Calabi-Yaus and Other Animals

[arXiv:1805.09326] with J. Bourjaily, Y.-H. He, A. Mcleod, and M. Wilhelm [arXiv:1810.07689] with J. Bourjaily, A. Mcleod, and M. Wilhelm

Matt von Hippel (Niels Bohr International Academy)

Calabi-Yaus and Other Animals

Multiple Polylogarithms

Integrals over rational factors:

$$G(w_1, w_2, \ldots; z) = \int_0^z \frac{1}{x - w_1} G(w_2, \ldots; x) dx$$

Matt von Hippel (NBIA)

Calabi-Yaus and Other Animals

November 7, 2018 2 / 24

э

イロト イヨト イヨト イヨト

Elliptic Multiple Polylogarithms

Integrals over an elliptic curve:

$$\mathsf{E}\left(\begin{smallmatrix}0&n_2&\dots\\0&c_2&\dots\end{smallmatrix};z\right)=\int_0^z\frac{1}{y(x)}\mathsf{E}\left(\begin{smallmatrix}n_2&\dots\\c_2&\dots\end{smallmatrix};x\right)dx$$

where

$$y^2 \sim (x^4) + x^3 + \dots$$

Matt von Hippel (NBIA)

Calabi-Yaus and Other Animals

November 7, 2018 3 / 24

э

< 回 > < 三 > < 三 >

??? Multiple Polylogarithms

Integrals over a higher-dimensional manifold:

$$F(???) = \int \frac{1}{y(x_1, x_2, \ldots)} F(???; x_1, x_2, \ldots) dx_1 dx_2 \ldots$$

where
$$y^2 \sim P(x_1, x_2, \ldots)$$

э

A D N A B N A B N A B N

• Known to be CY_{I-1} at L loops [Bloch, Kerr, Vanhove; Broadhurst]

э

▲ 同 ▶ → 三 ▶

 Known to be CY_{L-1} at L loops [Bloch, Kerr, Vanhove; Broadhurst]

э

▲ 伊 → ▲ 三

 Known to be CY_{L-1} at L loops [Bloch, Kerr, Vanhove; Broadhurst]

▲ 伊 → ▲ 三

 Known to be CY_{L-1} at L loops [Bloch, Kerr, Vanhove; Broadhurst]

to one pole, half to the other pole. poles. The cell membrane begins to membranes form around the

separated chromosomes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

pinch at the centre.

At mitosis completion, there are two cells with the same structures and number of chromosomes as the parent cell.

Calabi-Yaus and Other Animals

© 2015 Encyclopædia Britannica, Inc.

 Known to be CY_{L-1} at L loops [Bloch, Kerr, Vanhove; Broadhurst] • Eight-loop ϕ^4 vacuum graph with a K3 (CY₂) [Brown, Schnetz]

▲ 伊 → ▲ 三

 Known to be CY_{L-1} at L loops [Bloch, Kerr, Vanhove; Broadhurst]

- Eight-loop ϕ^4 vacuum graph with a K3 (CY₂) [Brown, Schnetz]
- *L*-loop "traintracks" appear to be CY_{L-1} [Bourjaily, He, Mcleod, MvH, Wilhelm]

< □ > < 同 > < 三 > < 三 >

Questions:

- Why are these examples Calabi-Yau?
- Are more Feynman integrals Calabi-Yau? (All?)
- How bad can it get? (Dimensions vs. loop order)

э

< □ > < □ > < □ > < □ > < □ > < □ >

Questions:

- Why are these examples Calabi-Yau?
- Are more Feynman integrals Calabi-Yau? (All?)
- How bad can it get? (Dimensions vs. loop order)

My Goals Today:

- Make what definite statements I can
- Inspire further investigation!

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

- 2 Direct Integration and Rigidity
- Marginal Integrals are Calabi-Yau
- 4 Calabi-Yau Bestiary

Traintracks

< 1 k

э

Symanzik Form

• Introduce "alpha parameters" for each propagator:

$$\frac{1}{p^2-m^2}=\int_0^\infty e^{i(p^2-m^2)\alpha}d\alpha$$

• Get well-known form, projective integral over one variable per edge:

$$\Gamma(E-LD/2)\int_{x_i\geq 0} [d^{E-1}x_i]\frac{\mathfrak{U}^{E-(L+1)D/2}}{\mathfrak{F}^{E-LD/2}}$$

• Graph polynomials $\mathfrak U$ and $\mathfrak F$ defined by:

$$\mathfrak{U} \equiv \sum_{\{T\}\in\mathfrak{T}_1}\prod_{e_i\notin T}x_i, \quad \mathfrak{F} \equiv \left[\sum_{\{T_1,T_2\}\in\mathfrak{T}_2}s_{T_1}\left(\prod_{e_i\notin T_1\cup T_2}x_i\right)\right] + \mathfrak{U}\sum_{e_i}x_im_i^2$$

• (Neglecting numerators, higher propagator powers)

Matt von Hippel (NBIA)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Symanzik Form: Special Cases

Two cases where things simplify, both for even dimensions:

• E = LD/2: Explored by mathematicians. Superficial divergence from gamma function, if there are no subdivergences can strip this off, no need for dim reg. Only \mathfrak{U} contributes.

$$\int_{x_i \ge 0} [d^{E-1}x_i] \frac{1}{\mathfrak{U}^{D/2}}$$

• E = (L+1)D/2: Marginal. If finite, can again avoid dim reg. Only \mathfrak{F} contributes.

$$\int_{x_i \ge 0} [d^{E-1} x_i] \frac{1}{\mathfrak{F}^{D/2}}$$

- In D = 2, these are the sunrise/banana graphs!
- Many more cases in D = 4

イロト 不得下 イヨト イヨト 二日

Direct Integration

We can attempt to integrate these with direct integration:

• Start with a rational function. Can partial-fraction in some variable *x*, getting

$$\int_{x \ge 0} \frac{P(z)}{x - Q(z)} + \frac{R(z)}{(x - S(z))^2} + \dots$$

where z represents the other variables.

- Linear denominators integrate to logarithms, double poles and higher stay rational
- If P, Q, \ldots rational in another variable, repeat: get polylogarithms

イロト イポト イヨト イヨト 二日

Rigidity

- What if some of *P*, *Q*, ... aren't rational?
 - Square root of a quadratic: this is expected to still be polylogarithmic. Sometimes possible to manifestly rationalize with a change of variables, see e.g. [Besier, Van Straten, Weinzierl]
 - Square root of cubic or higher: in general, cannot be rationalized, sign of non-polylogarithmicity
- Try all possible integration orders. We define the **rigidity** of an integral as the minimum number of variables left in the root.
- N.B.: This does not rule out more unusual changes of variables/re-parametrizations! To do that, would need a "more invariant" picture (differential equations?)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

What is a Calabi-Yau?

- Compact Kähler manifold with vanishing first Chern class
- Ricci-flat
- Preserves N=1 supersymmetry of compactifications

A B b A B b

< A IN

What is a Calabi-Yau?

- Compact Kähler manifold with vanishing first Chern class
- Ricci-flat
- Preserves N=1 supersymmetry of compactifications
- ... not helpful!

3

A B A A B A

< A IN

Embed the patient in a weighted projective space!

Embed the patient in a weighted projective space!

• projective space:

 $(x_1, x_2, \ldots) \sim (\lambda x_1, \lambda x_2, \ldots)$

Embed the patient in a weighted projective space!

• weighted projective space:

$$(x_1, x_2, \ldots) \sim (\lambda^{w_1} x_1, \lambda^{w_2} x_2, \ldots)$$

Embed the patient in a weighted projective space!

• weighted projective space:

$$(x_1, x_2, \ldots) \sim (\lambda^{w_1} x_1, \lambda^{w_2} x_2, \ldots)$$

• Curve should scale uniformly in λ (homogeneous polynomial)

Embed the patient in a weighted projective space!

• weighted projective space:

$$(x_1, x_2, \ldots) \sim (\lambda^{w_1} x_1, \lambda^{w_2} x_2, \ldots)$$

- Curve should scale uniformly in λ (homogeneous polynomial)
- If the sum of the coordinate weights equals the overall scaling (degree), your curve is Calabi-Yau!

Strictly, this only works if the Calabi-Yau is not singular

- F is singular \equiv points where $\nabla F = 0$
- Generically, our manifolds are singular!
- Can blow up to smooth singularities we usually skip this part

Excuses:

• All cases we've checked in detail work [ongoing with Candelas, Elmi, Schafer-Nameki, Wang]

Excuses:

- All cases we've checked in detail work [ongoing with Candelas, Elmi, Schafer-Nameki, Wang]
- Even mathematicians assume this will work [Brown 0910.0114]

Excuses:

- All cases we've checked in detail work [ongoing with Candelas, Elmi, Schafer-Nameki, Wang]
- Even mathematicians assume this will work [Brown 0910.0114]
- Charles Doran: "A Calabi-Yau is whatever you want it to be"

Marginal Integrals are Calabi-Yau

Let's look at our "special cases".

[Brown 0910.0114] explored the E = LD/2 case, argument for marginal integrals (E = (L + 1)D/2) similar:

- 𝔅 is homogenous, degree L + 1, so 𝔅^{D/2} has degree (L + 1)D/2 = E in E variables
- Direct integration preserves this: each integration removes one variable, and decreases the degree of the denominator by one.
- Suppose we encounter a square root. For rigidity m, root $\sqrt{Q(x_i)}$ will contain a degree 2m polynomial in m variables.
- Curve $y^2 = Q(x_i)$. Give the x_i weight 1, y weight m. Then sum of the weights is equal to degree \rightarrow diagnosed Calabi-Yau!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Example: Massless D = 4

• Specialize to D = 4, massless propagators:

$$\int_{x_i \ge 0} [d^{2L+1}x_i] \frac{1}{\mathfrak{F}^2}$$

ℑ is linear in every variable (x_i² only shows up in the mass term). We may integrate out any one parameter x_j. Writing ℑ ≡ ℑ₀^(j) + x_j ℑ₁^(j):

$$\int_{x_i\geq 0} [d^{2L}x_i]rac{1}{\mathfrak{F}_0^{(j)}\mathfrak{F}_1^{(j)}}$$

• Each factor is still linear, so we can integrate in another variable x_k . Writing $\mathfrak{F}_i^{(j)} \equiv \mathfrak{F}_{i,0}^{(j,k)} + x_k \mathfrak{F}_{i,1}^{(j,k)}$:

$$\int_{x_i \ge 0} [d^{2L-1}x_i] \frac{\log \left(\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)}\right) - \log \left(\mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}\right)}{\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)} - \mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}}$$

Example: Massless D = 4

$$\int_{x_i \ge 0} [d^{2L-1}x_i] \frac{\log \left(\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)}\right) - \log \left(\mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}\right)}{\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)} - \mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}}$$

- Denominator is at most quadratic in each remaining variable.
- If irreducibly quadratic in all variables (and discriminants irreducibly cubic or quartic in all other variables), then Calabi-Yau with rigidity 2L 2.
- Thus for massless marginal integrals in 4D, rigidity is **bounded**.

A D N A B N A B N A B N

Is this bound saturated?

Calabi-Yaus and Other Animals

November 7, 2018 18 / 24

э

A D N A B N A B N A B N

Observations:

- The *L* = 2 tardigrade is a two-loop, five-point (three external masses) K3!
- We've looked at other marginal integrals with box power counting through seven loops, the majority are maximally rigid.
- The L = 3 amoeba is oddly enough *not* maximally rigid.

4 1 1 4 1 1 1

What about the Traintracks?

Not marginal: E = 3L + 1 ≠ (L + 1)D/2 for L ≠ 1
Not Symanzik:

$$\int_{0}^{\infty} [d^{L}\alpha] d^{L}\beta \frac{1}{(f_{1}\cdots f_{L})g_{L}}$$

$$f_{k} \equiv (a_{0}a_{k-1}; a_{k}b_{k-1})(a_{k-1}b_{k}; b_{k-1}a_{0})(a_{k}b_{k}; a_{k-1}b_{k-1})f_{k-1} + \alpha_{0}(\alpha_{k}+\beta_{k}) + \alpha_{k}\beta_{k}$$

$$+ \sum_{j=1}^{k-1} \left[\alpha_{j}\alpha_{k}(b_{j}a_{0}; a_{j}a_{k}) + \alpha_{j}\beta_{k}(b_{j}a_{0}; a_{j}b_{k}) + \alpha_{k}\beta_{j}(a_{0}a_{j}; a_{k}b_{j}) + \beta_{j}\beta_{k}(a_{0}a_{j}; b_{k}b_{j}) \right]$$

$$g_{L} \equiv \alpha_{0} + \sum_{j=1}^{L} \left[\alpha_{j}(b_{j}a_{0}; a_{j}b_{0}) + \beta_{j}(a_{0}a_{j}; b_{0}b_{j}) \right]; \quad (ab; cd) \equiv \frac{x_{a,b}x_{c,d}}{x_{a,c}x_{b,d}}$$

Matt von Hippel (NBIA)

November 7, 2018

20 / 24

Three-Loop K3

- Take codimension L + 1 residue, uncovering rigidity
- Get \sqrt{Q} , where Q is degree 4 in α_2 and degree 6 in α_1 and α_0
- Can transform to Weierstrass form, rational transformation $\alpha_2 \rightarrow x$ s.t. the curve becomes:

$$y^2 = 4x^3 - xg_2(\alpha_0, \alpha_1) - g_3(\alpha_0, \alpha_1)$$

where g_2 has degree 8 and g_3 has degree 12

Assign weight 6 to y, weight 4 to x, and weight 1 to α₀, α₁.
 6+4+1+1=12, satisfies Calabi-Yau condition.

Wheel/Coccolithophore

- Once again, not marginal, not Symanzik
- Planar, relevant to $\mathcal{N}=4~\text{sYM}$
- For special kinematics, is CY₃
- We haven't found embedding for general kinematics though...maybe rigid, but not CY?

Matt von Hippel (NBIA)

Further Questions

- Do different integration pathways give different Calabi-Yaus? Different parametrizations?
 - Unlike elliptic curves, no general way to determine if two Calabi-Yaus are the same
 - Could show two curves are different by checking geometric data
 - Is there an invariant notion of "the geometry"? Maybe from differential equations?
- Generalizations?
 - Traintracks are not marginal, but they are Calabi-Yau. How general is this?
 - Are *all* Feynman integrals Calabi-Yau? Currently looking at a potential counterexample.
 - If they are, does this rule out higher genus?

(人間) トイヨト イヨト 三日

Thank You

This project has received funding from the European Union's Horizon 2020

research and innovation program under grant agreement No. 793151

Matt von Hippel (NBIA)

Calabi-Yaus and Other Animals

November 7, 2018 24 / 24

イロト イボト イヨト イヨト