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Outline

The Standard Model (and beyond) at finite temperature 

The ElectroWeak Phase Transition 

Composite Higgs models at finite temperature 

Gravitational wave spectrum and baryogenesis
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   The SM phase transition is a smooth crossover     

   The EW symmetry is restored at T > Tc 

   Different scenario if mh ≲ 70 GeV

The Standard Model at finite temperature
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New Physics at finite temperature
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The EW symmetry is restored at T > T0, below T0 a new (local) minimum appears 

At a critical Tc  the two minima are degenerate and separated by a barrier            
(two phases coexist) 

The transition starts at the nucleation temperature Tn < Tc



Bubble nucleation

⟨h⟩ ≠ 0

⟨h⟩ = 0

B ≠ 0

B ∼ e−⟨h⟩/T
CP



   Tree level effects 

   renormalizable terms: new scalars coupling to the Higgs 

   non-renormalizable operators:    

   Thermal effects 

   T = 0   loop effects:                                                                                             
large loop corrections from the Coleman-Weinberg potential can 
generate 

A barrier in the effective potential

c |H |6

λhη h2η2

V(h, T ) ≃
1
2

(−μ2
h + cT2)h2 +

λ
4

h2 − ETh3

E gets contributions from all the 
bosonic dof coupled to the Higgs 

E arises from the non-analyticity 
of JB(y) at y = 0

typical BSM scenario realising 1st order EWPhT: light stops in the MSSM

h4 log h2



deviations in the 
Higgs couplings

First order  
phase transitions

Gravitational wave 
spectrum

EW Baryogenesis

New Physics 
in the Higgs sector

DM candidate



deviations in the 
Higgs couplings

New Physics 
in the Higgs sector

Gravitational wave 
spectrum

EW Baryogenesis

observables at  
future colliders

observables at  
future interferometers

Collider - cosmology synergy

First order  
phase transitions

DM candidate



  Nucleation probability (per unit time and volume) P:  

  Nucleation temperature Tn: 

  Vacuum expectation value in the broken phase at Tn: vn   

  Vacuum energy released in the plasma: 

  Time duration of the phase transition: β/Hn

   Bubble wall velocity: vw

key parameters

extracted from the solution 
of the bounce equation

d2ϕ
dr2

+
2
r

dϕ
dr

= ∇V(ϕ, T )

dϕ/dr |r=0 = 0 ϕ |r=∞ = 0

First order phase transitions

P = T4e−S3/T

∫
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H P ≃ O(1)

α = ϵ/ρrad

β
Hn

= T
d

dT
S3

T
Tn

for phase transitions at the EW scale 
S3/Tn ≈ 140

highly non-trivial: requires hydrodynamics 
modelling of the bubble wall moving in the plasma 



single-field equation
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multi-field equation
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can be solved with the  
overshoot-undershoot method 

classical motion analogy: 
particle at position ɸ moving in time r  

under the potential -V and  
a time-dependent friction term

trajectory not known: 
the path is deformed from an initial guess  

until convergence is reached

the bounce is 
recomputed 

along each path

The bounce equation



The SM + scalar singlet
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Higgs + singlet effective potential (Z2 symmetric)  
in the high-temperature limit

thermal masses (count the dof coupled to the scalars)

EW symmetry restored at very high T:           
<h, η> = (0,0) 

two interesting patterns of symmetry breaking 
(as the Universe cools down)
1. (0,0) -> (v,0)                     1-step PhT 
2. (0,0) -> (0,w) -> (v, 0)    2-step PhT

2-step more natural as, typically, cη < ch  
and the singlet is destabilised before the Higgs

Figure 1: Left panel: normalised scalar potential in the SO(5)/SO(4) CHM at T = 0 (blue curve)
and at the critical temperature (red curve). The parameters are chosen to correctly reproduce
the EW vacuum and the Higgs mass. Right panel: schematic illustration of the two-step phase
transition. A darker colour corresponds to a deeper potential at the critical temperature Tc.

experimental searches. In particular the fermionic top partners are excluded up to masses
of order 1 TeV (see for instance ref. [25]) and the vector resonances up to ⇠ 2 � 3 TeV
(see for instance ref. [26]). The EWPhT in these models happens at temperatures well
below the TeV scale, so that the approximation of neglecting the resonances e↵ects is
fully justified.3

3 Models with an additional singlet

The failure of the minimal CHM in realising a first order EWPhT motivates the ex-
ploration of more complex scenarios with extended global symmetries and a non-minimal
Higgs sector. In this respect, CHMs based on the SO(6)/SO(5) coset [27] are very promis-
ing since they predict an extra scalar, neutral under the SM group. As well-known, in the
elementary singlet-extended SM, the presence of a light scalar can help achieving a first
order phase transition through a tree-level barrier in the scalar potential.

As we saw in the previous section, phenomenologically viable models require the VEV
of the scalar fields in the Higgs sector to be significantly smaller than the compositeness
scale f , so that ⇠ ⌧ 1. In this regime, the non-linearities due to the Goldstone nature
of the Higgs are small and the whole potential can be well approximated by a simple
expansion including quadratic and quartic terms in the scalar fields. This approximation

3The e↵ects of resonances on the properties of the EWPhT have been studied within the holographic
realizations of the composite Higgs scenarios [34]. The results confirm that resonances with a mass larger
than the critical temperature have a small impact on the properties of the phase transition.
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The SM + scalar singlet
phenomenology

Higgs + singlet (with Z2 symmetry and mη > mh/2) poorly constrained 

mη < mh/2 excluded by the invisible Higgs decay 

direct searches very challenging: need for a 100TeV collider. 
interesting channel: qq -> qq ηη (VBF) 

indirect searches:

λ3 =
m2

h

2v
+

λ3
hη

24π2

v3

m2
η

+ …modification to the triple Higgs coupling 

corrections to the Zh cross section at lepton colliders

dark matter direct detection
the singlet can be a DM candidate 

constraints are very model dependent.                                                   
the cosmological history depends on the hidden sector



The SM + scalar singlet

Curtin, Meade, Yu, 2015
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Figure 10. Summary of the nightmare scenario’s parameter space. Gray shaded regions require non-
perturbative �S > 8 and are not under theoretical control, see Section 2.2. Red shaded region with red
boundary: a strong two-step PT from tree-effects is possible for some choice of �S , see Section 3.1. Orange
shaded region with orange boundary: a strong one-step PT from zero-temperature loop-effects is possible, see
Section 3.1.2. Gray-Blue shading in top-right corner indicates the one-loop analysis becomes unreliable for
�HS & 5(6) in the one-step (two-step) region, see Section 3.1.3 and 3.2.2. In the blue shaded region, higgs
triple coupling is modified by more than 10% compared to the SM, which could be excluded at the 2� level by
a 100 TeV collider, see Section 5.1. In the green shaded region, our simple collider analysis yields S/

p
B  2

for VBF production of h⇤
! SS at a 100 TeV collider, see Section 4. (In both cases assume 30 ab�1 of

data.) In the purple shaded region, ��Zh is shifted by more than 0.6%, which can be excluded by TLEP, see
Section 5.2. Note that both EWBG preferred regions are excludable by XENON1T if S is a thermal relic, see
Section 6.

searches through VBF production of h⇤ ! SS at a 100 TeV collider are sensitive. The purple region
shows where TLEP can probe the scenario by measuring ��Zh.

The entire one-step phase transition region, and much of the two-step region, can be probed with
the �3 and ��Zh measurements. Furthermore, our simple collider analysis for the sensitivity of VBF
direct singlet production yields S/

p
B > 2 in almost the entire two-step region. It may therefore

be possible to exclude the entire two-step region with a more complete analysis [74], or with more

– 24 –

λ3 modified by more than 10% 
accessed at FCC-hh with 30/ab

              with VBF 
accessed at FCC-hh with 30/ab

S/ B > 2

σZh modified by more than 0.6% 
accessed at FCC-ee

PhT param. space  

shrinks if nucl. prob.  

is taken into account

nightmare scenario



The SM + scalar singlet

Beniwal et al., 2017
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In the Z2 symmetric model, the singlet scalar cannot account for all the DM 
without any new dark sector

Figure 5. Parameter space of the scalar singlet model relevant for EWBG together with the
DM abundance and corresponding direct detection exclusion limits. Constraints from the vacuum
structure of the theory are also taken into account, hence the reason why the abundance or the
direct detection limits do not enter into the gray or yellow shaded regions.

5 Cosmological modification

To ensure that we discuss all the parameter space where the scalar singlet model is viable,

we also discuss a possible modification of the cosmological history which can expand this

area significantly. We will focus on a very simple and generic cosmological modification

that can describe the e↵ects of most existing cosmological models.

We assume an additional contribution to the energy budget of the early universe ⇢N .

The modified Friedmann equation reads

H2
⌘

✓
ȧ

a

◆2

=
8⇡

3M2
p

⇣⇢R
a4

+
⇢N
an

⌘
, (5.1)

where a ⌘ a(t) is the scale factor and n > 4 such that the new component dilutes before it

modifies any cosmological measurements. The first of such important measurements comes

from Big Bang Nucleosynthesis (see e.g. Refs. [80, 81]). We can directly measure the Hubble

rate at that time since we precisely know when the neutrons have to freeze-out in order to

save a fraction of them required to recreate observed abundances of light elements. While

the observed expansion is consistent with a universe filled with the SM radiation, within

experimental uncertainties, we can still add a small fraction of the additional component

⇢N .

First, we translate the e↵ective number of neutrino species into a modification of the

– 15 –



the basic idea:  
Higgs as Goldstone boson of G/H of a strong sector

EWPhT in Composite Higgs models
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PhTs in Composite Higgs models

phase transition G -> H in the strongly 
coupled sector 

EW phase transition

multiple peaks in the GW spectrum?
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H
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a global symmetry G above f (~ TeV) is 
spontaneously broken down to a subgroup H 

the structure of the Higgs sector is determined 
by the coset G/H 

H should contain the custodial group 

the number of NGBs (dim G - dim H) must be 
larger than (or at least equal to) 4  

the symmetry G must be explicitly broken to 
generate the mass for the (otherwise massless) 
NGBs  

Basic rules for Composite Higgs models



G/H elem. 
SM
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m*
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E

we borrow the idea from QCD  
where we observe that the  

(pseudo) scalars are the lightest states
the Higgs could be a kind of pion  
arising from a new strong sector

̴ TeV

̴ 100 GeV

𝜚
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E
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Elementary Fields Strong Sector
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Figure 1: Pictorial representation of our scenario.

composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5 + 4̄+5 = 2 ⇥ (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset

4

Symmetry structure of the strong sector

Mrazek et al., 2011
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composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5 + 4̄+5 = 2 ⇥ (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset

4

Minimal scenario: SO(5)/SO(4)                           one Higgs doublet
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Figure 1: (a) Normalised scalar potential in the SO(5)/SO(4) CHM at T = 0 (blue curve)
and at the critical temperature (red curve). The parameters have been chosen to correctly
reproduce the EW vacuum and the Higgs mass. (b) A schematic illustration of a two-
step phase transition. A darker colour corresponds to a deeper potential at the critical
temperature Tc.

a small tilt in the potential. This allows for quantum tunnelling through the barrier from
the metastable vacuum to the true ground state if, for some reason during the cosmological
history, the system ended up in the false configuration.

It should be stressed that the validity of the previous discussion is restricted to a
temperature T . m⇢, with m⇢ being the mass of the lightest resonance. As the tem-
perature approaches m⇢, the compositeness scale drops rapidly to zero [4, 5]. For higher
temperatures the global symmetry of the strongly interacting theory is restored and the
description of the light degrees of freedom in terms of the chiral Lagrangian is no longer
correct. Hereafter, we will only consider the regime T . m⇢ in which the NGB Lagrangian
faithfully represents the low-energy limit of the strong dynamics and the temperature de-
pendence of f can be safely neglected.

The failure of the minimal CHM in realising a first order EWPhT motivates the explo-
ration of more complex scenarios with a larger number of global symmetries. Since there
is no compelling reason to restrict the analysis to the smallest coset, it is useful, and also
desirable, to inspect other scenarios, provided that they admit an acceptable description
of the phenomenology of the SM. In this respect, CHMs based on the SO(6)/SO(5) coset
are very promising since they predict an extra scalar state, neutral under the SM group.
Indeed, as well-known from several studies in the elementary singlet-extended SM ADD
REFERENCES, the presence of a light scalar in the spectrum can help achieving a first
order phase transition through a tree-level barrier in the scalar potential. This scenario
requires a large Higgs portal coupling which is usually di�cult to generate in CHMs due

6

PhT similar to the SM  
due to the pheno constraint 

ξ = v2/f 2 ≲ 0.1 no 1st order PhT

unless one allows for a small tilt

Symmetry structure of the strong sector

Di Luzio et al., 2019
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composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5 + 4̄+5 = 2 ⇥ (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset

4

Next to minimal scenario: SO(6)/SO(5) one Higgs doublet  
+ a scalar singlet

+ (q ! q
0
, u ! d) +O(�6) (25)

where, as usual, hOi = 1
i

R
d4q
(2⇡)4O. The VF is UV finite as each term goes, at least, as q�6

for large momenta. Di↵erently from the gauge sector, the IR limit is finite.
By summing the gauge and the fermion contributions, with fermions in the fundamen-

tal representation of SO(6), we get the following general form of the scalar potential

V (h, ⌘) = ↵h
2 + �h

4 + |fu6(h, ⌘)|
2
�
� + � h

2 + ✏|fu6(h, ⌘)|
2
�
+ (u ! d) , (26)

where the parameters ↵, �, �, �, ✏ explicitly depend on the form factors. It is su�cient
to consider only the top and bottom quark contributions which, according to the partial
compositeness paradigm, provide the largest corrections.
The Z2 symmetric potential is realised either when the right-handed fermions are embed-
ded into only one of the last two components of the fundamental of SO(6) or when the
complex phase is ↵u6 = ±⇡/2. If neither of the two conditions is satisfied, a tadpole term
for ⌘ is generated and, thus, Z2 is broken and ⌘ always gets a VEV. On top of that, by
inspection of the interactions with the fermions, the explicit breaking of Z2 is accompa-
nied by the explicit breaking of CP. As usual, even if Z2 is a symmetry of the potential it
can be spontaneously broken, along with CP, by a h⌘i 6= 0. Here we are mainly interested
in the scenario in which h gets a VEV while ⌘ does not at zero temperature. For this
purpose we will consider the case ↵u6 = ±⇡/2. This will also ensure that the strong
constraint from the measurement of the Electric Dipole Moment (EDM) of the electron
does not significantly a↵ect the parameter space of the model. The Z2-invariant scalar
potential reads as
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where the coe�cients are given in terms of the form factors defined in the previous sections
(see Appendix A). It is useful to present the parametric expressions of these coe�cients
in terms of the couplings of the underlying theory
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where the coe�cients cLL, cRR, cLR and cW parameterise the dependence of the scalar
potential from the heavy resonances. For the sake of simplicity we have adopted the
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the scalar potential

Symmetry structure of the strong sector



1 Introduction

Lint = gJµW
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Lint = yL qLOL + yR tR OR

The scenario we consider is characterized by the following structure of interactions

L = L2HDM + Lcomp (1)

where
L2HDM = Y ukawa+ V (H1, H2) + kinetic� terms (2)

The renormalizable 2HDM potential is given
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
(m2

i
,�i) originating from the composite sector.

2 Composite two Higgs doublet models

In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...

2.1 Custodial symmetry

A renormalizable 2HDM never faces custodial breaking e↵ects at tree-level (as manifest from the famous
formula for the ⇢ parameter). This can be traced back to the presence, when the hypercharge coupling
is neglected, of a large SU(2)L⇥Sp(4) symmetry of the kinetic terms of the two Higgs doublets. Since in
the renormalizable 2HDM there are no other terms in the lagrangian that contribute to the T parameter
other than the kinetic terms, no custodial violation is present for any number of Higgs doublet.

However, in composite Higgs models the non-linearities of the e↵ective lagrangian for goldstone
bosons contribute with operators of dimension six of the following form
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The scenario we consider is characterized by the following structure of interactions

L = L2HDM + Lcomp (10)

where
L2HDM = Y ukawa+ V (H1, H2) + kinetic� terms (11)
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in the IR partial compositeness
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Table 1: SO(6) representations for the spurions  that can embed the SM fermions  preserv-

ing P⌘. The symbol
p

(⇥) indicates that the P⌘-preserving embedding does not break (does

break) the SO(2)⌘ subgroup.

the DM mass. To study this issue, it is useful to decompose the SO(6) multiplets under the

maximal subgroup SO(4) ⇥ SO(2)⌘ ' SU(2)L ⇥ SU(2)R ⇥ U(1)⌘, where SO(2)⌘ ' U(1)⌘ is

precisely the symmetry associated with the NGB ⌘, that is generated by T⌘ = T 5̂ defined in

Eq. (A.2):

T⌘ =
1
p
2

✓
04⇥4 04⇥2

02⇥4 �2

◆
. (A.12)

From Eq. (A.6) and Eq. (A.12) we have

[P⌘, T⌘] 6= 0 , (A.13)

therefore one cannot assign to the SM fields a definite P⌘ parity and a non-zero U(1)⌘ charge

at the same time. This means that both symmetries can be preserved by the SM couplings

to the strong sector only if the SM fields transform trivially under the SO(2)⌘, i.e. they are

not charged under U(1)⌘.

Let us classify the spurions  that can accommodate the SM fermions while preserving P⌘.

The SM fermion isosinglets (isodoublets) can be embedded in any SO(6) representation that

contains a singlet (doublet) of SU(2)L. We find that an embedding preserving P⌘ is possible

using a vector representation,  ⇠ 1, 6, 15, 20
0, . . . , or a pair of spinor representations,

4+4, 10+10, and so on (when acting on spinors, P⌘ interchanges conjugate representations).

Their SU(2)L ⇥ SU(2)R ⇥ U(1)⌘ decomposition reads

4 = (2,1)+1 � (1,2)�1 ,

6 = (2,2)0 � (1,1)+2 � (1,1)�2 ,

10 = (2,2)0 � (3,1)+2 � (1,3)�2 ,

15 = (1,3)0 � (3,1)0 � (1,1)0 � (2,2)+2 � (2,2)�2 ,

20
0 = (3,3)0 � (2,2)+2 � (2,2)�2 � (1,1)+4 � (1,1)�4 � (1,1)0 . (A.14)

The components that can contain the SM fermions and do not transform under U(1)⌘ are,

for the isodoublets, the (2,2)0 in the 6 or in the 10, and for the isosinglets either the (1,1)0
or the (1,3)0, which are present in the 1, the 15 or the 200. These results are summarized in

Table 1.

In the following we will describe the properties of two models. In the first one we will embed

all the SM fields in the 6 of SO(6), and therefore the right-handed couplings to the strong
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SO(6) representation decompositions under
SU(2)L ⊗ SU(2)R ⊗ U(1)η

Partial compositeness



4   — not suitable for the top quark: large ZbLbL coupling 

10 — no potential for the scalar singlet η 

6, 15, 20’  — viable representations for the top quark

(qL, tR)   ̴(6, 6)
typically predicts                                           unless 
we consider:

(qL, tR)   ̴(15, 6)

λη ≃ 0, λhη ≃ λh/2
large tuning in bottom quark 
and gauge sectors 
elementary-composite mixings 
λqL, λtR, up to the fourth power

less-tuned scenario: no need to rely on bottom and gauge  
but λѱ still at the fourth power

large parameter space available without large tuning
(qL, tR)   ̴(6, 20’)

Classification of representations



4   — not suitable for the top quark: large ZbLbL 
coupling 
10 — no potential for the scalar singlet η 
6, 15, 20’  — viable representations for the top 
quark

(qL, tR)   ̴(6, 6)

(qL, tR)   ̴(15, 6)

Typically predicts                                  unless of

large tuning in bottom and gauge sectors

λη ≃ 0, λhη ≃ λh/2

Less-tuned scenario: no need to rely on bottom and 
gauge.  Upper bounds

large parameter space available without 
tuning

(qL, tR)   ̴(6, 20’)

Classification of repr. of composite fermionic operators
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Figure 2: Comparison of the parameter space covered by the di↵erent scenarios discussed
in the text.

where the complicated dependence from the angles have been hidden inside the coe�cients
C
j
i and explicitly given in Appendix missing.

Notice that, di↵erently from the other cases discussed above, the use of the 200 provides
su�cient freedom in the parameters of the scalar potential such that there is no need to
rely on the second order corrections, namely the ones proportional to the quartic power
of the elementary-composite mixings (the quartic couplings of the ⌘ in Eq. (33) and (38)
would vanish otherwise), nor to the bottom quark and gauge contributions (as in the case
of fermions in the fundamental). Other than being a much less tuned scenario, it naturally
allows for a mass of the singlet ⌘ larger than the one obtained in the other configurations
while preserving, as we will see, the possibility to achieve a first order EWPhT.

4 Parameter space for EWPhT

The parameter space covered by the di↵erent models discussed above is depicted in Fig. 2.
The region on the right of the black solid line, defined by µ

2
⌘ > 0 is not interesting from

the perspective of phase transitions since the singlet does not have a large impact on
the vacuum structure and no barriers are generated between the symmetric and the EW
vacua. In this region a first order phase transition can be achieved only for very large
values of the portal coupling �h⌘ via one-loop induced e↵ects along the Higgs direction.
Since for models of composite Higgses it is very unlikely that the large quartic couplings
can be generated by the underlaying strong dynamics, we will focus our discussion only
on the µ2

⌘ < 0 region in which a two-step phase transition can be realised with a tree-level
barrier.
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(DC,Delle Rose,Panico,1909.07894)

Due to the form of the invariants,  sharp upper 
bounds 

�2f 2/m2

 
⇠ 1/g⇢. The two-step transition conditions in eq. (9) are di�cult to realise

in this limit. As can be seen from table 1, the portal contribution to the mass �h⌘v2 is
suppressed with respect to the µ2

⌘
term by a factor �2v2/m2

 
⇠ 1/g⇢v2/f 2. Therefore, if

µ2

⌘
is negative, it is di�cult to avoid a VEV for the singlet at zero temperature.
A possibility to circumvent this problem is to advocate a sizeable contribution to the

potential from the bottom sector. This can be obtained if both the top and the bottom
quarks have a large compositeness for their right-handed components, namely �uR ⇠ �dR .
The mass of the bottom quark is then reproduced by assuming that �q

0
L
is small. This

scenario, however, could lead to di�culties in realising the CKM hierarchy structure.
In the light-partner case, all the invariants are of the same order, therefore it is much

easier to obtain the correct Higgs mass and satisfy the two-step transition conditions. The
price to pay is the fact that all top partners are now typically light and higher values of
the compositeness scale f are needed to escape LHC direct-search constraints. A larger
amount of tuning, ⇠ = v2/f 2 . few%, is therefore needed to obtain the correct Higgs
VEV.

Due to the form of the invariants, sharp upper bounds on the portal coupling �h⌘ and
on the singlet mass in the EWSB vacuum can be found, namely

�h⌘ < �h , m⌘ < mh/
p
2 . (32)

To prove the first inequality one needs to use the fact that the coe�cients of the O
(4)

qL

and eO(4)

uR invariants are always positive, while the coe�cient of eO(4)

qLuR is negative. This
result can be obtained by studying the explicit form of the e↵ective potential as done in
ref. [28]. The eO(4)

uR invariant thus gives contributions ��h⌘  ��h,9 while eO(4)

qLuR gives

��h⌘  1/2��h. The O
(4)

qL invariant provides only a positive contribution to �h. Finally
the sum of the quadratic invariants give ��h = �2/3�µ2

h
/f 2 > 0, since the Higgs mass

term must be negative.
The second inequality in eq. (32) can be derived by noticing that in the EWSB vacuum

m2

⌘
= µ2

⌘
+ �h⌘v

2 < �h⌘v
2 < �hv

2 = m2

h
/2 . (33)

The bound on the singlet mass is particularly dangerous since it implies that the singlet is
always quite light. In particular in a sizeable part of the parameter space m⌘ < mh/2 and
the Higgs is allowed to decay into a pair of singlets. These configurations are excluded
experimentally since they would give rise to a too large invisible width for the Higgs unless
the portal coupling is negligibly small.

4.1.2 Fermions in the (15) representation

As we saw, in the minimal set-up with partners in the fundamental representation of
SO(6) it is quite hard to obtain a two-step phase transition. Moreover the size of the

9To ensure that �h⌘ is positive one needs sin 2✓u6 > 0, which implies cos 2✓u6  cos2 ✓u6 .
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eq. (44) only contains the Higgs field and not the singlet. Therefore, at the leading order
in the � expansion, no interaction of the form s h t̄L tR is present in the (15,6) model.

Let’s now study the properties of the e↵ective potential and the conditions for a two-
step EWPhT in the (15,6) model. As for the (6,6) set-up, we can distinguish two
regimes, the heavy-partner limit and the light-partner one.

In the heavy-partner case, the quadratic invariants dominate the e↵ective potential.
With respect the (6,6) model, however, there is a substantial di↵erence, namely the fact
that the singlet mass term receives contributions from both leading invariants and not
just one. This means that, at the price of some additional tuning, the Higgs mass and the
⌘ mass term can be simultaneously cancelled. For this to happen we need a correlation
between the left and right mixing parameters �qL ' �uR and between the embedding
angles ✓q15 and ✓u6 . Once the Higgs mass is tuned, a cancellation in the µ⌘ term can be
obtained if sin ✓q15 ' 1/3(3/2 + sin2 ✓u6), which can be realized only if ✓q15 is the range
0.5 . ✓q15 . 1. If both cancellations are present, it is then easy to satisfy the two-step
conditions in eq. (9), through a positive �h⌘ term. In this set-up, however, the portal
interaction can not surpass the Higgs quartic coupling, �h⌘ < �h. Indeed, taking into

account the restricted range of ✓q15 values, one finds that for both the eO(4)

uR and eO(4)

qL

invariants ��h⌘ < ��h. As a consequence one also gets m⌘ < mh/
p
2.

In the light-partner case, additional contributions to the Higgs mass term can come
from the O

(4)

qLuR operator, moreover the quartic operators that contribute to the portal
interaction are only mildly suppressed with respect to the quadratic contributions. For
these reasons a viable Higgs mass together with a two-step EWPhT can be obtained
for a larger range of values of the embedding angles ✓q15 and ✓u6 . Also in this case a
maximal value for the portal interaction is present, namely �h⌘ < 2�h, which implies
that the singlet is always lighter than the Higgs m⌘ < mh. The maximal value for the

portal interaction is obtained when the dominant contribution to �h⌘ comes from the eO(4)

uR

invariant and ✓q15 ' ⇡/2, in which case ��h⌘ = 2��h.
Summarising, di↵erently from the previous case with fermions in the fundamental of

SO(6), in the (15,6) model viable configurations with a two-step EWPhT can be realised
at the price of some tuning. The leading contribution to the potential coming from the top
sector can be enough to obtain a su�ciently large value for the portal coupling, so that
sizeable contributions from the bottom (or the gauge) sectors are not strictly necessary.

4.1.3 Fermions in the (200) representation

The last case we consider is the one with top partners in the 200 representation of SO(6).
This representation can be constructed as the symmetric and traceless component of the
product of two 6. The spurions that correspond to the embedding of the left-handed and
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(qL,tR)   ̴(6,20’)
Properties of the EWPhT

——  Strength of the phase transition 
vn/Tn     (vn=<h>|Tn)

a crucial parameter for EWBG

The EWPhT starts at  Tn < Tc  determined by requiring: 
Probability of nucleation of  bubbles / Hubble volume  ~  1  

The computation of  Tn requires to solve (numerically) 
a two-field bounce equation

Tn is one of the parameter characterising the amplitude 
and the frequency peak of the GW spectrum

Bubbles fail to nucleate if the rate of bubble 
formation does not balance the Hubble expansion 

(ex.  'h(   too large produces a high barrier)
The system remains trapped in the metastable 

vacuum (0,w) and no EWSB occurs

Figure 5: Left panel: Strength of the phase transition vn/Tn. Right panel: Scatter plot of the
vacuum energy density parameter ↵ (red dots) and of the bubble width LwTn for the Higgs (blue
dots) and the ⌘ (green dots) components as a function of the phase transition strength vn/Tn.

we also show the scatter plot for the width of the bubble wall Lw, which is reported in
the combination LwTn both for the Higgs (blue dots) and the ⌘ (green dots) components.
Also in this case a strong correlation with the strength of the phase transition is present.

The last parameter we consider is the inverse time duration of the phase transition,
normalised to the Hubble rate This quantity controls the amplitude of the gravitational
wave spectrum and can be computed from the variation of the bounce action with respect
to the temperature

�

Hn

= T
d

dT

✓
S3

T

◆ ����
Tn

. (56)

The numerical results for �/Hn are shown in the left panel of fig. 6. Larger values
for �/Hn (�/Hn ⇠ 3000) are obtained for small �h⌘, i.e. for larger phase transition
temperatures. On the other hand, for larger �h⌘, the values of �/Hn are significantly
smaller (�/Hn ⇠ 100). It must be noticed that the value of �/Hn strongly depends on
the transition temperature. As can be seen in the right panel of fig. 6 for a benchmark
point, even a few GeV di↵erence in the phase transition temperature can modify �/Hn

by almost one order of magnitude.

6 Gravitational waves

The transition between two minima separated by a potential barrier is described by the
nucleation of bubbles of true vacuum in the background of metastable vacuum. The
bubbles expand, collide and eventually coalesce filling the whole space. This phenomenon

26

two-step phT

(0,w) is the global 
minimum at T=0

(DC,Delle Rose,Panico,1909.07894)
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Properties of the EWPhT
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Figure 5: Left panel: Strength of the phase transition vn/Tn. Right panel: Scatter plot of the
vacuum energy density parameter ↵ (red dots) and of the bubble width LwTn for the Higgs (blue
dots) and the ⌘ (green dots) components as a function of the phase transition strength vn/Tn.

we also show the scatter plot for the width of the bubble wall Lw, which is reported in
the combination LwTn both for the Higgs (blue dots) and the ⌘ (green dots) components.
Also in this case a strong correlation with the strength of the phase transition is present.

The last parameter we consider is the inverse time duration of the phase transition,
normalised to the Hubble rate This quantity controls the amplitude of the gravitational
wave spectrum and can be computed from the variation of the bounce action with respect
to the temperature

�
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= T
d

dT
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T

◆ ����
Tn

. (56)

The numerical results for �/Hn are shown in the left panel of fig. 6. Larger values
for �/Hn (�/Hn ⇠ 3000) are obtained for small �h⌘, i.e. for larger phase transition
temperatures. On the other hand, for larger �h⌘, the values of �/Hn are significantly
smaller (�/Hn ⇠ 100). It must be noticed that the value of �/Hn strongly depends on
the transition temperature. As can be seen in the right panel of fig. 6 for a benchmark
point, even a few GeV di↵erence in the phase transition temperature can modify �/Hn

by almost one order of magnitude.

6 Gravitational waves

The transition between two minima separated by a potential barrier is described by the
nucleation of bubbles of true vacuum in the background of metastable vacuum. The
bubbles expand, collide and eventually coalesce filling the whole space. This phenomenon
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Properties of the EWPhT
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Figure 6: Left panel: Inverse time duration �/Hn of the phase transition. Right panel: Depen-
dence of �/Hn on the transition temperature.

is characterised by a huge release of energy which propagates, in part, through GWs.
Since bubbles collide incoherently in di↵erent regions of space, the corresponding signal is
a stochastic background of GWs. The peak of the frequency spectrum for phase transitions
at the electroweak scale typically lies in the sensitivity range of future experiments, such
as the European space-based interferometer LISA [47–49], BBO [50–52] and the proposed
Japanese detector DECIGO [53].

Three di↵erent mechanisms of GW production are at work during bubble nucleation:
bubble collision [54–59], sound waves in the plasma after the collision [60–63] and mag-
netohydrodynamic turbulence e↵ects in the plasma [64–68]. The three contributions can
be approximately combined linearly

h2⌦GW ' h2⌦� + h2⌦SW + h2⌦MHD. (57)

The amplitude of the spectrum and the position of the frequency peak are mainly charac-
terised by the nucleation temperature (Tn), the vacuum energy, normalised to the critical
energy, released to the primordial plasma during the transition (↵), and the duration of
the transition itself (�). These parameters are supplemented by the e�ciency coe�cients
() and the bubble velocity (vw). The analytic formulas for the di↵erent contributions to
the GW spectrum are given in ref. [69].

The bubble velocity is the result of the balance between the force driving the expansion
of the bubble and its friction with the plasma. In particular, three di↵erent regimes can
be identified depending on vw compared to the sound velocity in the plasma vs (hybrid
possibilities can also be present): deflagration (vw < vs < 1), detonation (vs < vw < 1)
and runaway regime (vw = 1). In the first two cases, the bubble velocity reaches a
constant value because the interactions of the bubble surface with the particles in the
plasma can balance the expansion. On the contrary, in the runaway case the pressure
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Figure 4: Left panel: Critical temperature Tc and nucleation temperature Tn. Right panel:
amount of supercooling.

we focus on the benchmark with m⌘ = 250GeV. In fig. 4 (left) we show the two temper-
atures that characterise the phase transition, namely the critical temperature Tc and the
nucleation temperature Tn. One can see that both Tc and Tn decrease for larger values
of �h⌘. The critical temperature varies in the range 115GeV . Tc . 130GeV, while the
nucleation temperature is in the range 80GeV . Tc . 125GeV. In the right panel of
the figure we show the amount of supercooling, namely (Tc � Tn)/Tc. One can see that
for small values of �h⌘ there is almost no supercooling, whereas for a larger values it is
possible to achieve an amount of supercooling of order 30%. As we will see in the follow-
ing section, the region of the parameter space with smaller Tn and higher supercooling
can be more easily probed by future gravitational wave experiments, since the peak of
the corresponding wave spectrum moves, as Tn decreases, towards frequencies where they
have the maximum sensitivity.

In fig. 5 (left) we show the strength vn/Tn of the phase transition, a crucial parameter
for the EWBG, which increases, as expected, with the portal coupling. For vn/Tn & 1,
the EWPhT is strongly first order and prevents the EW sphaleron processes inside the
broken phase to washout the baryon asymmetry generated in front of the bubble wall.

Another important parameter is the ratio ↵ = ⇢vac/⇢rad of the vacuum energy density
⇢vac, released to the primordial plasma during the transition, and the critical energy ⇢rad at
the transition temperature. This parameter controls the size of the signal of gravitational
waves from EWPhT and represents a measure of the strength of the phase transition. In
fig. 5 (right) we show a scatter plot of the values of ↵ (red dots) as a function of the phase
transition strength. One can see that a strong correlation between the two quantities is
present. For small vn/Tn one can show that ↵ / (vn/Tn)2 (see eq. (98) in appendix B),
however this relation receives order-one corrections for vn/Tn & 2.5. On the same figure
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is characterised by a huge release of energy which propagates, in part, through GWs.
Since bubbles collide incoherently in di↵erent regions of space, the corresponding signal is
a stochastic background of GWs. The peak of the frequency spectrum for phase transitions
at the electroweak scale typically lies in the sensitivity range of future experiments, such
as the European space-based interferometer LISA [47–49], BBO [50–52] and the proposed
Japanese detector DECIGO [53].

Three di↵erent mechanisms of GW production are at work during bubble nucleation:
bubble collision [54–59], sound waves in the plasma after the collision [60–63] and mag-
netohydrodynamic turbulence e↵ects in the plasma [64–68]. The three contributions can
be approximately combined linearly

h2⌦GW ' h2⌦� + h2⌦SW + h2⌦MHD. (57)

The amplitude of the spectrum and the position of the frequency peak are mainly charac-
terised by the nucleation temperature (Tn), the vacuum energy, normalised to the critical
energy, released to the primordial plasma during the transition (↵), and the duration of
the transition itself (�). These parameters are supplemented by the e�ciency coe�cients
() and the bubble velocity (vw). The analytic formulas for the di↵erent contributions to
the GW spectrum are given in ref. [69].

The bubble velocity is the result of the balance between the force driving the expansion
of the bubble and its friction with the plasma. In particular, three di↵erent regimes can
be identified depending on vw compared to the sound velocity in the plasma vs (hybrid
possibilities can also be present): deflagration (vw < vs < 1), detonation (vs < vw < 1)
and runaway regime (vw = 1). In the first two cases, the bubble velocity reaches a
constant value because the interactions of the bubble surface with the particles in the
plasma can balance the expansion. On the contrary, in the runaway case the pressure
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Gravitational waves
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Figure 7: Left panel: Leading contributions to the GW spectrum in the non-runaway regime
for the benchmark point m⌘ = 250 GeV, �h⌘ = 1.63 and �⌘ = 6. Red, green and dashed
lines correspond, respectively, to GWs from sound waves in the plasma, magnetohydrodynamic
turbulences and the linear combinations of the two. Right panel: GW spectra as a function of
the frequency for three benchmark points with m⌘ = 250 GeV, �⌘ = 2 and �h⌘ = 1.27 (dotted),
�h⌘ = 1.33 (dot-dashed), �h⌘ = 1.34 (dashed). Sensitivity curves of some future space-base
interferometers are also shown.

driving the bubble expansion overcomes the friction and leads to an indefinite velocity
growth. The bubble velocity represents a crucial parameter since an e�cient production
of baryon asymmetry prefers the deflagration regime while the observability of GWs is
more favourable in the detonation and runaway scenarios. It has been shown recently
[13], in the context of a two step phase transition driven by the extra scalar state of a
second Higgs doublet, that in the region of parameter space where the EW baryogenesis
is achievable, the GW spectrum of the EWPhT is within the sensitivity reach of future
interferometers. Indeed, even for very strong phase transitions, vn/Tn ' 4, the bubble wall
velocity remains subsonic. The determination of vw is very challenging and requires the
microscopic calculation of the friction term and the solution of the Boltzmann equations
modelling the interaction of the scalar fields with the thermal plasma, see for instance
refs. [70–75]. The exact computation of the velocity is beyond the scope of this work, here
we use for the sake of simplicity the prediction of vw, as a function of ↵, that has been
estimated in ref. [13].

The three sources of GW are characterised by di↵erent peak frequencies that, if suf-
ficiently separated, can lead to a non-trivial structure for the spectrum, helping in the
extraction of the signal from the instrumental background noise. As an example, we show
in fig. 7 (left) the contribution of the di↵erent components to h2⌦GW for a selected point
with m⌘ = 250 GeV, �h⌘ = 1.63 and �⌘ = 6. Notice that in the non-runaway regime the
contributions from bubble collisions can be neglected. Numerical simulations show that
the relative distance between the peaks of the two spectra is fixed, fpeak

SW
/fpeak

MHD
' 0.7,

and that the signal from sound waves decays faster for larger GW frequency fGW, namely
h2⌦SW ⇠ f�4

GW
and h2⌦MHD ⇠ f�5/3

GW
. This explains the typical shoulder of the GW
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Figure 7: Left panel: Leading contributions to the GW spectrum in the non-runaway regime
for the benchmark point m⌘ = 250 GeV, �h⌘ = 1.63 and �⌘ = 6. Red, green and dashed
lines correspond, respectively, to GWs from sound waves in the plasma, magnetohydrodynamic
turbulences and the linear combinations of the two. Right panel: GW spectra as a function of
the frequency for three benchmark points with m⌘ = 250 GeV, �⌘ = 2 and �h⌘ = 1.27 (dotted),
�h⌘ = 1.33 (dot-dashed), �h⌘ = 1.34 (dashed). Sensitivity curves of some future space-base
interferometers are also shown.

driving the bubble expansion overcomes the friction and leads to an indefinite velocity
growth. The bubble velocity represents a crucial parameter since an e�cient production
of baryon asymmetry prefers the deflagration regime while the observability of GWs is
more favourable in the detonation and runaway scenarios. It has been shown recently
[13], in the context of a two step phase transition driven by the extra scalar state of a
second Higgs doublet, that in the region of parameter space where the EW baryogenesis
is achievable, the GW spectrum of the EWPhT is within the sensitivity reach of future
interferometers. Indeed, even for very strong phase transitions, vn/Tn ' 4, the bubble wall
velocity remains subsonic. The determination of vw is very challenging and requires the
microscopic calculation of the friction term and the solution of the Boltzmann equations
modelling the interaction of the scalar fields with the thermal plasma, see for instance
refs. [70–75]. The exact computation of the velocity is beyond the scope of this work, here
we use for the sake of simplicity the prediction of vw, as a function of ↵, that has been
estimated in ref. [13].

The three sources of GW are characterised by di↵erent peak frequencies that, if suf-
ficiently separated, can lead to a non-trivial structure for the spectrum, helping in the
extraction of the signal from the instrumental background noise. As an example, we show
in fig. 7 (left) the contribution of the di↵erent components to h2⌦GW for a selected point
with m⌘ = 250 GeV, �h⌘ = 1.63 and �⌘ = 6. Notice that in the non-runaway regime the
contributions from bubble collisions can be neglected. Numerical simulations show that
the relative distance between the peaks of the two spectra is fixed, fpeak
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and that the signal from sound waves decays faster for larger GW frequency fGW, namely
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. This explains the typical shoulder of the GW
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EW Baryogenesis
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CP violation from the scalar singlet

an additional source of CPV is present in CHMs due to the non-linear 
dynamics of the GBs: dim-5 operator can have a complex coefficient

details depend on the fermion embeddings, for instance in the (qL, tR)   ̴(6, 6) case 

A phase in the quark mass is generated. The phase becomes physical 
during the EW phase transition at T ≠ 0, when η changes its vev
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η
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γ5 t a phase in the top mass is generated 
only when η gets a vev

7 Electroweak baryogenesis

The out-of-equilibrium dynamics provided by the first order EWPhT fulfils only one of
the three Sakharov’s conditions required to realise baryogenesis. A su�ciently strong
source of CP violation is also needed in order to trigger an asymmetry between matter
and antimatter.

In principle, additional sources of CP violation have to be expected in CHMs due
to the presence of additional complex phases (for instance in the elementary–composite
mixing parameters). Some restrictions on the amount of CP violation might be present if
we want to ensure the P⌘ invariance of the scalar potential. In fact, as we discussed, this
requirement typically obliges the composite sector to be invariant under CP.

However, an additional source of CP violation is typically present as a consequence of
the non-linear dynamics of the Goldstones. This relies on the presence of the dimension-5
operator s h t̄LtR, which can have a complex coe�cient and is naturally present in most of
the models based on the SO(6)/SO(5) coset. Indeed we saw that such operator is present
in the (6,6) and (6,200) scenarios.

At T = 0, in the EWSB vacuum, the s h t̄LtR operator gives rise to small CP violating
e↵ects, which can be compatible with the present constraints (we will discuss this aspect
at the end of this section). Moreover a possible complex phase in the top mass can always
be rotated away through a redefinition of the top field and is thus unphysical. On the
contrary, when the both the Higgs and the singlet get a VEV, a new complex phase is
induced in the top mass. This obviously happens in the bubble walls during the EWSB
phase transition. Since the Higgs and the singlet VEVs are space dependent, the new
phase in the top mass cannot be reabsorbed by a redefinition of the fermionic fields and
provides a new source of CP violation that can trigger EWBG.

The phase in the top mass ⇥t can be defined as

mt(r) = |mt(r)|e
i⇥t(r) (59)

with r denoting the direction perpendicular to the bubble wall. For each of the scenarios
discussed previously, the complex phase can be extracted from the Ot operators that give
rise to the top Yukawa. To be as general as possible, we rewrite them here as

Ot = yt

✓
1 + i

b

f
⌘

◆
h
p
2
t̄LtR + h.c. . (60)

The phase of top quark mass is then given by

⇥t(r) = arctan

✓
b
w(r)

f

◆
(61)

with w(r) exhibiting the usual kink profile along the r direction. The coe�cient b is de-
termined by the particular fermion embedding. For instance, in the (6,6) case b = tan ✓u6

is completely fixed by the admixture of tR embedding in the 5-th and 6-th components of
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Figure 8: Observational reach of the gravitational signal from the first order EWPhT at
Ultimate-DECIGO for a benchmark scenario with m⌘ = 250GeV. The solid grey contours
show the values of b/f needed to guarantee a su�cient amount of CP violation to achieve EW
baryogenesis.

spectrum at high frequencies.
In fig. 7 (right) we show the sensitivity reach of the three future GW experiments

LISA, BBO and DECIGO, as well as the prediction of the GW spectra for three bench-
mark points. The benchmarks have fixed m⌘ = 250 GeV and �⌘ = 2 and are defined,
respectively, by �h⌘ = 1.27 (dotted line), �h⌘ = 1.33 (dot-dashed line) and �h⌘ = 1.34
(dashed line). As �h⌘ increases, the GW signal strengthens and the peak of the spectrum
shifts towards smaller frequencies, which are preferred by space-based interferometers.
Indeed, the frequency peak

fpeak

SW (MHD)
= 1.9 (2.7)⇥ 10�5 Hz

1

vw

✓
�

Hn

◆✓
Tn

100GeV

◆⇣ g⇤
100

⌘ 1
6
, (58)

where g⇤ is the number of relativistic degrees of freedom in the plasma at the time of the
phase transition, scales linearly with �/Hn and Tn, which both decrease when the portal
coupling increases.

The prospect of observations of GWs at Ultimate-DECIGO in the two dimensional
parameter space of �h⌘ and �⌘ for singlet mass m⌘ = 250GeV is depicted in fig. 8. We
decided not to show the region accessible at LISA, since it can only test a narrow strip at
the right edge of the two-step transition region.
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FIG. 2: Shaded region: for f/b = 500GeV, mh = 120GeV
and ms = 80, 130GeV (upper and lower plots), the ∆Θt

achieved for a given vc/Tc in the Z2-symmetric case (a
tiny explicit breaking is assumed, see Section V). The
black lines (dotted, dot-dashed, dashed, solid, double dashed-
dotted) correspond to explicit examples with fixed λm =
0.25, 0.5, 0.75, 1, 1.5, respectively. Points on the red lines
match the observed baryon asymmetry (solid) or 1.5 (dot-
ted), 0.75 (dashed) times that value. The vertical line marks
vc/Tc = 1, below which the asymmetry would be erased by
active sphalerons.

fulfilled for natural values of the parameters.
We close this Section with a comparison of our

EWBG scenario with previous studies of EWBG in non-
supersymmetric models, such as the two-Higgs doublet
model [48, 53] or the SM with a low cut-off [29–32]. In
the former, CP violation arises already at the level of
renormalizable operators in the Higgs potential, through
a complex phase between the two Higgs VEVs. Very
strong phase transitions (induced by tree-level barriers)
are not possible in that context since, contrary to the
case with a singlet, the second Higgs doublet cannot ac-
quire a VEV prior to the EWPhT by definition. (To
circumvent this problem, ref. [54] studies a 2HDM with
an additional singlet: the two Higgs doublets violate CP ;
the singlet strengthens the EWPhT.) Although the non-
supersymmetric 2HDM does not address the hierarchy
problem, it is worth noting that it can also arise as the

low-energy limit of composite Higgs models [34].
The behaviour at finite temperature of other scenar-

ios that address the hierarchy problem but lead only
to a light single Higgs, such as the Minimal Composite
Higgs [22] or Little Higgs models, have been also ana-
lyzed. Refs. [31] studied the temperature behaviour of a
Higgs that arises as the PNGB of a broken global symme-
try,3 parametrizing the deviations from the SM through
effective operators. A strong EWPhT can result in this
setting from the dimension-six operator h6, which stabi-
lizes a Higgs potential with negative quartic coupling, as
discussed in [29, 30]. This creates a large tree-level bar-
rier but the reliability of the effective-theory description
is not then obvious. Different dimension-six operators are
responsible for sourcing CP violation [31, 32], in a man-
ner similar to our eq. (7), and for generating a complex
mass for the top quark: mt ∼ yt(vh+iv3h/Λ

2). Compared
to the model proposed here, these operators (which would
arise also in our model, in the limit of a heavy singlet)
are dimension-six and hence generally smaller than the
ones involving the singlet.

IV. ELECTRIC DIPOLE MOMENTS AND
OTHER CONSTRAINTS

The presence of a scalar that mixes with the Higgs and
has pseudoscalar couplings to fermions induces an elec-
tric dipole moment (EDM) for the electron and for the
neutron. The electron EDM receives the largest contribu-
tion from the two-loop Feynman diagram [56] of Figure 3,
where the electron flips its chirality by coupling to the

s

h

t t
t

e e e
FIG. 3: Diagram illustrating the largest contribution to the
electron EDM: the dashed line indicates a Higgs that mixes
with the singlet, which then couples with the top.

3 At even higher temperatures, the same mechanism that cuts off
quadratic divergences in the Higgs potential also affects its finite
temperature corrections and could lead to non-restoration of the
EW symmetry [55].
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Figure 1: Pictorial representation of our scenario.

composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5 + 4̄+5 = 2 ⇥ (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset

4

Next to minimal scenario: SO(6)/SO(4)xSO(2) 2 Higgs doublets 

Composite 2HDM



2.1 Custodial and discrete symmetries

A renormalisable 2HDM never faces custodial breaking e↵ects at tree level (as manifest from the
formula for the ⇢ parameter). This can be traced back to the presence, when the hypercharge coupling
is neglected, of a large SU(2)L⇥Sp(4) symmetry in the kinetic terms of the two Higgs doublets. Since
in the renormalisable 2HDM there are no other terms in the Lagrangian that contribute to the T
parameter other than the kinetic terms, no custodial violation is present for any number of Higgs
doublets.

However, in CHMs, the non-linearities of the e↵ective Lagrangian for GBs contribute with operators
of dimension six of the following form

Lcomp �
cij c̃kl
f2

(H†
i

 !
D µHj)(H

†
k

 !
D µHl) + h.c., (9)

which do not respect the Sp(4) symmetry and contribute to the T parameter for generic VEVs of the two
Higgs doublets. However, the value of the coe�cients c, c̃’s is constrained by the unbroken symmetry
H. This in turn suggests that only models where the unbroken group contains H � SU(2)L⇥Sp(4)
are free from tree level violation of custodial symmetry for any form of the Higgs VEVs. This is not
the case for SO(4)⇥SO(2), which does not contain the full symmetry of the renormalisable kinetic
terms, therefore in our case the coe�cients in (9) are non-vanishing and fixed by the symmetries to be
c11 = c22..., which then predict a T parameter [] such that

T̂ / 16⇥ v2

f2
⇥ Im[hH1i†hH2i]2

(|hH1i|2 + |hH2i|2)2
. (10)

Since custodial breaking is sensitive to the combination Im[hH1i†hH2i] there are two approximate
symmetries that can be used to reduce these e↵ects: i) CP, which is well approximated in the SM; ii)
a new symmetry that forbids a VEVs for one of the two Higgs doublets.

CP invariance and custodial symmetry

In this case we realise a scenario where the two Higgs doublets have VEVs aligned in phase as described
by the above eq. (10). Without a very accurate alignment, the bound coming from precision tests can
be roughly estimated as �T̂ < 10�3, which then constrains the phase misalignment �� = �1 � �2,
defined through hH1,2i = v1,2/

p
2 exp(i�1,2), to be

�� . 0.03
� f

600 GeV

�
(11)

assuming tan� = v2/v1 ⇠ O(1). Such a value can be achieved by assuming that the model has an
approximate CP symmetry in the scalar potential. Interestingly, the interactions of the Goldstone
bosons among themselves and with other composite fields respect automatically charge conjugation C
since Hi ! H⇤

i
is realized on the real degrees of freedom �1,2 encoded in the matrix U as

C = diag[1,�1, 1,�1, 1, 1], (12)

which is an element of SO(4). Because of this argument we find it rather natural to consider the scenario
where CP is a good symmetry of the composite sector and very well approximated in the elementary
couplings (needed to comply with flavour constraints) and derive the phenomenological consequences
of this scenario.
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The predicted leading order correction to the T parameter arises from the 
non-linearity of the GB Lagrangian. In the SO(6)/SO(4)xSO(2) model is

possible solutions: 
CP (assumed here) 

C2: ( H1 → H1, H2 → -H2 )  which 
forbids H2 to acquire a vev

no freedom in the coefficient, 
fixed by the coset

Custodial symmetry

Higgs-mediated FCNCs
FCNCs can be removed by 
1. assuming C2 in the strong sector and in the mixings 

2. requiring (flavour) alignment in the Yukawa couplings  
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The scenario we consider is characterized by the following structure of interactions

L = L2HDM + Lcomp (4)

where
L2HDM = Y ukawa+ V (H1, H2) + kinetic� terms (5)

The renormalizable 2HDM potential is given
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
(m2

i
,�i) originating from the composite sector.

2 Composite two Higgs doublet models

In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...

2

inert C2HDM

2.1 Custodial symmetry

A renormalizable 2HDM never faces custodial breaking e↵ects at tree-level (as manifest from the famous
formula for the ⇢ parameter). This can be traced back to the presence, when the hypercharge coupling
is neglected, of a large SU(2)L⇥Sp(4) symmetry of the kinetic terms of the two Higgs doublets. Since in
the renormalizable 2HDM there are no other terms in the lagrangian that contribute to the T parameter
other than the kinetic terms, no custodial violation is present for any number of Higgs doublet.

However, in composite Higgs models the non-linearities of the e↵ective lagrangian for goldstone
bosons contribute with operators of dimension six of the following form

f2Lcomp � c1(H
†
1
DµH1)

2 + c2(H
†
2
DµH2)

2 + c12(H
†
1
DµH2)

2 (7)

where the value of the coe�cients c’s is constrained by the unbroken symmetry H. This in turn
suggests that only models where the unbroken group contains H � SU(2)L⇥Sp(4) are free from tree-
level violation fo custodial symmetry.

The presence of an unbroken Sp(4) subgroup guarantees that in any 2HDM there would be no
tree-level contribution to custodial breaking. On the contrary, in a 2HDM where non-renormalizable
interactions break Sp(4) one should discuss the possible contribution to custodial violation.

We would like to emphasize the di↵erences between the elementary and composite 2HDM. The low
energy lagrangian describing the Higgs phenomenology in this context can be described by renormal-
izable interactions such as kinetic, Yukawa and potential terms included in L2HDM, as well as a few
other non-renormalizable interactions

Lcomp = ....+ c1(H
†
1
DµH1)

2 + c2(H
†
2
DµH2)

2 + c12(H
†
1
DµH2)

2 + Y ij

u QiujH1|H1|2 + cntd (8)

The first three terms encodes possible custodial breaking e↵ects, while the others parametrize deviations
in the Higgs couplings. The structure of these terms is further constrained by the global symmetries
of the strong sector H

The interactions in the first row are typical of any 2HDM, therefore the phenomenological di↵erence
arises when also the interactions in the second row are taken into account, these are the true corrections
orginating from the pseudo-Goldstone nature of the Higgs bosons. Notice that these corrections, do
not decouple with the mass of the heavy Higgs bosons, so we expect them also in the limit where

2.1.1 Flavour structure

The generic flavour structure of the. Di↵erently from most renormalizable 2HDM discussed in the
literature, when the Yukawa terms are generated by means of the partial compositeness paradigm [],
no discrete symmetries protecting the couplings of the Higgs bosons are present, therefore we have

However, as often needed in composite model, approximate symmetries of the composite sector
are needed to reproduce the observed flavour sector of the SM. This scenario automatically generates
Yukawa couplings of the following form

L2HDM � Y ij

u Qiuj
�
a1uH1 + a2uH2) + Y ij

d
Qidj

�
a1dH1 + a2dH2) + Y ij

e Liej
�
a1eH1 + a2eH2) + h.c. (9)

when all the families of the of the SM are embedded in the same representation. The flavour alignement
of the several contributions is ensured also for the higher dimensional operators, when the composite
sector enjoys a large flavour symmetry such as U(2)5 or larger. This assumption restricts the Higgs-
mediated FCNCs only to loop order.
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the ratio a1/a2 is predicted by the strong dynamics

(not considered here)

need to be relaxed 

for EWBG



C2HDM - the scalar potential

the entire effective potential is fixed by the parameters of the strong sector and 
the scalar spectrum is entirely predicted by the strong dynamics
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The scenario we consider is characterized by the following structure of interactions

L = L2HDM + Lcomp (5)

where
L2HDM = Y ukawa+ V (H1, H2) + kinetic� terms (6)

The renormalizable 2HDM potential is given
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
(m2

i
,�i) originating from the composite sector.
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C2 breaking in the strong sector induces:
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The scenario we consider is characterized by the following structure of interactions

L = L2HDM + Lcomp (7)

where
L2HDM = Y ukawa+ V (H1, H2) + kinetic� terms (8)
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
(m2

i
,�i) originating from the composite sector.

2

it is not possible to realise a 2HDM-like scenario with a softly broken Z2

the potential up to the fourth order in the Higgs fields:

very strong 
correlations among 
several parameters



Conclusions

Higgs as a pseudo Nambu-Goldstone Boson is a compelling possibility 

for stabilising the EW scale 

Non-minimal CHMs can link the dynamics of a strong first order 

EWPhT to the structure of GW spectrum and the possibility to realise 

EW Baryogenesis 

Future collider and space-based gravitational interferometry 

experiments can provide complementary ways to test the Higgs sector


