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Introduction

My most recent work that is relevant to “string theory

from a worldsheet viewpoint” is arXiv:1506.07706, which

is entitled

New Formulation of the Type IIB Superstring Ac-

tion in AdS5 × S5.

Even though I think that this paper is interesting, it

has not had much impact. In any case, I prefer to speak

about more recent work on a different topic, and the

organizers said that this would be okay. So here goes.

1



The techniques that have been developed in recent

years for constructing tree amplitudes of 4D supersym-

metric theories can be extended to 6D. The results are

contained in three articles:

•M. Heydeman, JHS, C. Wen, arXiv:1710.02170

• F. Cachazo, A. Guevara, M. Heydeman, S. Mizera,

JHS, C. Wen, arXiv:1805.11111

•M. Heydeman, JHS, C. Wen, S-Q Zhang, arXiv:1812.06111

Additional references can be found in these articles.
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Theories Considered

• (2,0) world-volume theory of flat M5-brane in R10,1

• (1,1) world-volume theory of flat D5-brane in R9,1

• (1,1) SU(N) Yang–Mills amplitudes in R5,1

• (2,2) supergravity in R5,1

• (2,0) supergravity coupled to tensor multiplets inR5,1

The number of particles, n, is even for nonzero M5

and D5 amplitudes. It can be odd for the other theories,

though the number of tensor particles must be even in

the last case.
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Spinor–helicity formalism in six dimensions

We will only consider massless theories in flat R5,1.

The massless little group in 6D is

Spin(4) = SU(2)× SU(2).

The on-shell six-momentum of a massless particle may

be written in the form

pAB = εabλAa λ
B
b = 〈λAλB〉, p2 ∼ Pf(pAB) = 0,

where A = 1, 2, 3, 4 is a Lorentz spinor index and a = ±
labels a doublet of the first little-group SU(2) factor.
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One can also define

pAB = εâb̂λ̃Aâλ̃Bb̂ = [λ̃Aλ̃B],

where the subscriptA labels the opposite chirality Lorentz

spinor and â labels a doublet of the second SU(2) factor

in the little group.

λ̃Aâ is determined by λAa via the condition

pAB =
1

2
εABCD pCD

up to SU(2) transformations. In particular,

λAa λ̃Ab̂ = 0.
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M5-brane supermultiplet

The M5-brane theory is a 6D theory of a self-interacting

tensor supermultiplet with (2, 0) supersymmetry. It has

Spin(5) = USp(4) R symmetry, which arises from rota-

tional symmetry of the five dimensions transverse to the

M5-brane in R10,1 (11D Minkowski spacetime).

The 16 on-shell degrees of freedom are

Bab : (3, 1; 1) ψaI : (2, 1; 4) φIJ : (1, 1; 5).

The interacting theory is of Born–Infeld type, with the

B field replacing the usual U(1) gauge field.
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The M5-brane theory has 16 supercharges

qAI = εabλAa η
I
b = 〈λAηI〉, where {ηIa, ηJb } = εabΩ

IJ .

ΩIJ is the USp(4) metric. The ten R charges are

RIJ =
1

2
(〈ηIηJ〉 + 〈ηJηI〉).

One can treat four of the eight ηIa’s that anticommute

as Grassmann numbers. This choice can either keep the

R symmetry or the little-group symmetry manifest, but

not both. The latter choice leads to more concise for-

mulas for scattering amplitudes. The two choices are

related by a Grassmann Fourier transform, which can be

implemented to verify the non-manifest symmetries.

7



For the choice Ω13 = Ω24 = 1, we have {ηIa, ηJb } = 0

where I, J = 1, 2. Then the 16 supercharges are

qAI = 〈λAηI〉 and q̃AI = λAa
∂

∂ηIa
.

In this basis an on-shell supermultiplet is described

by

Φ̃(η) = φ + ηIaψ
a
I +

1

2
εIJη

I
aη
J
b B

ab

+
1

2
〈ηIηJ〉φIJ + . . . + η4φ′.

As we have explained, only an SU(2) subgroup of the R

symmetry is manifest in these formulas.
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D5-brane and Yang–Mills supermultiplets

They are both (1, 1) vector supermultiplets that have

Spin(4) = SU(2) × SU(2) R symmetry. The on-shell

content is

Aaâ : (2, 2; 1, 1) φIÎ : (1, 1; 2, 2)

ψaÎ : (2, 1; 1, 2) ψâI : (1, 2; 2, 1)

where I and Î label R-symmetry doublets.

The 16 supercharges are given by

qAI = 〈λA ηI〉, q̃ÎA = [λ̃A η̃
Î ],

where

{ηIa, ηJb } = εab ε
IJ , {η̃Îâ, η̃

Ĵ
b̂
} = ε

âb̂
εÎ Ĵ , {ηIa, η̃Îâ} = 0.
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The representation with manifest little-group symme-

try utilizes the I = 1 components of ηIa, now denoted ηa,

and the Î = 1 components of η̃Îâ, now denoted η̃â. The

on-shell superfield in this representation is

Φ̃(η) = φ11̂ + ηaψ
a1̂ + η̃âψ

â1 + ηaη̃âA
aâ

+η2φ21̂ + η̃2φ12̂ + . . . + η2η̃2φ22̂,

where

η2 =
1

2
εabηaηb and η̃2 =

1

2
εâb̂η̃âη̃b̂.
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Maximal supergravity supermultiplet

The (2, 2) supergravity multiplet can be constructed

by tensoring (2, 0) ⊗ (0, 2) or (1, 1) ⊗ (1, 1). The latter

choice is essential for n odd. The theory has USp(4) ×
USp(4) R symmetry.

The on-shell bosons are

(3, 3; 1, 1)+(3, 1; 1, 5)+(1, 3; 5, 1)+(2, 2; 4, 4)+(1, 1; 5, 5),

and the on-shell fermions are

(3, 2; 1, 4) + (2, 3; 4, 1) + (2, 1; 4, 5) + (1, 2; 5, 4).

This supermultiplet, Φ(η, η̃), is a function of four η’s and

four η̃’s.
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Four-particle amplitudes

Up to constant coefficients and momentum-conservation

delta functions, the four-particle (n = 4) amplitudes are:

AM5
4 = δ8(

∑
i

qAIi )

AD5
4 = δ4(

∑
i

qAi ) δ4(
∑
i

q̃iA)

A
(1,1) SYM
4 = δ4(

∑
i

qAi ) δ4(
∑
i

q̃iA)/st

A
(2,2) Sugra
4 = δ8(

∑
i

qAIi ) δ8(
∑
i

q̃ÎiA)/stu

These formulas are extremely concise!
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The SYM formula has cyclic symmetry and should be

multiplied by a color factor. Then one should sum over

cyclically inequivalent permutations. The other three

formulas have total symmetry. These features hold for

all n.

As mentioned earlier, a suitable Grassmann Fourier

transform makes the full R symmetry manifest for each

theory. This symmetry, together with the supersymme-

tries made manifest by the Grassmann delta functions,

implies that the other half of the supercharges are also

conserved.
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M5-brane amplitudes

In the CHY formalism, a coordinate σi ∈ CP 1 is

associated to the ith particle. These are defined up to a

common SL(2,C) transformation.

The n-particle tree-level scattering amplitude for the

M5 theory has the structure

AM5
n =

∫
dµ6D

n IDBI I(2,0),

where dµ6D
n is the n-particle CHY measure in 6D. The

number of particles, n, is necessarily even for all DBI

theories, including the M5-brane and D5-brane theories.
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Each of the I factors is required to transform with

weight −2 under SL(2,C), since the CHY measure has

weight 4. This means that if

σi→ (aσi + b)/(cσi + d)

for all i, with ad− bc = 1, then

I →
n∏
i=1

(cσi + d)2 × I.

Our construction utilizes bosonic and fermionic poly-

nomials of degree m = n
2 − 1:

ρAa (σ) =

m∑
k=0

ρAk,aσ
k , χIa(σ) =

m∑
k=0

χIk,aσ
k .
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The CHY measure is given by

dµ6D
n even =

∏n
i=1 dσi

∏m
k=0 d

8ρAk,a
vol(SL(2,C)σ × SL(2,C)ρ)

∆B(ρ)

V 2
n

,

where

∆B(ρ) =

n∏
i=1

δ6

(
pABi − 〈ρ

A(σi) ρ
B(σi)〉∏

j 6=i σij

)
,

σij = σi − σj
and

Vn =
∏

1≤i<j≤n
σij.
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The CHY scattering equations

Ei =
∑
j

(An)ij = 0 i = 1, 2, . . . , n

where

(An)ij =
pi · pj
σij

, i, j = 1, 2, . . . , n,

are a consequence of the delta functions in the measure.

The scattering equations are n − 3 linearly indepen-

dent equations for the σi’s – defined up to an overall

SL(2,C) – that have (n− 3)! solutions.
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The left factor in the integrand is

IDBI = det′An = (Pf′An)2 .

As before,

(An)ij =
pi · pj
σij

, i, j = 1, 2, . . . , n.

Since An has co-rank 2 when n is even, one defines

Pf′An =
(−1)p+q

σpq
PfA

[pq]
n ,

where two rows and columns, p and q, are removed.

Pf′An has weight −1 and is independent of p, q, so IDBI

has weight −2.
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The right factor in the integrand implements (2, 0)

SUSY

I(2,0) = Pf′An

∫
dΩ

(2,0)
F ,

where

dΩ
(2,0)
F = Vn

 m∏
k=0

d4χIk,a

∆
(2,0)
F (q, ρ, χ),

and

∆
(2,0)
F (q, ρ, χ) =

n∏
i=1

δ8

(
qAIi −

〈ρA(σi)χ
I(σi)〉∏

j 6=i σij

)
.

I(2,0) also has weight −2, as required.
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The logic is as follows:

AM5
n =

 n∏
i=1

δ(p2
i )δ

4
(
λ̃iAâq

AI
i

)AM5
n .

The factor δ(p2
i ) allows us to express pABi as 〈λAi λ

B
i 〉,

as described earlier. Similarly, δ4
(
λ̃iAâq

AI
i

)
allows us

to express qAIi as 〈λAi η
I
i 〉. Then AM5

n only depends on

λAia and ηIia, and it is the desired amplitude.

There are analogous formulas for the other theories to

be discussed. To save time, I will show less detail.
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D5-brane amplitudes

These amplitudes are similar to the M5-brane ones

with I(2,0) replaced by I(1,1) = Pf′An
∫
dΩ

(1,1)
F , where

dΩ
(1,1)
F = Vn

 m∏
k=0

d2χk,ad
2χ̃k,â

∆
(1,1)
F (q, ρ, χ),

and

∆
(1,1)
F (q, ρ, χ) =

n∏
i=1

δ4

(
qAi −

〈ρA(σi)χ(σi)〉∏
j 6=i σij

)

×
n∏
i=1

δ4

(
q̃iA −

[ρ̃A(σi)χ̃(σi)]∏
j 6=i σij

)
.
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(1,1) Super Yang–Mills amplitudes

For even n, these amplitudes are obtained by the

replacement IDBI → PT(α) in the D5-brane formula.

Thus, the color-stripped amplitudes are

A(1,1) SYM
n even (α) =

∫
dµ6D

n even PT(α) I(1,1),

where α ∈ Sn/Zn labels cyclically inequivalent permu-

tations of the n external particles and

PT(12 · · ·n) =
1

σ12σ23 · · ·σn1
.

The nontrivial challenge is to find the formula for the

amplitudes when n is odd.
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The case of odd multiplicity

The amplitudes for n = 2m + 1 take the form

A(1,1) SYM
2m+1 (α) =

∫
dµ6D

2m+1 PT(α) Î(1,1),

where

Î(1,1) = Pf′Ân

∫
dΩ̂

(1,1)
F .

The formulas for Ân and dΩ̂
(1,1)
F are deduced by con-

sidering the soft-gluon limit of A(1,1) SYM
2m+2 (α). They in-

herit an auxiliary puncture σ? and null vector p?, as-

sociated to the soft particle. Since p? appears in the

numerator and denominator, it survives in the soft limit,

though the amplitude does not depend on the choice.
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Verification of the odd-n result

• All symmetries, dimensions, and delta functions are

correct.

• The n = 3 formula agrees with the result obtained by

Dennen, Huang, and Siegel (0910.2688).

• Numerical studies give agreement with Feynman dia-

grams for n = 5, 7.

• The soft-gluon limit of the odd-n amplitudes repro-

duces the even-n amplitudes.
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(2,2) Supergravity amplitudes

Using the KLT double-copy procedure, the (2, 2) su-

pergravity amplitudes for n = 2m + 2 are given by

A(2,2) sugra
2m+2 =

∫
dµ6D

2m+2 I
L
(1,1) I

R
(1,1),

where the Grassmann coordinates in IL
(1,1)

and IR
(1,1)

are

distinct. Similarly, for n = 2m + 1

A(2,2) sugra
2m+1 =

∫
dµ6D

2m+1 Î
L
(1,1) Î

R
(1,1).

As before, the even-n and odd-n formulas are related

to one another by the soft-graviton theorem.
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(2,0) Supergravity coupled to tensor multiplets

Type IIB superstring theory, compactified on K3, gives

a 6D theory with (2, 0) supersymmetry, which in the IR

consists of (2, 0) supergravity coupled to 21 tensor mul-

tiplets. The moduli space of the string theory,

SO(5, 21;Z)\SO(5, 21)/(SO(5)× SO(21)),

is parametrized by the 21 × 5 scalar fields in the tensor

multiplets.

At fixed points of the duality group tensor multiplets

are replaced by strongly interacting (2, 0) CFT’s.
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This theory can also be obtained as the strong-coupling

limit of the heterotic string theory toroidally compact-

ified to 5D. The 5D heterotic coupling constant corre-

sponds to the radius of a circle that decompactifies in

the limit.

Our analysis is applicable to the field-theory limit,

which is perturbative away from the fixed points.

We have constructed all the tree amplitudes of the

field-theory limit and used soft theorems to demonstrate

that it has an SO(5, 21)/(SO(5)×SO(21)) moduli space.
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Other results

Maximal SYM and supergravity amplitudes in 5D

have been obtained by straightforward restriction of the

6D formulas to 5D.

Amplitudes for 4D N = 4 SYM on the Coulomb

branch have been derived from the massless 6D SYM

amplitudes by a less trivial dimensional reduction that

gives massive spinor-helicity variables in 4D.
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Conclusion

We have obtained all of the tree amplitudes for vari-

ous supersymmetric theories in 6D: M5-brane, D5-brane,

(1, 1) SYM, (2, 2) supergravity, and (2, 0) supergravity

coupled to 21 tensor multiplets.

The last three theories have UV completions as string

theories without adding any more massless degrees of

freedom. It would be interesting to extend our results to

the string amplitudes.

Amplitudes of theories with (1, 0) supersymmetry also

deserve study.
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