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o Planar N/ = 4 supersymmetric Yang-Mills (sYM) theory
e Symmetries and Simplifications
e Infrared and Helicity Structure

o Polylogarithms and Cluster-Algebraic Structure

e Polylogarithms, the Coaction, and the Lie Cobracket
e Cluster-Algebraic Structure in N’ =4 sYM

o Subalgebra Constructibility

e Decomposing the Remainder Function




Amplitudes in N' = 4 sYM

SUSY Ward identities

Conformal theory

AdSs x S® dual theory

Supersymmetric
version of QCD

many relations among amplitudes
with different helicity structure

no running of the coupling
or UV divergences

multiple ways to calculate
quantities of interest

the types of functions that
show up here also appear in QCD
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Planar Limit and Dual Conformal Symmetry Steinmann, and

the Lie Cobracket

We work with in the N, — oo limit with fixed g?> = ¢2,,N./(167?)

o All non-planar graphs are suppressed in this limit, giving rise to a
natural ordering of external particles

o This ordering can be used to define a set of dual coordinates

o The coordinates =" label the cusps of
a light-like polygonal Wilson loop in the
dual theory, which respects a superconformal
symmetry in this dual space

1

[Alday, Maldacena; Drummond, Henn, Korchemsky, Sokatchev]
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He||C|ty and Infrared Structure Steinmann, and

the Lie Cobracket

Andr

Since we are working with all massless particles, our amplitudes A,
must be renormalized in the infrared

nd Helicity

o Infrared divergences are universal and entirely accounted for by
the ‘BDS Ansatz’ [Bern, Dixon, Smirnov]

o In the dual theory, the BDS Ansatz constitutes a particular
solution to an anomalous conformal Ward identity that determines
the Wilson loop up to a function of dual conformal invariants

[Drummond, Henn, Korchemsky, Sokatchev]

finite function of dual conformal invariants

An= AP xexp(Rn) x (14 PYMIY 4 pYIY 4Ly PV
——

IR structure L
helicity structure




Dual Conformal Invariants

o We can construct dual conformally invariant cross ratios out of
combinations of Mandelstam invariants

a = (zi— ;)" = (pi+pisr + - +pj1)°

that remain invariant under the dual inversion generator

i zfe 2 x?j
I(z{%) = ;g = I(z7;) = mfm?

o These can first be constructed for n = 6 since m?yiﬂ =p?=0

x3 T

2 2 2 2 2 .2
T13T46 T24T51 T35T62
— v = = T4

2 2 2 2 2 2
T14%36 L25T41 T36L52

x5 ze

o In general, we can form 3n — 15 independent ratios
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Loops and Legs in Planar N =4

o g)
5 )
8

Legs 7 i e MHV —
6 NMHV —
5 Q —
4

1[2]3]4[5[6]...[

Loops

[Bern, Caron-Huot, Dixon, Drummond, Duhr, Foster, Giirdogan, He, Henn, von Hippel, Golden,

Kosower, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, ...]
o Unexpected and striking structure exists in the the direction of
both higher loops and legs
e Galois Coaction Principle
e Cluster-Algebraic Structure

o This talk will focus on using these polylogarithmic amplitudes
(especially the two-loop MHYV ones) as a data mine
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o Loop-level contributions to MHV (and NMHV) amplitudes are
expected to be multiple polylogarithms of uniform transcendental
weight 2L, meaning that the derivatives of these functions satisfy

dF = ZFsidlogsi

for some set of ‘symbol letters’ {s;}, where F'*# is a multiple Gt e
polylogarithm of weight 2L — 1 -

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

o The symbol letters {s;} can in general be algebraic functions of
dual conformal invariants

o Examples of such functions (and their special values) include
log(z), im, Lim(2), and (m. The classical polylogarithms Liy, (z)
involve only the symbol letters {z,1 — z}

* Lip_1 (1)
t

Lii(z) = —log(1 — z), Lim(z) = /o dt
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o Multiple polylogarithms are endowed with a coaction that maps
functions to a tensor space of lower-weight functions [Goncharov; Brown]

A
Ho = P Hp@HY
pHg=w
o If we iterate this map w — 1 times we will arrive at a function's
‘symbol’, in terms of which all identities reduce to familiar
logarithmic identities

o The location of branch cuts is determined by the Aj 1
component of the coproduct, up to terms involving
transcendental constants

o The derivatives of a function are encoded in the Ay _11
component of its coproduct

A1, 1Lim(2) = —log(l —2)®logz® --- ®log 2z




Symbol Alphabets and Discontinuities Stenmanes and

the Lie Cobracket

The symbol exposes the discontinuity structure of polylogarithms el [elese

o In six-particle kinematics there are only 9 symbol letters:

86 = {u,v,w7l—u,1—v,1 _w7yu,y'u7yw}

2 S12545
siok= @i+ +pp), u=-—"T
51235345
Coaction, and the
l+u—v—w—+/(1—u—v—w)?—duvw acker

Yu

B ltu—v—w++/(1—u—v—w)?—duvw
o Only letters whose vanishing locus coincides with internal
propagators going on shell can appear in the first symbol entry

o In seven-particle kinematics there are 42 analogous symbol letters,
14 of which are parity odd

o For more than seven particles, symbol alphabets not as well
understood

e algebraic roots appear in symbol letters even at one loop in
NQMHV amplitudes [Prlina, Spradlin, Stankowicz, Stanojevic, Volovich]




The Steinmann Relations

o The Steinmann relations tell us that amplitudes cannot have
double discontinuities in partially overlapping channels
[Steinmann; Cahill, Stapp]

3 /4 3» (4
2\/;//\5 - 2/ \%/5 DisCsyq, (Discsg,s (Ar)) =0
1/\# J{\e 1/ \7/\6

log (= T 2)R... log (£ TR ...

uv w uw
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o The Steinmann relations tell us that amplitudes cannot have
double discontinuities in partially overlapping channels
[Steinmann; Cahill, Stapp]

3 /4 3» (4
2\/;//\5 - 2/ \%/5 DisCsyq, (Discsg,s (Ar)) =0
1/\# J{\e 1/ \7/\6

- ®lo Lw T 2)R... - ®log (X — Q...

uv w uw

o ...in fact, the Steinmann relations constrain not just double

discontinuities, but all iterated discontinuities
[Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]

o For six and seven particles, this appears to be equivalent to
requiring ‘cluster adjacency’ [Drummond, Foster, Giirdogan]




Infrared Normalization
o Steinmann functions don’t form a ring
Disc,, 1,4 [ASP] £0
4
Discsys4 {Discs345 [(AS))QH #0

e The BDS ansatz exponentiates the one-loop amplitude,
leading to products of amplitudes starting at two loops
(and obscuring the Steinmann relations)
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Infrared Normalization
o Steinmann functions don’t form a ring
Disc,, 1,4 [ASP] £0
4
Discsys4 {Discs345 [(AS))QH #0

e The BDS ansatz exponentiates the one-loop amplitude,
leading to products of amplitudes starting at two loops
(and obscuring the Steinmann relations)

o This is fixed by the BDS-like ansatz, which only depends on
two-particle invariants

BDS BDS-lik MHV
AL77 xexp(Rn) = A, 7 x &,

o The BDS-like ansatz only scrambles Steinmann relations involving
two-particle invariants, which are obfuscated in massless
kinematics anyways
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o However, the BDS-like ansatz only exists for particle multiplicities
that are not a multiple of four [Alday, Maldacena, Sever, Vieira; Yang;
Dixon, Drummond, Harrington, AJM, Papathanasiou, Spradlin]

+ Polylogarithms, the
action, and the
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o However, the BDS-like ansatz only exists for particle multiplicities
that are not a multiple of four [Alday, Maldacena, Sever, Vieira; Yang;
Dixon, Drummond, Harrington, AJM, Papathanasiou, Spradlin]

o To unpack this statement: there exists a unique decomposition of
the one-loop MHV amplitude taking the form

-Ar(vmv,n = Xn(e, {siiv1}) + Ya({si,....it5})

IR structure dual conformal invariant

for all particle multiplicities n that are not a multiple of four

o Exponentiating the function X, rather than the full one-loop
amplitude accounts for the full infrared structure of this theory,
yet is invisible to the operation of taking discontinuities in three-
and higher-particle channels
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o This is problematic if we want to test the equivalence of the
Steinmann relations and cluster adjacency in eight-particle
kinematics

o However, if this is test is our only objective the last slide makes
clear there is a way out: normalize the amplitude by a ‘minimal

BDS ansatz’ only consisting of the infrared-divergent part of the " Cosction, and the
. acket
one-loop amplitude

o It can be explicitly checked that this restores not only all
(higher-particle) Steinmann relations, but also all cluster
adjacency relations

e this provides further evidence that the these conditions
are equivalent (when cluster adjacency can be
unambiguously applied)

[Golden, AJM (to appear)]
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Polylogarithms also come equipped with a Lie cobracket structure Andrew McLeod
k—1
S(F) = (pi A pr—i)p(F)
i=1
p(51®- - Qsk) = %(p(&@- C®Sp—1) @Sk —p(s2®-- '®3k)®31)




Lie Cobracket

Polylogarithms also come equipped with a Lie cobracket structure

k—1

O(F) =3 _(pi A pr—i)p(F)
p(51®- - Qsk) = %(p(&d@-~~®Sk_1)®3kfp(82®---®Sk)®81)

o The cobracket of classical polylogarithms is especially simple:

5(le(—z)) = —{Z}kfl A {Z}l, k> 2
(5(LI2(—Z)) = —{1 + 2}1 A\ {2}1

where

{z}1 = p(log(2)), {z}r = p(~Lir(—2))
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Lie Cobracket b

the Lie Cobracket

Polylogarithms also come equipped with a Lie cobracket structure Andrew McLeod
k—1
S(F) = (pi A pr—i)p(F)
i=1
p(51®- - Qsk) = %(p(&@- C®Sp—1) @Sk —p(s2®-- '®3k)®31)

o The cobracket of classical polylogarithms is especially simple:

5(le(—z)) = —{Z}kfl A {Z}l, k> 2
(5(LI2(—Z)) = —{1 + 2}1 A\ {2}1

where

{z}1 = p(log(2)), {z}r = p(~Lir(—2))

o In fact, any weight four function that has no 2,2 component can
be written in terms of classical polylogarithms
[Dan; Gangl; Goncharov, Rudenko]




Different Levels of Polylogarithmic Structure

Full
Function

S

Ana

lytic

Structure

Nonclassical
Structure
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cluster variables
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Structure
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Cluster Algebras

5 5
2
1 3 2 1 3
NI
5 NS 5
T
2
17\3
B
5

[Williams]
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Cluster Coordinates

2
(3456 (1456)
. 3 (2456)
6 4
s ° NS
Gr(2,6) Gr(4,6)
A-coordinates X-coordinates
(1246)(3456) u(l-v)
(2456) (1456)(2346) — \/ v(1-w)yuys
(1234)(2456) v(1—w)
(2346) (1246)(2385) — \ w(1—v)yuvm
(1256)(2346) w(l—u)
(1246) 12300256 — \ al-w)yure

ZF=0% = (A7, 20 \ig),

i g

(abed) = ersTuZy Z 25 2

(1256)
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o More generally, clusters can be defined to be quiver diagrams that
have a cluster coordinate associated with every node

Gr(k,n)
eleefiS(; "'<;f1le

ey

— fr e f e g
AT
’fkl‘ ’fk2‘ ’ka‘ by

£ = (i4+1,... .k k+3,...,i+j+k—1), i<l—j+1,
YT A, il =1+ 1,k k44, n), i>l—j+1.
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o We can translate between clusters in A-coordinates and LCIE o
X-coordinates using
b ..
J— gt
Ti = H a;
J

bij = (F# of arrows i — j) — (# of arrows j — )

(12)

N\

(13) (14) (15) (16)

(23) |(34)] |(45)] 1(56)]
T

(12)(34) (13)(45) (14)(56)




Cluster Algebras

o A cluster algebra is the closure of a given quiver under cluster

/ b; —b;
apay, = || a;* + || a; *

mutation
i|b; >0
—bij,
, bij,
bz‘j =
bij + birbrj,
bi; — bikbij,
-1
/ g
Tr; =

b;
z; (1 + ‘,I;Zg"(bik)) k 7 i #k
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i|b; <0

if ke {i,5}, i
if birbr; <0,

if bk, br; >0,

if bk, bk]' < 0.

i=k,
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Cluster algebras appear in planar A" = 4 sYM in a number of
striking ways

5(F)

o [Building Blocks] The cobracket of all two-loop MHV amplitudes
can be expressed in terms of Bloch group elements evaluated on
cluster X-coordinates, {X } [Golden, Paulos, Spradlin, Volovich]

o [Cluster Adjacency| The cobracket of all two-loop MHV can be
expressed as a linear combination of terms {X;}2 A {X;}2 and
{Xk}s A {X}1 where each pair of X-coordinates appears together
in a cluster of Gr(4,n) [Golden, Spradiin]

o [Subalgebra Constructibility] The nonclassical part of all two-loop
MHYV amplitudes can be decomposed into functions defined on
their A2 and As subalgebras [Golden, Paulos, Spradiin, Volovich]
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Cluster algebras appear in planar A" = 4 sYM in a number of
striking ways

S(F)

o [Building Blocks| The symbol alphabets for n € {6, 7} are
precisely cluster coordinates on the Grassmannian Gr(4, n),
and all symbol letters in the two-loop MHV amplitudes are
also cluster coordinates on Gr(4,n)

[Golden, Goncharov, Spradlin, Vergu, Volovich; Drummond, Papathanasiou, Spradlin]

o [Cluster Adjacency] In the symbol of (appropriately normalized)
amplitudes in which no algebraic roots arise, each pair of adjacent
A-coordinates appears together in a cluster of Gr(4,n)

[Drummond, Foster, Giirdogan]
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Cluster algebras appear in planar A" = 4 sYM in a number of
striking ways

F

o [Building Blocks] The two-loop MHV amplitudes are expressible as
(products of) functions taking only negative cluster X'-coordinate
coordinates, Lin,,....n,(—&i, ..., =) [Golden, Spradiin]
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Cluster algebras appear in planar A" = 4 sYM in a number of

striking ways
/ 7

o [Building Blocks] The integrands in this theory are encoded by
plabic graphs, which are dual to cluster algebras e

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

o [Cluster Adjacency| Cluster adjacency translates to the statement
that cluster coordinates only appear in adjacent entries of the
symbol or cobracket when the boundaries corresponding to their
zero-loci are simultaneously accessible
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o Using cluster A- or X-coordinates, we can define polylogarithms
on any cluster algebra that can be represented as a quiver

o In particular, we can consider functions that live on the cluster
subalgebras of Gr(4,n)

¢ ¢ O
2 N
®@@

O The union of all A- or X-coordinates on the clusters in a
(sub)algebra provide a symbol alphabet
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o Cluster polylogarithms on the subalgebras of Gr(4,n) efficiently
capture the nonclassical structure of R (or equivalently 87(12))

o There exists only a single nonclassical polylogarithm defined on
As, and only two on Ags, but they have special properties

e Physically:
ap(RY) = Y di ba(fyw)= D cba(fw)
A3CGr(4,n) Ao CGr(4,n)

e Mathematically:
- fa, act as a basis for all nonclassical polylogarithms, while
- fas acts as a basis for all nonclassical cluster
polylogarithms whose cobracket satisfies cluster adjacency

[Golden, Paulos, Spradlin, Volovich]
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o Cluster polylogarithms on the subalgebras of Gr(4,n) efficiently
capture the nonclassical structure of R (or equivalently 87(12))

o There exists only a single nonclassical polylogarithm defined on
As, and only two on Ags, but they have special properties

e Physically:
ap(RY) = Y di ba(fyw)= D cba(fw)
A3CGr(4,n) Ao CGr(4,n)

e Mathematically:
- fa, act as a basis for all nonclassical polylogarithms, while
- fas acts as a basis for all nonclassical cluster
polylogarithms whose cobracket satisfies cluster adjacency

[Golden, Paulos, Spradlin, Volovich]

o This basis of fa, and fa, functions is massively overcomplete...
what about larger subalgebras of Gr(4,7)?
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Cluster

Polylogarithms

Automorphism Signature

Type Nonclassical Cobrackets ot ot ot o1
A, 1 (0) 0 1 (0) 0 0
As 6 (1) 0 1 (0) 0 1(1)
Ay 21 (6) 0 3 (0) 0 0
D, 34 (9) |
As 56 (21) 2(1) [51) [2(0)][5@3) |
Dy 642 0 1
Es 448 (195) L

Nonclassical Ds Polylogarithms
0'55 T;s 0'55 TD_'S 0—5 5 7—5—5 05 5 TQ_G
AR/ 5 7 Zy Ly Zy Ly
Lefo]  [@fo] [ofsm] [o]70)
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o Ds and As are special in Eg, as only a single orbit of each type
exists under the Eg automorphism group

e |t follows that all Ds- and As-constructible polylogarithms
in Eg necessarily take the form:

> st(aci—L..):Z

6
DsCEg =0 j

M-

() (1) 74, g, 007, (s (wi = ..))

Il
<}

6

S0 faslwio ) =30 @) oy (fas(ei =)

AsCEg i=0




Subalgebra Constructibility

o Ds and As are special in Eg, as only a single orbit of each type
exists under the Eg automorphism group

e |t follows that all Ds- and As-constructible polylogarithms
in Eg necessarily take the form:

S fosl@i .. Zﬁjz )V (1) 74, 00, (foalwi = )

DsCEg 1=0 j=0

[

6

S0 faslwio ) =30 @) oy (fas(ei =)

AsCEg i=0

o Surprisingly, a D5 and As decomposition of 52,2(R§2>) both exist

d22(RY) = Z d22(fp; ) = Z 02,2(fa, )

5CGr(4,7) AsCGr(4,7)
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o ...moreover, we can play the same game with the new fp, and
fas functions

e there exists only a single orbit of A4 subalgebras in each D5
and A5

+ Decomposing the
Remainder Function
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o ...moreover, we can play the same game with the new fp, and
fas functions

e there exists only a single orbit of A4 subalgebras in each D5
and A5

o Both fp, and fa, turn out to be decomposable into the same A4
function:

Rg): Z Z fX4_(Z’1—>$2—>.T3—>33‘4)+...

D5CGr(4,7) A4CDs + Decomposing the

Remainder Function
= Z Z fXZ($14)$24)$3*>x4)+...

As5CGr(4,7) A4CAs

[Golden, AJM]
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In fact, many nested decompositions are possible (although, none Andrew McLeod
involving Dy), each making different properties of 52,2(R§2)) manifest

R(Q)
I, ~ Tas
fas fiy
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o The same game can be played in eight-particle kinematics,
particularly using the new functions 5", f,~, and
fX; found in seven-particle kinematics [Golden, AJM (to appear)]

o It is completely systematic, starting from such a representation of
their nonclassical component, to generate the full analytic
expression for Rg) or 68(2) [Duhr, Gangl, Rhodes; Golden, Spradlin]

o Subalgebras of Gr(4,n) can also be associated with R-invariants, e e
perhaps allowing a similar story to be developed in the NMHV
sector [Drummond, Foster, Giirdogan]
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o A great deal of surprising structure remains to be explained in
planar N =4

o In particular, the role of cluster algebras in this theory deserves to
be better understood

e The ‘meaning’ of these nonclassical decompositions remains
obscure

o The big looming question is whether any similar types of structure
can be found that extend beyond the polylogarithmic parts of this Conclusions
theory (or even to amplitudes involving algebraic roots)

[Paulos, Spradlin, Volovich; Caron-Huot, Larsen; Bourjaily, Herrmann, Trnka]




Thanks!
AMHV(2)
n
MHV(2) MHV(2)
S (An ) negative 0 (A” )
X-coordinate
arguments
" Cluster | subalgebra
adjacency constructibility

\ /
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