Searches for new vacua II: A new Higgstory at the cosmological collider

Junwu Huang Perimeter Institute Oct, 2019 @ GGI

1904.00020, **1907.10624**, **1908.00019** Anson Hook, **Junwu Huang**, Davide Racco

Hierarchy problem

- EW hierarchy problem & CC problem
 - Symmetry + Naturalness
 - Landscape/Multiverse + Anthropics

(Credit: Giovanni Villadoro)

Multiverse

- "...knowing that it could be out there is itself very important information..." (Nima or Savas)
 - Weinberg CC
 - String Axiverse

One step further: see a new minimum!

• Split Supersymmetry hep-ph/0406088, hep-ph/0409232, 1210.0555

0905.4720

- How can we directly look for a minimum?
 - Local bubbles
 - High scale higgs minimum

Multiverse

- "...knowing that it could be out there is itself very important information" (Nima or Savas)
 - Weinberg CC
 - String Axiverse
 - Split Supersymmetry
- How can we directly look for a minimum?
 - Go far away: Local bubbles Anson Hook, JH, arXiv:1904.00020
 - Go back into the past: High scale Higgs minimum

Outline

- The higgstory
- The tale of SM fermions
- Result and remarks
- A lower risk lower reward signal

Anson Hook, **JH**, Davide Racco arXiv:1908.00019

A new Higgstory

Higgs instability (Brief)

- Higgs instability 1505.04825
 - Higgs quartic $\lambda_h < 0 @ v_{\lambda=0} \sim 10^{11} \,\text{GeV}$
 - The EW minimum v_{EW} is meta-stable

- During inflation ($H \lesssim 6 \times 10^{13} \,\text{GeV}$), Higgs could leave EW minimum.
- What does Higgs instability + High scale inflation imply?
 - New physics at low energy scales?
 - New coupling of Higgs to Hubble/Inflaton?
 - Can we be in a high scale Higgs minimum all along?

Higgs instability (Implications)

- Higgs instability
 - 1505.04825
 - Higgs quartic $\lambda_h < 0 @ v_{\lambda=0} \sim 10^{11} \,\text{GeV}$
 - The EW minimum v_{EW} is meta-stable

- During inflation ($H \lesssim 6 \times 10^{13} \,\text{GeV}$), Higgs could leave EW minimum.
- What does Higgs instability + High scale inflation imply?
 - New physics at low energy scales?
 - New coupling of Higgs to Hubble/Inflaton?

I711.03988
Can we be in a high scale Higgs minimum all along?

A new Higgstory

- During inflation
 - Higgs fluctuate over $v_{\lambda=0}$ and roll to the UV minimum.
 - Stay there the whole time when $v_{\rm UV} > H$
 - Require: Stringy/GUT contribution stabilize runaway direction
- After inflation:
 - Thermal contribution lift the UV minimum
 - The Higgs rolls back and decays through scattering with background SM radiation
 - *Require*: Reheat to temperatures $T_{\text{max}} > v_{\text{UV}}$

A new Higgstory

- During inflation
 - Higgs fluctuate over $v_{\lambda=0}$ and roll to the UV minimum.
 - Stay there the whole time when $v_{\rm UV} > H$
 - Require: Stringy/GUT contribution stabilize runaway direction
- After inflation:
 - Thermal contribution lift the UV minimum
 - The Higgs rolls back and decays through scattering with background SM radiation
 - *Require*: Reheat to temperatures $T_{\text{max}} > v_{\text{UV}}$

Summary: parameter space

Cosmological collider of SM fermions

Primordial perturbations (Brief)

Primordial perturbation ζ(x)

...their correlations $\langle \zeta(x_1)\zeta(x_2)...\zeta(x_n) \rangle$ encodes information of inflation

• Correlation functions (Fourier)

 $\left\langle \zeta(x_1)\zeta(x_2)\ldots\zeta(x_n)\right\rangle \to \left\langle \zeta(k_1)\zeta(k_2)\ldots\zeta(k_n)\right\rangle$

Power spectrum (leading effect)

• Power spectrum (leading effect):

$$\left\langle \delta \phi(k_1) \delta \phi(k_2) \right\rangle \sim \frac{H^2}{k_1^3} \delta\left(\overrightarrow{k}_1 + \overrightarrow{k}_2 \right)$$

• Density correlation function:

$$\begin{cases} \left\langle \zeta(k_1)\zeta(k_2) \right\rangle = (2\pi)^3 \frac{2\pi^2 P_{\zeta}}{k_1^3} \delta\left(\vec{k}_1 + \vec{k}_2\right) \\ \left\langle \zeta(0)\zeta(x) \right\rangle \sim H^2 \log|x| \end{cases}$$

Non-Gaussianity (Brief)

• Non-gaussianity:

$$\langle \zeta(k_1)\zeta(k_2)\zeta(k_3) \rangle' = rac{(2\pi)^4 \mathcal{P}_{\zeta}^2}{k_1^2 k_2^2 k_3^2} S(k_1, k_2, k_3).$$

Cosmological collider

0911.3380, 1503.08043

- Cosmological collider physics concerns the case where there are intermediate *massive* particles
- Massive particle *redshifts* differently
- and lead to oscillating shapes in the squeezed limit ($k_3 < k_2 \sim k_1$)

Cosmological collider (Brief)

• Non-gaussianity:

$$\langle \zeta(k_1)\zeta(k_2)\zeta(k_3) \rangle' = rac{(2\pi)^4 \mathcal{P}_{\zeta}^2}{k_1^2 k_2^2 k_3^2} S(k_1, k_2, k_3).$$

- Cosmological collider 0911.3380, 1503.08043
 - Cosmological collider physics concerns the case where there are intermediate *massive* particles
 - Massive particle redshifts differently
 - and lead to oscillating shapes in the squeezed limit ($k_3 < k_2 \sim k_1$)

$$S \propto f_{\rm NL}^{
m (clock)} \left(rac{k_3}{k_1}
ight)^{2i ilde{n}}$$

$$\tau = 0$$

$$k_1$$

$$k_3 \ll k_1, k_2$$

$$\tilde{m} = \frac{m}{H}$$

Cosmological collider (Brief)

CMS detector

(Credit: Zhong-Zhi Xianyu)

Using SM Fermions

- Why fermions?
 - SM fermion masses scan many order of magnitude
 - Fermions have no hierarchy problem
 - Fermions enhance EW symmetry breaking Anson Hook, JH, Davide Racco, arXiv:1908.00019
- How to use SM fermions?
 - Couple them to inflaton (shift symmetric):

$$- \frac{c_{f_i}}{\Lambda_f} \partial_\mu \phi \,\overline{f_i} \gamma^\mu \gamma^5 f_i$$

1805.02656

A fermion story

- Fermion dispersion relation (small Hubble)
 - Rolling inflaton ($\dot{\phi}$) breaks Lorentz Symmetry $^{ au}$

$$-\frac{c_{f_i}}{\Lambda_f}\partial_\mu\phi\,\overline{f_i}\gamma^\mu\gamma^5 f_i \qquad \qquad \flat \quad \omega^2 = (|k| \mp \lambda)^2 + m^2 \quad \lambda = \frac{\dot{\phi}}{\Lambda_f}$$

• Fermion production ($H \ll m \ll \lambda$)

$$(k_3 \sim \omega(\tau_3) \sim m)$$

 $egin{array}{ccc} \delta \phi & \delta \phi & k_2 \ \kappa_1 & & au_2 \ au_1 & f & au_2 \end{array}$

- Fermion mode: $(\omega \sim m, k \sim \pm \lambda)$
- Production rate:
- Effective density:
- Fermion redshift
- Fermion annihilation

A fermion story

- Fermion dispersion relation
 - $\omega^2 = (|k| \mp \lambda)^2 + m^2$
- Fermion production $(H \ll m \ll \lambda)$
 - Fermion mode: $(\omega \sim m, k \sim \pm \lambda)$
 - Production rate: $\Gamma \propto e^{-\frac{\omega^2}{\dot{\omega}}} \sim e^{-\frac{m^2}{\lambda H}} \Big|_{\sqrt{\lambda H} \ll m \ll \lambda}$
 - Effective density: $n \sim k^2 \delta k \sim m \lambda^2 \Big|_m$
- Fermion redshift
- Fermion annihilation

- J " 7
 - Non-adiabatic particle production $\overline{I} \ll m \ll \lambda$

A fermion story

- Fermion dispersion relation: $\omega^2 = (|k| \mp \lambda)^2 + m^2$

- Fermion redshift: $(k_3 \sim \omega(\tau_3) \sim m)$ From $(\omega \sim m, k \sim \lambda)$ to $(\omega \sim \lambda, k \sim 0)$ $\omega \sim \lambda$ sets oscillation frequency $(\frac{k_3}{k_1})^{2-2i\lambda}$

 - Fermion annihilation
 - Fermions $(\omega \sim \lambda, k \sim 0)$ can only pair annihilate

 $(k_2 \sim k_1 \sim \omega(\tau_1) \sim \lambda)$

Results & implications

Signal strength

- Signal from a fermion loop: $\mu = \sqrt{\lambda^2 + m^2} \sim \lambda \gg m$
 - Shape: $S(k_1, k_2, k_3) \stackrel{\lambda \gg m}{\cong} f_{\mathrm{NL}}^{(\mathrm{clock})} \left(\frac{k_3}{k_1}\right)^{2-2i\tilde{\mu}} + \cdots$
 - Amplitude: $f_{\rm NL}^{({\rm clock})} \approx \frac{N_c}{6\pi} \mathcal{P}_{\zeta}^{-1/2} \left(\frac{m}{\Lambda_f}\right)^3 \widetilde{\lambda}^2 \frac{e^{\pi \widetilde{\lambda}} \widetilde{\mu} \Gamma(-i\widetilde{\mu})^2 \Gamma(2i\widetilde{\mu})^3}{2\pi \Gamma(i(\widetilde{\lambda}+\widetilde{\mu}))^3 \Gamma(i(\widetilde{\mu}-\widetilde{\lambda})+1)}$

Take home:
I. SM fermions scan Hubble
2. Multiple SM fermions can be observed together

Distinguishing the signal

- How to distinguish the signal:
 - Amplitude (f_{NL}) and frequency -> Mass (m/H) & Coupling (λ/H)
 - Two/multiple fermions:
 - Ratio of fermion masses:
- Implications:
 - A new minimum!
 - New probe of GUT, string theories...
 - No two Higgs doublet, no new coloured states...

Implications

- How to distinguish the signal:
 - Amplitude (f_{NL}) and frequency -> Mass (m/H) & Coupling ($\lambda/H)$
 - Two/multiple fermions:
 - Ratio of fermion masses: $\frac{\widetilde{m}_i}{\widetilde{m}_i} = \frac{y_i}{y_i}$
- Implications:
 - A new minimum!

We can look for the landscape, directly!

- UV: New probe of GUT, string theories...
- IR: No two Higgs doublets, no many new coloured states...

Low(er) risk & low(er) reward

Anson Hook, **JH**, Davide Racco arXiv:1908.00019

Parameter space II

• Fermions produced (effective density):

• Fermions impact the Higgs potential

Top quark density affect Higgs potential!

• Correction to mass (small mass limit):

• Fermions produced (effective density):

$$n \sim k^2 \delta k \sim m \lambda^2 \Big|_{m \ll H} \longrightarrow m_f n_f \sim y_f^2 \lambda_f^2 h^2 \gg H^2 h^2$$

• Fermions impact the Higgs potential

• Correction to mass (small mass limit):

$$\delta V_h = -\frac{y_f^2}{2\pi^2}\lambda_f^2 h^2$$

- Dynamical equilibrium:
 - 1. Fermion production
 - 2. Higgs roll to the minimum
 - 3. Fermions become heavy
 - 4. Particle production shuts off

$$\Gamma \propto e^{-\frac{\omega^2}{\dot{\omega}}} \sim e^{-\frac{m^2}{\lambda H}} \Big|_{1 \ll m^2/\lambda H \ll \lambda/H}$$

• The resulting Higgs potential:

$$V_h = -m_h^2 |\mathcal{H}|^2 + \lambda_h |\mathcal{H}|^4 - \frac{N_c y_f^2}{\pi^2} \lambda_f^2 |\mathcal{H}|^2 \exp\left[-\frac{\pi y_f^2 |\mathcal{H}|^2}{\lambda_f H}\right]$$

 $\lambda_t = 0$

► h

 $v_{\rm EW}$

v

• The resulting Higgs potential:

$$V_h = -m_h^2 |\mathcal{H}|^2 + \lambda_h |\mathcal{H}|^4 - \frac{N_c y_f^2}{\pi^2} \lambda_f^2 |\mathcal{H}|^2 \exp\left[-\frac{\pi y_f^2 |\mathcal{H}|^2}{\lambda_f H}\right]$$

• The dynamical Higgs minimum: $_{V(h)}$

$$v = \frac{1}{y_f} \sqrt{\frac{2}{\pi} \lambda_f H} \left(1 - \frac{e\lambda_h / y_f^4}{\pi N_C \lambda_f / H} + \mathcal{O}(\lambda_h^2) \right)$$

One parameter signal

• The signal shape:

$$S(k_1, k_2, k_3) \stackrel{k_3 \ll k_1 \sim k_2}{\simeq} f_{\mathrm{NL}}^{(\mathrm{clock})} \left(\frac{k_3}{k_1}\right)^{2-2i\widetilde{\lambda}_f}$$

• The signal amplitude:

 $f_{\rm NL}^{\rm (clock)} \approx \frac{4\sqrt{2}N_c \mathcal{P}_{\zeta}}{3e} \tilde{\lambda}_f^{13/2}$

One parameter signal

- Blue + Green: Dynamical minimum with Top quark signal
- Green: Lighter SM fermions signal from a true minimum

Conclusion

- Higgs can be in a distinct minimum during inflation
- Cosmological collider physics offers a way to tell
- The minimum can be a physical one, and we can measure signals from light SM quarks
- The minimum can be generated dynamically, and the top quark can be looked for

Does one new minimum hint multiverse? Would a few of them convince you?

Sempre caro mi fu quest'ermo colle, e questa siepe, che da tanta parte dell'ultimo orizzonte il guardo esclude. Ma sedendo e mirando, interminati spazi di là da quella...

-- Giacomo Leopardi