 $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 \quad \begin{array}{c} \text{free theory with} \\ \phi \to F(\phi) \end{array} \quad \begin{array}{c} \text{all amplitudes} \\ \text{are zero} \end{array} \quad \sum_{ij} s_{ij} = 0 \\ ij \end{array}$

Non-trivial example

* Multiple scalars $\phi = \phi^a T^a$

* Write the same Lagrangian: now it is not just free $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + c_4 \phi^2 (\partial \phi)^2 + c_6 \phi^4 (\partial \phi)^2 + \dots$ traces, more couplings

We can do "color" - ordering (Kampf, Novotny, Trnka, 2013)

$$A_n = \sum_{\sigma} \operatorname{Tr}(T^{a_1}T^{a_2}\dots T^{a_n}) A(123\dots n)$$

Non-trivial example

Example: six point amplitude

~

$$A_{6} = \sum_{cycl} 2 \xrightarrow{3}{1} \xrightarrow{4}{6} 5 2 \xrightarrow{3}{1} \xrightarrow{4}{5}$$
 important:

$$A_{6} \sim c_{4}^{2} \frac{p^{2} \times p^{2}}{p^{2}} + c_{6}p^{2}$$

$$A_{6} \sim c_{4}^{2} \frac{p^{2} \times p^{2}}{p^{2}} + c_{6}p^{2}$$

$$A_{6} \rightarrow 0$$
for
fixes $c_{6} \sim c_{4}^{2}$

$$p \rightarrow 0$$

Non-linear sigma model

(Weinberg 1966)

 $A_n \to 0$ for Continue to higher points: fixes all coefficients and gives a unique theory (up to a gauge group) $p \rightarrow 0$ (Susskind, Frye 1970) $\mathcal{L} = \frac{F^2}{2} \langle (\partial_{\mu} U) (\partial^{\mu} U) \rangle \text{ where } U = e^{\frac{i}{F} \phi^a T^a}$ SU(N) non-linear sigma model Symmetry explanation: shift symmetry $\phi \rightarrow \phi + a$ Low energy QCD

Uniqueness in minimality

 When renormalizing the SU(N) non-linear sigma model we need higher derivative terms

$$\mathcal{L}_{\chi PT} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$
$$(\partial_{\mu} U)(\partial^{\mu} U) \quad (\partial_{\mu} \partial_{\nu} U)(\partial^{\mu} \partial^{\nu} U)$$
$$[(\partial_{\mu} U)(\partial^{\nu} U)]^2 \quad \text{etc}$$

They all have just a soft-limit vanishing

Only the minimal coupling (NLSM) is uniquely fixed

Exceptional theories

(Cheung, Kampf, Novotny, JT 2014)

The first non-trivial is the original example

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + c_4 (\partial \phi)^4 + c_6 (\partial \phi)^6 + c_8 (\partial \phi)^8 + \dots$$

 $(\partial \phi)^{2n} = [(\partial_{\mu} \phi)(\partial^{\mu} \phi)]^n$

Calculate 6pt amplitude

 $=4\sum_{\sigma}c_4^2 \frac{(s_{12}s_{23}+s_{23}s_{13}+s_{12}s_{13})(s_{45}s_{56}+s_{45}s_{46}+s_{46}s_{56})}{s_{123}} + c_6 s_{12}s_{34}s_{56}$

trivial soft-limit vanishing $p_i \to 0 \quad \leftrightarrow \begin{array}{c} \text{Lagrangian trivially invariant} \\ \phi \to \phi + a \end{array}$

The first non-trivial is the original example

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + c_4 (\partial \phi)^4 + c_6 (\partial \phi)^6 + c_8 (\partial \phi)^8 + \dots$$

 $(\partial \phi)^{2n} = [(\partial_{\mu} \phi)(\partial^{\mu} \phi)]^n$

Calculate 6pt amplitude

$$\begin{array}{c} 4\sum_{\sigma} c_{4}^{2} \frac{(s_{12}s_{23} + s_{23}s_{13} + s_{12}s_{13})(s_{45}s_{56} + s_{45}s_{46} + s_{46}s_{56})}{s_{123}} + c_{6}s_{12}s_{34}s_{56} \\ \\ \text{Impose quadratic} \\ \text{vanishing} \end{array} \begin{array}{c} p_{i} \rightarrow tp_{i} \\ f_{6} \rightarrow \mathcal{O}(t^{2}) \\ t \rightarrow 0 \end{array}$$

The first non-trivial is the original example

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + c_4 (\partial \phi)^4 + c_6 (\partial \phi)^6 + c_8 (\partial \phi)^8 + \dots$$

 $(\partial \phi)^{2n} = [(\partial_{\mu} \phi)(\partial^{\mu} \phi)]^n$

Calculate 6pt amplitude

$$=4\sum_{\sigma}c_4^2 \frac{(s_{12}s_{23}+s_{23}s_{13}+s_{12}s_{13})(s_{45}s_{56}+s_{45}s_{46}+s_{46}s_{56})}{s_{123}} + c_6 s_{12}s_{34}s_{56}$$

There is a single solution and it fixes: $c_6 = 4c_4^2$

* The first non-trivial is the original example

 L = ¹/₂(∂φ)² + c₄(∂φ)⁴ + c₆(∂φ)⁶ + c₈(∂φ)⁸ + ...

 * Apply to higher point amplitudes
 <sup>(∂φ)²ⁿ = [(∂_μφ)(∂^μφ)]ⁿ

</sup>

$$A_n = \mathcal{O}(t^2) \qquad \text{for} \quad \begin{array}{c} p_i \to tp_i \\ t \to 0 \end{array}$$

* Cancelations between diagrams required, a unique solutions exists and relates $c_{2n} \sim c_4^{\#}$

The Lagrangian becomes
\$\mathcal{L} = \frac{1}{2}(\partial \phi)^2 + c_4(\partial \phi)^4 + 4c_4^2(\partial \phi)^6 + 20c_4^3(\partial \phi)^8 + \dots \ldots \ldots \ldots \ldots - 20c_4^3(\partial \phi)^8 + \dots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots - 20c_4^3(\partial \phi)^8 + \dots \ldots \ldots

$$A_n = \mathcal{O}(t^2) \qquad \text{for} \quad \begin{array}{c} p_i \to t p_i \\ t \to 0 \end{array}$$

* Cancelations between diagrams required, a unique solutions exists and relates $c_{2n} \sim c_4^{\#}$

The Lagrangian becomes

$$\mathcal{L} = -\frac{1}{g}\sqrt{1 - g(\partial\phi)^2}$$
 where $g = 8c_4$

Apply to higher point amplitudes

$$A_n = \mathcal{O}(t^2) \qquad \text{for} \quad \begin{array}{c} p_i \to tp_i \\ t \to 0 \end{array}$$

* Cancelations between diagrams required, a unique solutions exists and relates $c_{2n} \sim c_4^{\#}$

Result: DBI action

(Dirac, Born, Infeld 1934)

- * The Lagrangian becomes $\mathcal{L} = -\frac{1}{g}\sqrt{1-g(\partial\phi)^2} \quad \text{where} \quad g = 8c_4$
- It describes the fluctuation of D-dimensional brane in (D+1) dimensions

What is the symmetry principle behind this?

Result: DBI action

* Symmetry of the action: (D+1) Lorentz symmetry $\phi \rightarrow \phi + (b \cdot x) + (b \cdot \phi \partial \phi)$

(Dirac, Born, Infeld 1934)

- It can be shown that this implies the soft limit behavior
- * But we can also derive the action based on the soft limit $2\mathcal{L}'(X)/g = 2X\mathcal{L}'(X) - \mathcal{L}(X) \rightarrow \mathcal{L}(X) \sim \sqrt{1-gX}$

where $X = (\partial \phi)^2$

Galileon

- Let us consider the next Lagrangian
 \$\mathcal{L}_2 = \frac{1}{2}(\partial \phi)^2 + \lambda_4(\partial^6 \phi^4) + \lambda_6(\partial^{10} \phi^6) + \dots \$\lambda_6(\partial^{10} \phi^6) + \dots \$\lambda_6(\phi^{10} \phi^{10} \phi^6) + \dots \$\lambda_6(\phi^{10} \phi^{10} \
- * There are (d-2) Lagrangians: $\mathcal{L}_n = \phi \det[\partial^{\mu_j} \partial_{\nu_k} \phi]_{j,k=1}^n \qquad n \leq d$

Special Galileon

- Not enough for us: not minimal, not unique
- We impose even stronger condition

$$A_n = \mathcal{O}(t^3) \qquad \text{for} \qquad \begin{array}{c} p_i \to tp_i \\ t \to 0 \end{array}$$

- And there exists an unique solution, linear combination of Galileon Lagrangians: we called it special Galileon
- No symmetry explanation at that time

Special Galileon

Not enough for us: not minimal, not unique

We impose even stronger condition

$$A_n = \mathcal{O}(t^3) \qquad \text{for} \qquad \begin{array}{c} p_i \to tp_i \\ t \to 0 \end{array}$$

 And there exists an unique solution, linear combination of Galileon Lagrangians: we called it special Galileon

Effective Field Theories from Soft Limits Clifford Cheung, Karol Kampf, Jiri Novotny, Jaroslav Trnka (Submitted on 12 Dec 2014) A Hidden Symmetry of the Galileon Kurt Hinterbichler, Austin Joyce (Submitted on 29 Jan 2015)

 $\phi \to s_{\mu\nu} x^{\mu} x^{\nu} + \frac{\lambda_4}{12} s^{\mu\nu} (\partial_{\mu} \phi) (\partial_{\nu} \phi)$

Classification

Use soft-limit as classification tool

(Cheung, Kampf, Novotny, Shen, JT 2016) (Elvang, Hadjiantonis, Jones, Paranjape 2018)

- * No more interesting theories with 4pt vertices no theory with non-trivial $O(t^4)$ behavior
- Starting with 5pt vertices: WZW model but nothing more at higher points
- There are also analogues of DBI and Galileon for multiple scalars but nothing more

Recursion relations

On-shell reconstruction

Tree-level factorization

 If the amplitude is fully fixed by factorizations we can reconstruct it using BCFW or other recursion relations

 $p_1 \rightarrow p_1 + zq$ $p_2 \rightarrow p_2 - zq$ $q^2 = (p_1 \cdot q) = (p_2 \cdot q) = 0$

 $A_n(z)$ is also an on-shell amplitude an factorizes properly

shifted amplitude

On-shell reconstruction

 $\oint \frac{dz}{z} A_n(z) = 0$

Cauchy formula

pole at z=0 $A_n = A_n(z=0)$

Express A_n using lower point amplitudes evaluated at shifted kinematics poles at other points $P^{2}(z) = 0 \rightarrow z = z^{*}$ residue is the product of amplitudes $\operatorname{Res}_{z = z^{*}} A_{n}(z) \rightarrow \frac{A_{L}(z^{*})A_{R}(z^{*})}{P^{2}}$

On-shell reconstruction

Cauchy formula

Importantly, this can not have any pole at infinity $A_n(z \to \infty) = 0$ This is violated for EFTs because of higher derivatives

 $A_n(z \to \infty) \sim z^{\#}$

 We can use other shifts but it does not help if the amplitude is not fixed by factorizations

Soft limit recursion

(Cheung, Kampf, Novotny, Shen, JT 2015)

* Amplitudes fixed by factorizations + soft limit behavior $A_n = O(t^{\sigma})$

Constraint

We can use soft limit behavior in the recursion

Shift

Modified Cauchy formula

$$\oint \frac{dz}{z} \frac{A_n(z)}{\prod_j (1 - za_j)^{\sigma}} = 0$$

Vector EFTs

(Cheung, Kampf, Novotny, Shen, Wen, JT 2018)

Setup for spin-1

- * Single massless vector field A_{μ} (photon)
- * Gauge invariance: Lagrangian depends on $F_{\mu\nu}$ only $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

trivial shift symmetry: soft-limit vanishing

- Leading derivative order: $\mathcal{L} = \mathcal{L}(F)$
- No cubic terms: no 3-photon interactions

Setup for spin-1

General Lagrangian

$$\mathcal{L} = -\frac{1}{4} \langle FF \rangle + g_4^{(1)} \langle FFFF \rangle + g_4^{(2)} \langle FF \rangle^2 + g_6^{(1)} \langle FF \rangle^3 + g_6^{(2)} \langle FFFF \rangle \langle FF \rangle + g_6^{(3)} \langle FFFFFF \rangle + \dots$$

where the traces are defined as $\langle FF \rangle = F_{\mu\nu}F^{\mu\nu} \quad \langle FFFF \rangle = F_{\mu\nu}F^{\nu\rho}F_{\rho\sigma}F^{\sigma\mu} \quad \text{etc}$

• Trivial soft limit vanishing, impose $A_n = \mathcal{O}(t^2)$

Setup for spin-1

- General Lagrangian
 - $\mathcal{L} = -\frac{1}{4} \langle FF \rangle + g_4^{(1)} \langle FFFF \rangle + g_4^{(2)} \langle FF \rangle^2 + g_6^{(1)} \langle FF \rangle^3$ $+ g_6^{(2)} \langle FFFF \rangle \langle FF \rangle + g_6^{(3)} \langle FFFFFF \rangle + \dots$

where the traces are defined as

 $\langle FF \rangle = F_{\mu\nu}F^{\mu\nu} \qquad \langle FFFF \rangle = F_{\mu\nu}F^{\nu\rho}F_{\rho\sigma}F^{\sigma\mu} \quad \text{etc}$

• Trivial soft limit vanishing, impose $A_n = O(t^2)$ **No solution**

Born-Infeld theory

 We know there is a special theory of this kind Born-Infeld (BI) theory

$$\mathcal{L} = \sqrt{(-1)^{D-1} \det \left(\eta_{\mu\nu} + F_{\mu\nu}\right)}$$

U(1) gauge field on the brane

- Unfortunately, no known symmetry of this theory which would point to some amplitudes property
- This theory also shows up in the CHY formula, along with NLSM, DBI and special Galileon so it should be "unique"

Going to D=4

- * Let us go to D=4: helicity amplitudes (+, -) two polarizations e.g. $A_6(1^-2^-3^-4^+5^+6^+)$
- * Use spinor helicity variables $p^{\mu} = \sigma^{\mu}_{a\dot{a}} \lambda_a \widetilde{\lambda}_{\dot{a}}$

only 3 degrees of freedom in momentum

Little group scaling $\lambda_i \to t\lambda_i \qquad \widetilde{\lambda}_i \to \frac{1}{t}\widetilde{\lambda}_i \qquad p \to p$ Amplitudes of spin-1 particles transform as $A_n(j^-) \to t^2 A_n(j^-) \qquad A_n(j^+) \to \frac{1}{t^2} A_n(j^+)$

Chiral soft limit

 Having spinor helicity variables we have two options how to approach the soft limit

$$p^{\mu} = \sigma^{\mu}_{a\dot{a}} \lambda_a \widetilde{\lambda}_{\dot{a}} \xrightarrow{} \qquad \begin{array}{c} \lambda \to 0 \\ & \widetilde{\lambda} \to 0 \end{array}$$

In D=4 we can re-organize the Lagrangian using

$$f = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} \qquad g = -\frac{1}{4}F_{\mu\nu}\widetilde{F}^{\mu\nu}$$

thanks to Cayley-Hamilton relation

$$\langle F^n \rangle = -2f \langle F^{n-2} \rangle + g^2 \langle F^{n-4} \rangle$$

Chiral soft limit

Rewrite Lagrangian

$$\mathcal{L} = f + a_1 f^2 + a_2 g^2 + b_1 f^3 + b_2 f g^2 + \dots$$

Calculate 4pt amplitudes

$$A_4(1^-2^-3^+4^+) = \frac{1}{2}(a_1 + a_2)\langle 12\rangle^2[34]^2 \quad \text{etc}$$

then higher point amplitudes for all helicity configurations Impose the constraint:

$$A_n(1^-2^-\dots j^-(j+1)^+\dots n^+) \to 0$$

multi-chiral soft limit

$$\widetilde{\lambda}_k \to 0$$

for all negative helicity photons

Unique solution

This fixes all coefficients in the Lagrangian

$$\mathcal{L} = -\sqrt{1 - 2f - g^2}$$
 indeed we got
BI action

- * Note that the only non-zero amplitudes are helicity conserving $A_n(1^-2^-...(n/2)^-(n/2+1)^+...n^+)$
- Cancelation between all diagram: similar to DBI
- We also found recursion relations

Unique solution

- Note: there is no known symmetry of BI action and explanation of the soft limit behavior directly
- ✤ It can be proven using susy: breaking N=2 to N=1
- There should be some manifestation of this soft limit behavior in D dimensions
- We have alternative construction using dimensional decomposition to DBI action in lower dimension

Beyond photons

Fermionic theories were inspected using supersymmetry

(Elvang, Hadjiantonis, Jones, Paranjape 2018)

- We looked at higher derivative theories "vector Galileons" — they should not exist but we found some?!
- Main challenge: non-abelian Born-Infeld
 - It should exist but there is no known Lagrangian despite considerable effort, ideal problem for us to attack
 - Important role in string theory, also perhaps in cosmology
 - If exists, there is no "color"-ordering

Conclusion

Conclusion

On-shell amplitudes as unique objects

- EFTs: not fixed by factorizations
- Special theories with non-trivial soft limit behavior
- Recursion relations: reconstruction
- Search for new symmetries or even new theories using simple properties of tree-level amplitudes

Thank you for your attention