Scattering Equations in Multi-Regge Kinematics

Zhengwen Liu

Center for Cosmology, Particle Physics and Phenomenology Institut de Recherche en Mathématique et Physique

UCLouvain

Base on 1811.xxxxx (with C. Duhr) and 1811.yyyyy

Galileo Galilei Institute, Firenze November 15, 2018

Outline

UCLouvain RMP C

Introduction to scattering equations

Multi-Regge kinematics (MRK)

- Scattering equations in MRK
- Gauge theory amplitudes in MRK
- Gravity amplitudes in MRK

Quasi Multi-Regge kinematics

- Scattering equations in QMRK
- Generalized Impact factors and Lipatov vertices

Summary & Outlook

UCLouvain IRMP C

Let us start with a rational map from the moduli space $\mathfrak{M}_{0,n}$ to the space of momenta for n massless particles scattering:

UCLouvain IRMP C

Let us start with a rational map from the moduli space $\mathfrak{M}_{0,n}$ to the space of momenta for n massless particles scattering:

 $\omega^{\mu}(z)$ maps the $\mathfrak{M}_{0,n}$ to the null cone of momenta

$$0 = \frac{1}{2\pi i} \oint_{|z-\sigma_a|=\epsilon} dz \,\omega(z)^2 = \sum_{b\neq a} \frac{2k_a \cdot k_b}{\sigma_a - \sigma_b}, \qquad a = 1, 2, \dots, n$$

which are named as the scattering equations.

[Cachazo, He & Yuan, 1306.2962, 1306.6575]

Zhengwen Liu (UCLouvain)

The scattering equations: $\mathfrak{M}_{0,n} \to \mathcal{K}_n$

$$f_a = \sum_{b \neq a} \frac{k_a \cdot k_b}{\sigma_a - \sigma_b} = 0, \quad a = 1, 2, \dots, n$$

- This system has an SL(2, \mathbb{C}) redundancy, only (n-3) out of n equations are independent
- Equivalent to a system of homogeneous polynomial equations [Dolan & Goddard, 1402.7374]
- The total number of independent solutions is (n-3)!

The scattering equations: $\mathfrak{M}_{0,n} \to \mathcal{K}_n$

$$f_a = \sum_{b \neq a} \frac{k_a \cdot k_b}{\sigma_a - \sigma_b} = 0, \quad a = 1, 2, \dots, n$$

- This system has an SL(2, \mathbb{C}) redundancy, only (n-3) out of n equations are independent
- Equivalent to a system of homogeneous polynomial equations [Dolan & Goddard, 1402.7374]
- The total number of independent solutions is (n-3)!
- The scattering equations have appeared before in different contexts, e.g.,
 - ▶ D. Fairlie and D. Roberts (1972): amplitudes in dual models
 - ▶ D. Gross and P. Mende (1988): the high energy behavior of string scattering
 - ► E. Witten (2004): twistor string
- Cachazo, He and Yuan rediscovered them in the context of field theory amplitudes

[CHY, 1306.2962, 1306.6575, 1307.2199, 1309.0885]

Zhengwen Liu (UCLouvain)

UCLouvain IRMP C

In 4 dimensions, the null map vector $P^{\mu}(z)$ can be rewritten in spinor variables as follows:

$$P^{\alpha\dot{\alpha}}(z) \equiv \left(\prod_{a=1}^{n} (z - \sigma_a)\right) \sum_{b=1}^{n} \frac{\lambda_b^{\alpha} \tilde{\lambda}_b^{\dot{\alpha}}}{z - \sigma_b} = \lambda^{\alpha}(z) \tilde{\lambda}^{\dot{\alpha}}(z)$$

 $\deg \lambda(z) = d \in \{1, \dots, n-3\}, \deg \tilde{\lambda}(z) = \tilde{d}, d+\tilde{d} = n-2$. A simple construction is

$$\lambda^{\alpha}(z) = \prod_{a \in \mathfrak{N}} (z - \sigma_a) \sum_{l \in \mathfrak{N}} \frac{t_l \lambda_l^{\alpha}}{z - \sigma_l}, \qquad \lambda^{\dot{\alpha}}(z) = \prod_{a \in \mathfrak{P}} (z - \sigma_a) \sum_{i \in \mathfrak{P}} \frac{t_i \tilde{\lambda}_i^{\dot{\alpha}}}{z - \sigma_i}$$

We divide $\{1, \ldots, n\}$ into two subsets \mathfrak{N} and \mathfrak{P} , $|\mathfrak{N}| = k = d+1$, $|\mathfrak{P}| = n-k = \tilde{d}+1$.

UCLouvain IRMP C

In 4 dimensions, the null map vector $P^{\mu}(z)$ can be rewritten in spinor variables as follows:

$$P^{\alpha\dot{\alpha}}(z) \equiv \left(\prod_{a=1}^{n} (z - \sigma_a)\right) \sum_{b=1}^{n} \frac{\lambda_b^{\alpha} \tilde{\lambda}_b^{\dot{\alpha}}}{z - \sigma_b} = \lambda^{\alpha}(z) \tilde{\lambda}^{\dot{\alpha}}(z)$$

 $\deg \lambda(z) = d \in \{1, \dots, n-3\}, \deg \tilde{\lambda}(z) = \tilde{d}, d+\tilde{d} = n-2.$ A simple construction is

$$\lambda^{\alpha}(z) = \prod_{a \in \mathfrak{N}} (z - \sigma_a) \sum_{l \in \mathfrak{N}} \frac{t_l \lambda_l^{\alpha}}{z - \sigma_l}, \qquad \lambda^{\dot{\alpha}}(z) = \prod_{a \in \mathfrak{P}} (z - \sigma_a) \sum_{i \in \mathfrak{P}} \frac{t_i \tilde{\lambda}_i^{\dot{\alpha}}}{z - \sigma_i}$$

We divide $\{1, \ldots, n\}$ into two subsets \mathfrak{N} and \mathfrak{P} , $|\mathfrak{N}| = k = d+1$, $|\mathfrak{P}| = n-k = \tilde{d}+1$.

Then the two spinor maps leads to

$$\bar{\mathcal{E}}_{I}^{\dot{\alpha}} = \tilde{\lambda}_{I}^{\dot{\alpha}} - \sum_{i \in \mathfrak{P}} \frac{t_{I}t_{i}}{\sigma_{I} - \sigma_{i}} \tilde{\lambda}_{i}^{\dot{\alpha}} = 0, \ I \in \mathfrak{N}; \quad \mathcal{E}_{i}^{\alpha} = \lambda_{i}^{\alpha} - \sum_{I \in \mathfrak{N}} \frac{t_{i}t_{I}}{\sigma_{i} - \sigma_{I}} \lambda_{I}^{\alpha} = 0, \ i \in \mathfrak{P}$$

Zhengwen Liu (UCLouvain)

Geyer-Lipstein-Mason (GLM) scattering equations:

$$\bar{\mathcal{E}}_{I}^{\dot{\alpha}} = \tilde{\lambda}_{I}^{\dot{\alpha}} - \sum_{i \in \mathfrak{P}} \frac{t_{I} t_{i}}{\sigma_{I} - \sigma_{i}} \tilde{\lambda}_{i}^{\dot{\alpha}} = 0, \ I \in \mathfrak{N}; \quad \mathcal{E}_{i}^{\alpha} = \lambda_{i}^{\alpha} - \sum_{I \in \mathfrak{N}} \frac{t_{i} t_{I}}{\sigma_{i} - \sigma_{I}} \lambda_{I}^{\alpha} = 0, \ i \in \mathfrak{P}$$

UCLouvain IRMP C

• These equations are originally derived from the four-dimensional ambitwistor string model, based on them tree superamplitudes in N=4 SYM and N=8 supergravity are obtained. [Geyer, Lipstein & Mason, 1404.6219]

Geyer-Lipstein-Mason (GLM) scattering equations:

$$\bar{\mathcal{E}}_{l}^{\dot{\alpha}} = \tilde{\lambda}_{l}^{\dot{\alpha}} - \sum_{i \in \mathfrak{P}} \frac{t_{l} t_{i}}{\sigma_{l} - \sigma_{i}} \tilde{\lambda}_{i}^{\dot{\alpha}} = 0, \ l \in \mathfrak{N}; \quad \mathcal{E}_{i}^{\alpha} = \lambda_{i}^{\alpha} - \sum_{l \in \mathfrak{N}} \frac{t_{i} t_{l}}{\sigma_{i} - \sigma_{l}} \lambda_{l}^{\alpha} = 0, \ i \in \mathfrak{P}$$

UCLouvain IRMP C

- These equations are originally derived from the four-dimensional ambitwistor string model, based on them tree superamplitudes in N=4 SYM and N=8 supergravity are obtained. [Geyer, Lipstein & Mason, 1404.6219]
- Equivalent polynomial versions [Roiban, Spradlin & Volovich, hep-th/0403190; He, ZL & Wu, 1604.02834]

$$\sum_{a=1}^{n} t_a \sigma_a^m \tilde{\lambda}_a^{\dot{\alpha}} = 0, \quad m = 0, 1, \dots, d; \quad \lambda_a^{\alpha} - t_a \sum_{m=0}^{d=k-1} \rho_m^{\alpha} \sigma_a^m = 0$$

- In 4d, the scattering eqs fall into "helicity sector" are characterized by $k \in \{2, ..., n-2\}$
- In sector k, the number of independent solutions is $\binom{n-3}{k-2}$

$$\sum_{k=2}^{n-2} \left\langle {n-3 \atop k-2} \right\rangle = (n-3)!$$

Zhengwen Liu (UCLouvain)

Scattering Equations in MRK

5/25

Multi-Regge Kinematics (MRK) UCLouvain RMP C

Multi-Regge kinematics is defined as a $2 \rightarrow n-2$ scattering where the final state particles are strongly ordered in rapidity while having k_2 comparable transverse momenta,

 $y_3 \gg y_4 \gg \cdots \gg y_n$ and $|\mathbf{k_3}| \simeq |\mathbf{k_4}| \simeq \ldots \simeq |\mathbf{k_n}|$

• In lightcone coordinates $k_a = (k_a^+, k_a^-; k_a^\perp)$ with $k_a^\pm = k_a^0 \pm k_a^z$ and $k_a^\perp = k_a^x + ik_a^y$

$$k_3^+ \gg k_4^+ \gg \cdots \gg k_n^+$$

 k_1

Zhengwen Liu (UCLouvain)

Multi-Regge Kinematics (MRK) UCLouvain IMP C

Multi-Regge kinematics is defined as a $2 \rightarrow n-2$ scattering where the final state particles are strongly ordered in rapidity while having comparable transverse momenta,

 $y_3 \gg y_4 \gg \cdots \gg y_n$ and $|\mathbf{k_3}| \simeq |\mathbf{k_4}| \simeq \ldots \simeq |\mathbf{k_n}|$

• In lightcone coordinates $k_a = (k_a^+, k_a^-; k_a^\perp)$ with $k_a^\pm = k_a^0 \pm k_a^z$ and $k_a^\perp = k_a^x + ik_a^y$

$$k_3^+ \gg k_4^+ \gg \cdots \gg k_n^+$$

• We work in center-of-momentum frame:

$$k_1 = (0, -\kappa; 0), \quad k_2 = (-\kappa, 0; 0), \quad \kappa \equiv \sqrt{s}$$

• In this region, tree amplitudes in gauge and gravity factorize

$$\mathcal{A}_n \sim s^{\text{spin}} C_{2;3} \frac{1}{t_4} V_4 \cdots \frac{1}{t_{n-1}} V_{n-1} \frac{1}{t_n} C_{1;n}$$

Zhengwen Liu (UCLouvain)

Scattering Equations in MRK

$$k_2$$
 k_3
 q_4 k_4
 q_5 k_5
 q_n k_{n-1}
 k_1 k_n

[Kuraev, Lipatov & Fadin, 1976; Del Duca, 1995; Lipatov, 1982]

6/25

When scattering equations meet MRK

• The simplest example: four points

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \qquad f_1 = -\frac{s_{13}}{\sigma_3} - \frac{s_{14}}{\sigma_4} = 0 \implies \frac{\sigma_3}{\sigma_4} = \frac{s+t}{t}$$

In the Regge limit, $s \gg -t$, we have

$$\left|\frac{\sigma_3}{\sigma_4}\right| \simeq \left|\frac{s}{t}\right| \gg 1 \implies |\sigma_3| \gg |\sigma_4|$$

• The simplest example: four points

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \qquad f_1 = -\frac{s_{13}}{\sigma_3} - \frac{s_{14}}{\sigma_4} = 0 \implies \frac{\sigma_3}{\sigma_4} = \frac{s+t}{t}$$

UCLouvain RMP C

In the Regge limit, $s \gg -t$, we have $|\sigma_3/\sigma_4| \simeq |s/t| \gg 1 \implies |\sigma_3| \gg |\sigma_4|$

• The next-to-simplest: five points

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \quad \sigma_a^{(1)} = \frac{k_a^+}{k_a^\perp}, \quad \sigma_a^{(2)} = \frac{k_a^+}{k_a^{\perp^*}} \quad a = 3, 4, 5$$

In MRK, $k_3^+ \gg k_4^+ \gg k_5^+$, we have again

 $|\sigma_3| \gg |\sigma_4| \gg |\sigma_5|$

Zhengwen Liu (UCLouvain)

• The simplest example: four points

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \qquad f_1 = -\frac{s_{13}}{\sigma_3} - \frac{s_{14}}{\sigma_4} = 0 \implies \frac{\sigma_3}{\sigma_4} = \frac{s+t}{t}$$

In the Regge limit, $s \gg -t$, we have $|\sigma_3/\sigma_4| \simeq |s/t| \gg 1 \implies |\sigma_3| \gg |\sigma_4|$

• The next-to-simplest: five points [Fairlie & Roberts, 1972]

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \quad \sigma_a^{(1)} = \frac{k_a^+}{k_a^\perp}, \quad \sigma_a^{(2)} = \frac{k_a^+}{k_a^{\perp^*}} \quad a = 3, 4, 5$$

In MRK, $k_3^+ \gg k_4^+ \gg k_5^+$, we have again $|\sigma_3| \gg |\sigma_4| \gg |\sigma_5|$

• Any *n*-point scattering eqs have a MHV (\overline{MHV}) solution [Fairlie, 2008]

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \quad \sigma_a^{(\text{MHV})} = \frac{k_a^+}{k_a^\perp}, \quad \sigma_a^{(\overline{\text{MHV}})} = \frac{k_a^+}{k_a^{\perp^*}} \quad a = 3, \dots, n$$

In MRK, $k_3^+ \gg \cdots \gg k_n^+$, we have

$$|\sigma_3| \gg |\cdots \gg |\sigma_n|$$

Zhengwen Liu (UCLouvain)

• The simplest example: four points

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \qquad f_1 = -\frac{s_{13}}{\sigma_3} - \frac{s_{14}}{\sigma_4} = 0 \implies \frac{\sigma_3}{\sigma_4} = \frac{s+t}{t}$$

In the Regge limit, $s \gg -t$, we have $|\sigma_3/\sigma_4| \simeq |s/t| \gg 1 \implies |\sigma_3| \gg |\sigma_4|$

• The next-to-simplest: five points [Fairlie & Roberts, 1972]

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \quad \sigma_a^{(1)} = \frac{k_a^+}{k_a^\perp}, \quad \sigma_a^{(2)} = \frac{k_a^+}{k_a^{\perp^*}} \quad a = 3, 4, 5$$

In MRK, $k_3^+ \gg k_4^+ \gg k_5^+$, we have again $|\sigma_3| \gg |\sigma_4| \gg |\sigma_5|$

• Any *n*-point scattering eqs have a MHV (and $\overline{\text{MHV}}$) solution [Fairlie, 2008]

$$\sigma_1 = 0, \quad \sigma_2 \to \infty, \quad \sigma_a^{(\mathsf{MHV})} = \frac{k_a^+}{k_a^\perp}, \quad \sigma_a^{(\overline{\mathsf{MHV}})} = \frac{k_a^+}{k_a^{\perp^*}} \quad a = 3, \dots, n$$

In MRK, $k_3^+ \gg \cdots \gg k_n^+$, we have again $|\sigma_3| \gg |\cdots \gg |\sigma_n|$

• In MRK, we conjecture for arbitrary multiplicity *n*

 $|\Re(\sigma_3)| \gg \cdots \gg |\Re(\sigma_n)| \quad \& \quad |\Im(\sigma_3)| \gg \cdots \gg |\Im(\sigma_n)| \quad \text{with } (\sigma_1, \sigma_2) \to (0, \infty)$

Zhengwen Liu (UCLouvain)

Scattering equations in MRK UCLouvain RMP C

Conjecture: In MRK, the solutions of the scattering eqs behave as

 $|\Re(\sigma_3)| \gg \cdots \gg |\Re(\sigma_n)| \& |\Im(\sigma_3)| \gg \cdots \gg |\Im(\sigma_n)|$ fixing $(\sigma_1, \sigma_2) \to (0, \infty)$

Similarly, for *t*-solutions in the 4d scattering equations, we conjecture

 $|t_{i_1}| \gg |t_{i_2}| \gg \cdots, \quad i_a < i_{a+1} \in \mathfrak{P}; \qquad |t_{l_1}| \gg |t_{l_2}| \gg \cdots, \quad l_a < l_{a+1} \in \mathfrak{N}_{\neq 1,2}$

where we fix $\{1, 2\} \subseteq \mathfrak{N}$, and gauge fix $\sigma_1 = 0, \sigma_2 = t_2 \rightarrow \infty, t_1 = -1$.

Scattering equations in MRK UCLouvain RMP C

Conjecture: In MRK, the solutions of the scattering eqs behave as

 $|\Re(\sigma_3)| \gg \cdots \gg |\Re(\sigma_n)| \& |\Im(\sigma_3)| \gg \cdots \gg |\Im(\sigma_n)|$ fixing $(\sigma_1, \sigma_2) \to (0, \infty)$

Similarly, for *t*-variables in the 4d scattering equations, we conjecture

 $|t_{i_1}| \gg |t_{i_2}| \gg \cdots, \quad i_a < i_{a+1} \in \mathfrak{P}; \qquad |t_{l_1}| \gg |t_{l_2}| \gg \cdots, \quad l_a < l_{a+1} \in \mathfrak{N}_{\neq 1,2}$

where we fix $\{1, 2\} \subseteq \mathfrak{N}$, and gauge fix $\sigma_1 = 0$, $\sigma_2 = t_2 \rightarrow \infty$, $t_1 = -1$.

• We numerically checked the scattering eqs up to 8 points. Furthermore, we conjecture that

$$\Re(\sigma_a) = \mathcal{O}\left(k_a^+\right), \quad \Im(\sigma_a) = \mathcal{O}\left(k_a^+\right), \quad t_a = \mathcal{O}\left(\sqrt{k_a^+ \kappa^{-h_a}}\right), \quad a = 3, \dots, n$$

 $h_a = 1$ when $a \in \mathfrak{P}$, otherwise $h_a = -1$

• Here $\{3, n\} \subseteq \mathfrak{P}, \{1, 2\} \subset \mathfrak{N}$; for other cases, the solutions have the similar behavior

Zhengwen Liu (UCLouvain)

Solving scattering equations in MRK

Scattering equations in lightcone UCLouvain \mathbb{R}^{MP} \mathcal{C}

- We choose the 4d (Geyer-Lipstein-Mason) scattering equations:
 - ► They have simpler structure compared with the CHY scattering equations;
 - ► The 4d formalism is more suitable to study helicity amplitudes;
 - ► 4d equations are written in spinors, MRK is naturally defined in lightcone coordinates.

Scattering equations in lightcone UCLouvain $\mathbb{R}^{\mathbb{NP}}$

- We choose the 4d (Geyer-Lipstein-Mason) scattering equations:
 - ► They have simpler structure compared with the CHY scattering equations;
 - ► The 4d formalism is more suitable to study helicity amplitudes;
 - ► 4d equations are written in spinors, MRK is naturally defined in lightcone coordinates.

• Perform rescalings for variables, $t_i = \tau_i \sqrt{k_i^+/\kappa}$ and $t_l = \tau_l \sqrt{\kappa k_l^+}/k_l^\perp$, and for equations

$$S_{i}^{1} \equiv \frac{1}{\lambda_{i}^{1}} \mathcal{E}_{i}^{1} = 1 + \tau_{i} - \sum_{l \in \overline{\mathfrak{M}}} \frac{\tau_{i} \tau_{l}}{\sigma_{i} - \sigma_{l}} \frac{k_{l}^{+}}{k_{l}^{\perp}} = 0, \quad \overline{\mathfrak{M}} \equiv \mathfrak{M} \setminus \{1, 2\}$$

$$S_{i}^{2} \equiv \frac{\lambda_{i}^{1}}{k_{i}^{\perp}} \mathcal{E}_{i}^{2} = 1 + \frac{k_{i}^{+}}{k_{i}^{\perp}} \frac{\tau_{i}}{\sigma_{i}} - \frac{k_{i}^{+}}{k_{i}^{\perp}} \sum_{l \in \overline{\mathfrak{M}}} \frac{\tau_{i} \tau_{l}}{\sigma_{i} - \sigma_{l}} = 0,$$

$$\bar{S}_{l}^{1} \equiv \lambda_{l}^{2} \bar{\mathcal{E}}_{l}^{1} = k_{l}^{\perp} - \sum_{i \in \mathfrak{M}} \frac{\tau_{i} \tau_{l}}{\sigma_{l} - \sigma_{i}} k_{i}^{+} = 0,$$

$$\bar{S}_{l}^{2} \equiv \lambda_{l}^{1} \bar{\mathcal{E}}_{l}^{2} = (k_{l}^{\perp})^{*} - \frac{k_{l}^{+}}{k_{l}^{\perp}} \sum_{i \in \mathfrak{M}} \frac{\tau_{i} \tau_{l}}{\sigma_{l} - \sigma_{i}} (k_{i}^{\perp})^{*} = 0$$

• Perfectly suitable for the study of Multi-Regge kinematics.

Zhengwen Liu (UCLouvain)

In MRK, according to our conjecture

$$rac{1}{\sigma_a - \sigma_b} \simeq rac{1}{\sigma_a}, \quad a < b$$

The 4d scattering equations get greatly simplified at leading order:

$$\begin{split} \mathcal{S}_{i}^{1} &= 1 + \tau_{i} \left(1 + \sum_{l \in \overline{\mathfrak{N}}_{< i}} \zeta_{l} \right) = 0, \qquad \bar{\mathcal{S}}_{l}^{1} = k_{l}^{\perp} + \tau_{l} \sum_{i \in \mathfrak{P}_{< l}} \zeta_{i} \, k_{i}^{\perp} = 0, \\ \mathcal{S}_{i}^{2} &= 1 + \zeta_{i} \left(1 - \sum_{l \in \overline{\mathfrak{N}}_{> i}} \tau_{l} \right) = 0, \qquad \bar{\mathcal{S}}_{l}^{2} = (k_{l}^{\perp})^{*} - \zeta_{l} \sum_{i \in \mathfrak{P}_{> l}} \tau_{i} (k_{i}^{\perp})^{*} = 0, \end{split}$$

where $A_{>i} := \{a \in A | a > i\}$, and we define

$$\zeta_a \equiv \frac{k_a^+}{k_a^\perp} \frac{\tau_a}{\sigma_a}, \quad 3 \le a \le n$$

- 4d scattering equations become 'almost linear' in MRK.
- Indeed, as I will show later, they exactly have a unique solution.

Zhengwen Liu (UCLouvain)

Let us rewrite the equations as:

$$egin{array}{lll} \mathcal{S}_{i}^{1} &= 1 + a_{i} \, au_{i} = 0 \,, & ar{\mathcal{S}}_{l}^{2} &= (k_{l}^{\perp})^{*} + b_{l} \, \zeta_{l} = 0 \ \mathcal{S}_{i}^{2} &= 1 + c_{i} \, \zeta_{i} = 0 \,, & ar{\mathcal{S}}_{l}^{1} &= k_{l}^{\perp} + d_{l} \, au_{l} = 0 \end{array}$$

with

$$a_{i} \equiv 1 + \sum_{I \in \overline{\mathfrak{N}}_{< i}} \zeta_{I}, \quad b_{I} \equiv -\sum_{i \in \mathfrak{P}_{> i}} \tau_{i} \, k_{i}^{\perp^{*}}, \quad c_{i} \equiv 1 - \sum_{I \in \overline{\mathfrak{N}}_{> i}} \tau_{I}, \quad d_{I} \equiv \sum_{i \in \mathfrak{P}_{< i}} \zeta_{i} \, k_{i}^{\perp}$$

• At the first step, we can use the equations $\mathcal{S}^{lpha}_i=0$ to obtain

$$au_i = -rac{1}{a_i}, \qquad \zeta_i = -rac{1}{c_i}$$

Zhengwen Liu (UCLouvain)

Let us rewrite the equations as:

$$egin{array}{lll} \mathcal{S}_i^1 &= 1 + a_i \, au_i = 0 \,, & ar{\mathcal{S}}_l^2 &= (k_l^\perp)^* + b_l \, \zeta_l = 0 \ \mathcal{S}_i^2 &= 1 + c_i \, \zeta_i = 0 \,, & ar{\mathcal{S}}_l^1 &= k_l^\perp + d_l \, au_l = 0 \end{array}$$

with

$$a_{i} \equiv 1 + \sum_{l \in \overline{\mathfrak{N}}_{< i}} \zeta_{l}, \quad b_{l} \equiv -\sum_{i \in \mathfrak{P}_{> i}} \tau_{i} k_{i}^{\perp *}, \quad c_{i} \equiv 1 - \sum_{l \in \overline{\mathfrak{N}}_{> i}} \tau_{l}, \quad d_{l} \equiv \sum_{i \in \mathfrak{P}_{< i}} \zeta_{i} k_{i}^{\perp}$$

• At the first step, we can use the equations $\mathcal{S}^{lpha}_i=0$ to obtain

$$\tau_i = -\frac{1}{a_i}, \qquad \zeta_i = -\frac{1}{c_i}$$

• Then the equations $\bar{S}_{l}^{1} = k_{l}^{\perp} + d_{l} \tau_{l} = 1$ are independent with $\bar{S}_{l}^{2} = k_{l}^{\perp} + d_{l} \tau_{l} = 0$, and two sets of equations have the same structure.

$$d_{l} = -\sum_{i \in \mathfrak{P}_{< l}} k_{i}^{\perp} \left(1 - \sum_{J \in \overline{\mathfrak{N}}_{> i}} \tau_{J} \right)^{-1}, \quad b_{l} = \sum_{i \in \mathfrak{P}_{> l}} (k_{i}^{\perp})^{*} \left(1 + \sum_{J \in \overline{\mathfrak{N}}_{< i}} \zeta_{J} \right)^{-1}$$

Zhengwen Liu (UCLouvain)

Let us try to solve

$$ar{\mathcal{S}}_I^{1} = k_I^{\perp} + d_I \, au_I, \qquad d_I = -\sum_{i\in\mathfrak{P}_{< I}} k_i^{\perp} \left(1 - \sum_{J\in\overline{\mathfrak{N}}_{> i}} au_J
ight)^{-1}$$

First, we reorder labels: $I_1 < \cdots < I_{m=k-2}$. The coefficients d_l satisfy the following recursion

$$d_{l_r} = -\left(\sum_{i \in \mathfrak{P}_{< l_{r-1}}} k_i^{\perp} + \sum_{l_{r-1} < i < l_r} k_i^{\perp}\right) \left(1 - \sum_{J \in \overline{\mathfrak{N}}_{> i}} \tau_J\right)^{-1} = d_{l_{r-1}} - \left(1 - \sum_{l=r}^m \tau_{l_l}\right)^{-1} \sum_{l_{r-1} < a < l_r} k_a^{\perp}$$

which starts with $d_{l_0} = 0$.

Let us try to solve

$$ar{\mathcal{S}}_I^{\dot{1}} = k_I^{\perp} + d_I \, au_I, \qquad d_I = -\sum_{i\in\mathfrak{P}_{< I}} k_i^{\perp} \left(1 - \sum_{J\in\overline{\mathfrak{N}}_{> i}} au_J
ight)^{-1}$$

First, we reorder labels: $I_1 < \cdots < I_{m=k-2}$. The coefficients d_l satisfy the following recursion

$$d_{l_r} = -\left(\sum_{i \in \mathfrak{P}_{< l_{r-1}}} k_i^{\perp} + \sum_{l_{r-1} < i < l_r} k_i^{\perp}\right) \left(1 - \sum_{J \in \overline{\mathfrak{N}}_{> i}} \tau_J\right)^{-1} = d_{l_{r-1}} - \left(1 - \sum_{l=r}^m \tau_{l_l}\right)^{-1} \sum_{l_{r-1} < a < l_r} k_a^{\perp}$$

which starts with $d_{l_0} = 0$. Using it, we can get

$$0 = \bar{\mathcal{S}}_{l_r}^{1} = \left(1 - \sum_{l=r}^m \tau_{l_l}\right)^{-1} \left[k_{l_r}^{\perp} \left(1 - \sum_{l=r+1}^m \tau_{l_l}\right) - \tau_{l_r} q_{l_r+1}^{\perp}\right]$$

It naturally leads to the recursion of the solution of the 4d scattering equations

$$au_{I_m} = rac{k_{I_m}^{\perp}}{q_{I_m+1}^{\perp}}, \qquad au_{I_r} = rac{k_{I_r}^{\perp}}{q_{I_r+1}^{\perp}} \left(1 - \sum_{l=r+1}^m au_{I_l}
ight)$$

Zhengwen Liu (UCLouvain)

Let us try to solve

$$ar{\mathcal{S}}_I^{\dot{1}} = k_I^{\perp} + d_I \, au_I, \qquad d_I = -\sum_{i\in\mathfrak{P}_{< I}} k_i^{\perp} \left(1 - \sum_{J\in\overline{\mathfrak{N}}_{> i}} au_J
ight)^{-1}$$

First, we reorder labels: $I_1 < \cdots < I_{m=k-2}$. The coefficients d_l satisfy the following recursion

$$d_{l_r} = -\left(\sum_{i \in \mathfrak{P}_{< l_{r-1}}} k_i^{\perp} + \sum_{l_{r-1} < i < l_r} k_i^{\perp}\right) \left(1 - \sum_{J \in \overline{\mathfrak{N}}_{> i}} \tau_J\right)^{-1} = d_{l_{r-1}} - \left(1 - \sum_{l=r}^m \tau_{l_l}\right)^{-1} \sum_{l_{r-1} < a < l_r} k_a^{\perp}$$

which starts with $d_{l_0} = 0$. Using it, we can get

$$0 = \bar{\mathcal{S}}_{l_r}^{1} = \left(1 - \sum_{l=r}^m \tau_{l_l}\right)^{-1} \left[k_{l_r}^{\perp} \left(1 - \sum_{l=r+1}^m \tau_{l_l}\right) - \tau_{l_r} q_{l_r+1}^{\perp}\right]$$

It naturally leads to the recursion of the solution of the 4d scattering equations

$$au_{I_m} = rac{k_{I_m}^{\perp}}{q_{I_m+1}^{\perp}}, \qquad au_{I_r} = rac{k_{I_r}^{\perp}}{q_{I_r+1}^{\perp}} \left(1 - \sum_{l=r+1}^m au_{I_l}
ight) = rac{k_{I_r}^{\perp}}{q_{I_r+1}^{\perp}} \prod_{l=r+1}^m rac{q_{I_l}^{\perp}}{q_{I_l+1}^{\perp}}$$

Zhengwen Liu (UCLouvain)

Solving $\bar{\mathcal{S}}_l^1 = 0$ gives

$$\tau_{l_r} = \frac{k_{l_r}^{\perp}}{q_{l_r+1}^{\perp}} \left(1 - \sum_{l=r+1}^m \tau_{l_l} \right) = \frac{k_{l_r}^{\perp}}{q_{l_r+1}^{\perp}} \prod_{l=r+1}^m \frac{q_{l_l}^{\perp}}{q_{l_l+1}^{\perp}}$$

Similarly, we can solve $\bar{\mathcal{S}}_l^2 = 0$ and obtain

$$\zeta_{l_r} = \left(\frac{k_{l_r}^{\perp}}{q_{l_r}^{\perp}}\right)^* \left(1 + \prod_{l=1}^{r-1} \zeta_{l_l}\right) = \left(\frac{k_{l_r}^{\perp}}{q_{l_r}^{\perp}}\right)^* \left(\prod_{l=1}^{r-1} \frac{q_{l_l+1}^{\perp}}{q_{l_l}^{\perp}}\right)^*$$

For τ_i and ζ_i , we have

$$au_i = -rac{1}{a_i} = \left(-1 + \sum_{l \in \overline{\mathfrak{N}}_{< i}} \zeta_l
ight)^{-1} = -\left(\prod_{l \in \overline{\mathfrak{N}}_{< i}} rac{q_l^{\perp}}{q_{l+1}^{\perp}}
ight)^*$$
 $\zeta_i = -rac{1}{c_i} = \left(1 - \sum_{l \in \overline{\mathfrak{N}}_{> i}} au_l
ight)^{-1} = -\prod_{l \in \overline{\mathfrak{N}}_{> i}} rac{q_l^{\perp}}{q_l^{\perp}}.$

Finally, in MRK we exactly solve the 4d scattering eqs of any sector k and any multiplicity!

Zhengwen Liu (UCLouvain)

MRK solutions

UCLouvain RMP C

• For each "helicity configuration" of any sector k and any multiplicity n, we exactly solved the 4d scattering equations

$$\begin{aligned} \tau_{l} &= \frac{k_{l}^{\perp}}{q_{l+1}^{\perp}} \prod_{J \in \mathfrak{N}_{>l}} \frac{q_{J}^{\perp}}{q_{J+1}^{\perp}}, \qquad \zeta_{l} = \left(\frac{k_{l}^{\perp}}{q_{l}^{\perp}}\right)^{*} \left(\prod_{J \in \mathfrak{N}_{$$

- It is very rare that one can analytically solve the scattering eqs for arbitrary multiplicities.
 - MHV (and $\overline{\text{MHV}}$) [Fairlie & Roberts, 1972]
 - ► A very special two parameter family of kinematics [Kalousios, 1312.7743]
- Very natural to ask: how to evaluate amplitudes using this MRK solution?

Gauge theory amplitudes in MRK

YM amplitudes

 $N^{k-2}MHV$ gluon amplitudes:

[Geyer, Lipstein & Mason, 1404.6219]

$$A_{n}(1^{-}, 2^{-}, \dots, n) = -s \int \prod_{a=3}^{n} \frac{d\sigma_{a} d\tau_{a}}{\tau_{a}} \frac{1}{\sigma_{34} \cdots \sigma_{n-1,n} \sigma_{n}} \left(\prod_{i \in \mathfrak{P}} \frac{1}{k_{i}^{\perp}} \delta^{2}(S_{i}^{\alpha}) \right) \left(\prod_{l \in \overline{\mathfrak{N}}} k_{l}^{\perp} \delta^{2}(\bar{S}_{l}^{\dot{\alpha}}) \right)$$

- $\mathfrak{P}(\mathfrak{N})$ collects the labels of negative (positive) gluons, $|\mathfrak{N}| = k$ and $\overline{\mathfrak{N}} = \mathfrak{N} \setminus \{1, 2\}$
- $\mathcal{A}_n(1^{\pm}, 2^{\mp}, \ldots)$ can be evaluated using the almost same formula via "SUSY Ward identity"
- \bullet Similarly, we can obtain the formula for amplitudes with a few massless quark pairs

[He & Zhang, 1607.0284; Dixon, Henn, Plefka & Schuster, 1010.3991]

Zhengwen Liu (UCLouvain)

YM amplitudes in MRK

In MRK, gluon amplitudes become

$$\mathcal{A}_{n}(1^{-},2^{-},\ldots,n)\simeq -s\left(\int\prod_{a=3}^{n}\frac{d\tau_{a}d\zeta_{a}}{\zeta_{a}\tau_{a}}\right)\left(\prod_{i\in\mathfrak{P}}\frac{1}{k_{i}^{\perp}}\delta^{2}(S_{i}^{\alpha})\right)\left(\prod_{l\in\mathfrak{N}}k_{l}^{\perp}\delta^{2}(\bar{S}_{l}^{\dot{\alpha}})\right)$$

UCLouvain IRMP C

• Using the procedure similar to solving the equations, we can localize these integrals

$$\mathcal{A}_{n}(1,\ldots,n) \simeq s C(2;3) \frac{-1}{|q_{4}^{\perp}|^{2}} V(q_{4};4;q_{5}) \cdots \frac{-1}{|q_{n-1}^{\perp}|^{2}} V(q_{n-1};n-1;q_{n}) \frac{-1}{|q_{n}^{\perp}|^{2}} C(1;n)$$

Buildling blocks:

$$C(2^{\pm}; 3^{\pm}) = C(1^{\pm}; n^{\pm}) = 0, \quad C(2^{\pm}; 3^{\mp}) = 1$$

$$C(1^{-}; n^{+}) = C(1^{+}; n^{-})^{*} = \frac{(k_{n}^{\perp})^{*}}{k_{n}^{\perp}}$$

$$V(q_{a}; a^{+}; q_{a+1}) = V(q_{a}; a^{-}; q_{a+1})^{*} = \frac{(q_{a}^{\perp})^{*} q_{a+1}^{\perp}}{k_{a}^{\perp}}$$

$$K_{n-1}$$

[Kuraev, Lipatov & Fadin, 1976; Lipatov, 1976; Lipatov, 1991; Del Duca, 1995] k₁

Zhengwen Liu (UCLouvain)

Scattering Equations in MRK

 K_3

 k_n

How about gravity?

Graviton amplitudes in MRK

UCLouvain IRMP C

- Similarly, the formula for tree superamplitudes in $\mathcal{N} = 8$ SUGRA is constructed from 4d ambitwistor strings [Geyer, Lipstein & Mason, 1404.6219].
- In MRK, the Geyer-Lipstein-Mason formula of graviton amplitudes takes

$$\mathcal{M}_{n} = s^{2} \left(\int \prod_{a=3}^{n} \frac{d\zeta_{a} d\tau_{a}}{\zeta_{a}^{2} \tau_{a}^{2}} \right) \left(\prod_{I \in \overline{\mathfrak{N}}} (k_{I}^{\perp})^{2} \delta^{2} (\bar{\mathcal{S}}_{I}^{\dot{\alpha}}) \right) \left(\prod_{i \in \mathfrak{P}} \frac{\delta^{2} (\mathcal{S}_{i}^{\alpha})}{(k_{i}^{\perp})^{2}} \right) \det' \overline{\mathsf{H}} \det' \mathsf{H}$$

where

$$\begin{aligned} \overline{\mathsf{H}}_{ij} &= (k_j^{\perp} \zeta_j) (k_i^{\perp^*} \tau_i), \quad i > j \in \mathfrak{P}; \quad \overline{\mathsf{H}}_{ii} = -\sum_{j \in \mathfrak{P}, j \neq i} \overline{\mathsf{H}}_{ij}; \\ \mathbf{H}_{12} &= -1, \quad \mathbf{H}_{1l} = -\zeta_l, \quad \mathbf{H}_{2l} = -\tau_l, \quad \mathbf{H}_{lJ} = \tau_l \zeta_J, \quad l > J \in \overline{\mathfrak{P}} \\ \mathbf{H}_{11} &= -\mathbf{H}_{12} - \sum_{l \in \overline{\mathfrak{N}}} \mathbf{H}_{1l}, \quad \mathbf{H}_{22} = -\mathbf{H}_{12} - \sum_{l \in \overline{\mathfrak{N}}} \mathbf{H}_{2l}, \quad \mathbf{H}_{ll} = -\mathbf{H}_{1l} - \mathbf{H}_{2l} - \sum_{b \in \mathfrak{N}, b \neq a} \mathbf{H}_{ab} \end{aligned}$$

Zhengwen Liu (UCLouvain)

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

$$\mathcal{M}_n(1^-, 2^-, 3^+, \dots, n^+) \simeq \frac{s^2}{(k_3^\perp)^2} \det \phi,$$

UCLouvain IRMP C

In MRK

$$\phi = \begin{pmatrix} x_4 + v_4 & x_5 & x_6 & \cdots & x_7 & x_n \\ x_5 & x_5 + v_5 & x_6 & \cdots & x_7 & x_n \\ x_6 & x_6 & x_6 + v_6 & \cdots & x_7 & x_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n-1} & x_{n-1} & x_{n-1} & \cdots & x_{n-1} + v_{n-1} & x_n \\ x_n & x_n & x_n & \cdots & x_n & x_n \end{pmatrix}$$

with

$$\begin{split} \phi_{ab} &= \frac{k_{a}^{\perp^{*}}}{k_{a}^{\perp}} = x_{a}, \qquad a > b \ge 3, \\ \phi_{aa} &= v_{a} + x_{a}, \quad v_{a} = \frac{k_{a}^{\perp} q_{a}^{\perp^{*}} - q_{a}^{\perp} k_{a}^{\perp^{*}}}{(k_{a}^{\perp})^{2}}, \qquad 3 \le a \le n, \end{split}$$

Zhengwen Liu (UCLouvain)

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

$$\mathcal{M}_n(1^-, 2^-, 3^+, \dots, n^+) \simeq \frac{s^2}{(k_3^\perp)^2} \det \phi,$$

UCLouvain IRMP C

In MRK

$$\det \phi = \begin{vmatrix} x_4 + v_4 & x_5 & x_6 & \cdots & x_7 & x_n \\ x_5 & x_5 + v_5 & x_6 & \cdots & x_7 & x_n \\ x_6 & x_6 & x_6 + v_6 & \cdots & x_7 & x_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n-1} & x_{n-1} & x_{n-1} & \cdots & x_{n-1} + v_{n-1} & x_n \\ x_n & x_n & x_n & \cdots & x_n & x_n \end{vmatrix}$$

triangularization: $column_i - column_1$

Zhengwen Liu (UCLouvain)

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

$$\mathcal{M}_n(1^-, 2^-, 3^+, \dots, n^+) \simeq \frac{s^2}{(k_3^\perp)^2} \det \phi,$$

UCLouvain IRMP C

Almost triangular!

$$\det \phi = \begin{vmatrix} x_4 + v_4 & x_5 - x_4 - v_4 & x_6 - x_4 - v_4 & \cdots & x_{n-1} - x_4 - v_4 & x_n - x_4 - v_4 \\ 0 & v_5 & x_6 - x_5 & \cdots & x_{n-1} - x_5 & x_n - x_5 \\ 0 & 0 & v_6 & \cdots & x_{n-1} - x_6 & x_n - x_6 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & v_{n-1} & x_n - x_{n-1} \\ x_n & 0 & 0 & \cdots & 0 & x_n \end{vmatrix}$$

$$\operatorname{row}_1 - \frac{V_4}{X_n} \times \operatorname{row}_{n-3}$$

Zhengwen Liu (UCLouvain)

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

$$\mathcal{M}_n(1^-, 2^-, 3^+, \dots, n^+) \simeq \frac{s^2}{(k_3^\perp)^2} \det \phi,$$

UCLouvain IRMP C

Almost triangular!

$$\det \phi = \begin{vmatrix} x_4 & x_5 - x_4 - v_4 & x_6 - x_4 - v_4 & \cdots & x_{n-1} - x_4 - v_4 & x_n - x_4 \\ 0 & v_5 & x_6 - x_5 & \cdots & x_{n-1} - x_5 & x_n - x_5 \\ 0 & 0 & v_6 & \cdots & x_{n-1} - x_6 & x_n - x_6 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & v_{n-1} & x_n - x_{n-1} \\ x_n & 0 & 0 & \cdots & 0 & x_n \end{vmatrix}$$

Zhengwen Liu (UCLouvain)

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

$$\mathcal{M}_n(1^-, 2^-, 3^+, \dots, n^+) \simeq \frac{s^2}{(k_3^\perp)^2} \det \phi,$$

UCLouvain IRMP C

where

$$\det \phi = \begin{vmatrix} x_4 & x_5 - x_4 - v_4 & \cdots & x_{n-1} - x_4 - v_4 & x_n - x_4 \\ 0 & v_5 & \cdots & x_{n-1} - x_5 & x_n - x_5 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & v_{n-1} & x_n - x_{n-1} \\ x_n & 0 & \cdots & 0 & x_n \end{vmatrix} \\ = (v_4 v_5 \dots v_{n-1} x_n) \left(1 + x_n \left(\psi^{-1} \right)_{1,n-3} \right) = \frac{k_3^{\perp}}{k_n^{\perp}} v_4 v_5 \cdots v_{n-1} x_n$$

Matrix determinant lemma [Harville, 1997; Ding & Zhou, 2007]

$$\det \left(\boldsymbol{\psi} + \boldsymbol{u} \boldsymbol{v}^{\mathsf{T}} \right) \, = \, \left(1 + \boldsymbol{v}^{\mathsf{T}} \boldsymbol{\psi}^{-1} \boldsymbol{u} \right) \, \det \boldsymbol{\psi}$$

Here we can take $u = (x_n, 0, ..., 0)^T$ and $v = (0, 0, ..., 0, 1)^T$

Zhengwen Liu (UCLouvain)

In MRK, the MHV amplitude of gravitons factorizes

$$\mathcal{M}_{n}(1^{-}, 2^{-}, \ldots) = s^{2} \mathcal{C}(2^{-}; 3^{+}) \frac{-1}{|q_{4}^{\perp}|^{2}} \mathcal{V}(q_{4}; 4^{+}; q_{5}) \cdots \frac{-1}{|q_{n-1}^{\perp}|^{2}} \mathcal{V}(q_{n-1}, (n-1)^{+}, q_{n}) \frac{-1}{|q_{n}^{\perp}|^{2}} \mathcal{C}(1^{-}; n^{+})$$

Building blocks:

$$C(2^{-}; 3^{+}) = 1,$$

$$C(1^{-}; n^{+}) = x_{n}^{2} = \left(\frac{k_{n}^{\perp^{*}}}{k_{n}^{\perp}}\right)^{2}$$

$$\mathcal{V}(q_{i}, i^{+}, q_{i+1}) = q_{i}^{\perp^{*}} v_{i} q_{i+1}^{\perp} = \frac{q_{i}^{\perp^{*}} (k_{i}^{\perp} q_{i}^{\perp^{*}} - k_{i}^{\perp^{*}} q_{i}^{\perp}) q_{i+1}^{\perp}}{(k_{i}^{\perp})^{2}}$$

Zhengwen Liu (UCLouvain)

All graviton amplitudes

Beyond MHV, the formula become complicated; but fortunately the similar trick works and wen can obtain

$$\mathcal{M}_{n} = s^{2} \mathcal{C}(2;3) \frac{-1}{|q_{4}^{\perp}|^{2}} \mathcal{V}(q_{4};4;q_{5}) \cdots \frac{-1}{|q_{n-1}^{\perp}|^{2}} \mathcal{V}(q_{n-1},n-1,q_{n}) \frac{-1}{|q_{n}^{\perp}|^{2}} \mathcal{C}(1;n)$$

Building blocks:

$$\mathcal{C}(2^{\pm}; 3^{\mp}) = 1, \quad \mathcal{C}(1^{-}; n^{+}) = \mathcal{C}(1^{+}; n^{-})^{*} = \left(\frac{k_{n}^{\perp^{*}}}{k_{n}^{\perp}}\right)^{2}, \quad \mathcal{C}(a^{\pm}; b^{\pm}) = 0$$

$$\mathcal{V}(q_{i}, i^{+}, q_{i+1}) = q_{i}^{\perp^{*}} v_{i} q_{i+1}^{\perp} = \frac{q_{i}^{\perp^{*}} \left(k_{i}^{\perp} q_{i}^{\perp^{*}} - k_{i}^{\perp^{*}} q_{i}^{\perp}\right) q_{i+1}^{\perp}}{(k_{i}^{\perp})^{2}}$$

$$\mathcal{V}(q_{l}, l^{-}, q_{l+1}) = q_{l}^{\perp} v_{l}^{*} q_{l+1}^{\perp^{*}} = \frac{q_{l}^{\perp} \left(k_{l}^{\perp^{*}} q_{l}^{\perp} - k_{l}^{\perp} q_{l}^{\perp^{*}}\right) q_{l+1}^{\perp^{*}}}{(k_{l}^{\perp^{*}})^{2}}$$

- Complicated amplitudes of gravitons simply factorizes into a *t*-channel ladder in MRK!
- The result agrees with the one from dispersion relations [Lipatov 1982]

Zhengwen Liu (UCLouvain)

Quasi Multi-Regge Kinematics

Scattering equations in QMRK UCLouvain RMP C

When relaxing the strong rapidity ordering in MRK, e.g.

$$y_3 \simeq \cdots \simeq y_m \gg y_{m+1} \simeq \cdots \simeq y_r \gg y_{r+1} \cdots$$
 and $|k_3^{\perp}| \simeq \cdots \simeq |k_n^{\perp}|$

• Very similar to MRK, in QMRK we conjecture that all solutions of the scattering equations satisfy the same hierarchy as the ordering of the rapidities. More precisely,

$$\Re(\sigma_a) = \mathcal{O}\left(k_a^+\right), \quad \Im(\sigma_a) = \mathcal{O}\left(k_a^+\right), \quad t_a = \mathcal{O}\left(\sqrt{k_a^+ \kappa^{-h_a}}\right), \quad a = 3, \dots, n$$

- Fix $(\sigma_1, \sigma_2, \sigma_3) \rightarrow (0, \infty, k_3^+)$ or $(\sigma_1, \sigma_2 = t_2, t_1) \rightarrow (0, \infty, -1)$
- $\{3, n\} \subseteq \mathfrak{P}, \{1, 2\} \subset \mathfrak{N}$, the solutions have similar behaviors for other cases
- We numerically checked the scattering eqs up to 8 points
- Using the conjecture, we can obtain the correct factorization of amplitudes

Zhengwen Liu (UCLouvain)

Gluon amplitudes in QMRK (I) UCLouvain \mathbb{R}^{MP} \mathcal{C}

• Let us study $y_3 \simeq \cdots \simeq y_{n-1} \gg y_n$. Our conjecture gives

$$\mathcal{S}_n^1 = 1 + \tau_n \left(1 + \sum_{l \in \overline{\mathfrak{N}}} \zeta_l \right) = 0, \quad \mathcal{S}_n^2 = 1 + \zeta_n = 0$$

• Localize the integrals over ζ_n and au_n by $\mathcal{S}^{lpha}_n=0$

$$\mathcal{A}_n(1^-, 2^-, \ldots, n^+) \simeq s C(2^-; 3, \ldots, n-1) \frac{-1}{|q_n^\perp|^2} C(1^-; n^+),$$

• The generalized impact factor is given by a CHY-type formula

$$C(2^{-};3,\ldots,n-1) = q_{n}^{\perp} \int \prod_{a=3}^{n-1} \frac{d\sigma_{a}d\tau_{a}}{\tau_{a}} \frac{1}{\sigma_{34}\cdots\sigma_{n-2,n-1}\sigma_{n-1}} \left(\prod_{i\in\mathfrak{P},l\in\overline{\mathfrak{N}}} \frac{k_{l}^{\perp}}{k_{i}^{\perp}}\right) \\ \times \prod_{l\in\overline{\mathfrak{N}}} \delta\left(k_{l}^{\perp} - \sum_{i\in\mathfrak{P}} \frac{\tau_{l}\tau_{i}}{\sigma_{l}-\sigma_{i}}k_{i}^{+}\right) \delta\left(k_{l}^{\perp^{*}} - \frac{k_{l}^{+}}{k_{l}^{\perp}}\sum_{i\in\mathfrak{P}} \frac{\tau_{l}\tau_{i}}{\sigma_{l}-\sigma_{i}}k_{i}^{\perp^{*}} - \zeta_{l} \frac{q_{n}^{\perp^{*}}}{1 + \sum_{J\in\overline{\mathfrak{N}}}\zeta_{J}}\right) \\ \times \prod_{i\in\mathfrak{P}} \delta\left(1 + \tau_{i} - \sum_{l\in\overline{\mathfrak{N}}} \frac{\tau_{i}\tau_{l}}{\sigma_{i}-\sigma_{l}} \frac{k_{l}^{+}}{k_{l}^{\perp}}\right) \delta\left(1 + \zeta_{i} - \frac{k_{i}^{+}}{k_{i}^{\perp}}\sum_{l\in\overline{\mathfrak{N}}} \frac{\tau_{i}\tau_{l}}{\sigma_{i}-\sigma_{l}}\right),$$

Zhengwen Liu (UCLouvain)

Scattering Equations in MRK

22/25

Gluon amplitudes in QMRK (II) UCLouvain IMP C

_k

 K_1

• Similarly, in the limit

$$y_3 \gg y_4 \simeq \cdots \simeq y_{n-1} \gg y_n$$

using our conjecture, we can fix the integrals corresponding to legs 3 and n and obtain

$$\mathcal{A}_n(1^-, 2^-, 3, \dots, n) \simeq s C(2^-; 3) \frac{-1}{|q_4^\perp|^2} V(q_4; 4, \dots, n-1; q_n) \frac{-1}{|q_n^\perp|^2} C(1^-; n)$$

• Generalised Lipatov vertices admit the following CHY-type representation

$$\begin{split} V(q_4; 4, \dots, n-1; q_n) &= \left(q_4^{\perp^*} q_n^{\perp}\right) \int \prod_{a=4}^{n-1} \frac{d\sigma_a dt_a}{t_a} \frac{1}{\sigma_{45} \cdots \sigma_{n-2,n-1} \sigma_{n-1}} \left(\prod_{i \in \mathfrak{P}, l \in \mathfrak{N}} \frac{k_l^{\perp}}{k_i^{\perp}}\right) \\ &\times \prod_{l \in \mathfrak{N}} \delta\left(k_l^{\perp} - \sum_{i \in \mathfrak{P}} \frac{t_i t_l}{\sigma_l - \sigma_i} k_i^{+} + \frac{t_l}{1 - \sum_{J \in \mathfrak{N}} t_J} q_4^{\perp}\right) \delta\left(k_l^{\perp^*} - \frac{k_l^{+}}{k_l^{\perp}} \sum_{i \in \mathfrak{P}} \frac{t_i t_l}{\sigma_l - \sigma_i} k_i^{\perp^*} - \frac{\zeta_l}{1 + \sum_{J \in \mathfrak{N}} \zeta_J} q_n^{\perp^*}\right) \\ &\times \prod_{i \in \mathfrak{P}} \delta\left(1 - \sum_{l \in \mathfrak{N}} \frac{t_i t_l}{\sigma_i - \sigma_l} \frac{k_l^{+}}{k_l^{\perp}} + t_i\right) \delta\left(1 - \frac{k_i^{+}}{k_i^{\perp}} \sum_{l \in \mathfrak{N}} \frac{t_i t_l}{\sigma_i - \sigma_l} + \zeta_i\right). \end{split}$$

Zhengwen Liu (UCLouvain)

Scattering Equations in MRK

 k_3

 k_{5}

 K_{n-1}

 k_n

 q_1

 q_2

Impact factors and Lipatov vertices UCLouvain \mathbb{R}^{MP} \mathcal{C}

- Byproducts: the CHY-type formulas for generalized impact factors and Lipatov vertices
- We numerically checked these two formulas up to n = 8
- In particular, we can reproduce correct results for all Lipatov vertices $V(q_1; a, b; q_2)$ $(g^*g^* \rightarrow gg)$ and impact factors C(2; 3, 4, 5) $(gg^* \rightarrow gg)$ analytically
- We checked these formulas have correct factorization in soft, collinear limits
- We checked they have correct factorization in the Regge limit $y_3 \gg \cdots \gg y_a \simeq \cdots \simeq y_b \gg y_{b+1} \gg \cdots$

[Lipatov, hep-ph/9502308; Del Duca, hep-ph/9503340, hep-ph/9601211, hep-ph/9909464...]

Zhengwen Liu (UCLouvain)

Summary & Outlook

UCLouvain IRMP C

- We have initiated the study of Regge kinematics through the lens of the scattering equations.
- We found the asymptotic behaviour of the solutions in (quasi) Multi-Regge regime.
- While have no a proof of our conjecture, our conjecture implies the expected factorization of the amplitudes in YM and gravity. This gives strong support to our conjecture!
- In particular, an application of our conjecture leads to solving the 4d scattering equations exactly in MRK.
- Byproduct: we obtain the CHY-type formulas for impact factors and Lipatov vertices.

Summary & Outlook

- We have initiated the study of Regge kinematics through the lens of the scattering equations.
- We found the asymptotic behaviour of the solutions in (quasi) Multi-Regge regime.
- While have no a proof of our conjecture, our conjecture implies the expected factorization of the amplitudes in YM and gravity. This gives strong support to our conjecture!
- In particular, an application of our conjecture leads to solving the 4d scattering equations exactly in MRK.
- Byproduct: we obtain the CHY-type representations for impact factors and Lipatov vertices.
- It would be interesting to
 - ▶ find a rigorous mathematical proof of our conjecture
 - ► apply this framework for other theories
 - ▶ extend to loop level

