Classicalization, Scrambling and Thermalization in QCD at high energies

Raju Venugopalan Brookhaven National Laboratory

Galileo Institute School, February 27-March 3, 2020

Outline of lectures

 Lecture I: Classicalization: The hadron wavefunction at high energies as a Color Glass Condensate
 Lecture II: CGC continued ? Multi-particle production and scrambling in strong fields: the Glasma
 Lecture III: Novel features of the Glasma: universal non-thermal fixed points, the Chiral magnetic effect
 Lecture IV: Thermalization and interdisciplinary connections

The Regge-Gribov Limit

$$x_{\rm Bj} \to 0; s \to \infty; Q^2 (>> \Lambda_{\rm QCD}^2) = \text{fixed}$$

Physics of multi-particle production and strong fields in QCD Novel universal properties of QCD ?

The boosted proton: gluon saturation

Gribov,Levin,Ryskin (1983) Mueller, Qiu (1986)

Gluons at maximal phase space occupancy $n \sim 1/\alpha_s$, resist close packing by recombining and screening their color charges -- gluon saturation

Emergent dynamical saturation scale $Q_S(x) >> \Lambda_{QCD}$

Asymptotic freedom! $\alpha_{s}(Q_{s}) \ll 1$ provides non-pert weak coupling window into infrared

Classicalization in the Regge limit: the Color Glass Condensate EFT

Born-Oppenheimer separation between fast and slow modes

CGC: Effective Field Theory of classical static quark/gluon sources and dynamical gluon fields

Remarkably, physics of extreme quantum fluctuations becomes classical because of high gluon occupancy...

McLerran, RV (1994)

CGC EFT for gluon saturation

Effective Field Theory on Light Front

Large x (P⁺) modes: static LF (color) sources ρ^a Small x (k⁺ << P⁺) modes: dynamical fields A^a_{μ}

What do static color sources look like in the IMF?

In the infinite momentum frame (IMF), wee partons "see" a large density of color sources at small transverse resolutions

Effective Field Theory on Light Front

Explicit construction classical EFT in the Regge limit for large nuclei:

Gaussian stochastic distribution of k static color sources coherently coupled to gauge fields

$$\mathcal{N}\int dm\,dn\,d_{mn}\,N_{m,n}^{(k)}: \quad \text{For SU(3) high dim. reps.} \qquad \int [d\rho]\exp\left(-\int d^2x_{\perp}\left[\frac{\rho^a\rho^a}{2\mu_A^2} - \frac{d_{abc}\rho^a\rho^b\rho^c}{\kappa_A}\right]\right)$$
$$\mathcal{Z}[j] = \int [d\rho]W_{\Lambda^+}[\rho]\left\{\frac{\int^{\Lambda^+}[dA]\delta(A^+)e^{iS_{\Lambda^+}[A,\rho] - \int j\cdot A}}{\int^{\Lambda^+}[dA]\delta(A^+)e^{iS_{\Lambda^+}[A,\rho]}}\right\}$$

 $W_{\Lambda+}[\rho]$ Non-pert. gauge invariant "density matrix" defined at initial scale Λ^+ For a large nucleus, $Q_S^2 \propto \mu_A^2 \sim A^{1/3} \Lambda_{QCD}^2$; $\alpha_S(Q_S^2) \ll 1$ weak coupling EFT !

Simple understanding of "Pomeron" and "Odderon" configurations ...

Coda: Path integral representation for static color sources

$$\mathcal{Z} = < P | e^{ix^+ P_{\text{QCD}}^-} | P > = \lim_{x^+ \to i\infty} \sum_{N,Q} < N, Q | e^{ix^+ P_{\text{QCD}}^-} | N, Q >$$
alk in SU(3): recursion relation from Young tableaux $3 = (1,0)$

Random walk in SU(3): recursion relation from Young tableaux

Multiplicity of an (m,n) representation after k random walks

$$N_{m,n}^{(k+1)} = N_{m-1,n}^{(k)} + N_{m+1,n-1}^{(k)} + N_{m,n-1}^{(k)}$$

For large k, use Stirling's formula:
$$N_{m,n}^{(k)} \approx \frac{27mn(m+n)}{k^3} \frac{3^{3/2+k}}{2k\pi} \exp\left(-3D_2^{m,n}\right) \left(1 + 3D_3^{m,n}/k^2\right)$$

$$\begin{aligned} \text{Quadratic Casimir:} \quad D_2^{m,n} &= \frac{(m^2 + mn + n^2)}{3} + (m + n) \\ \text{Cubic Casimir} \quad D_3^{m,n} &= \frac{1}{18}(m + 2n + 3)(n + 2m + 3)(m - n) \\ \mathcal{N} \int dm \, dn \, d_{mn} \, N_{m,n}^{(k)} &\approx \left(\frac{N_c}{k\pi}\right)^4 \int d^8 \mathbf{Q} \, e^{-N_c \mathbf{Q}^2/k + 3 \, D_3(\mathbf{Q})/k^2} \\ \text{Dim. of rep.} \quad d_{mn} &\approx \frac{mn(m+n)}{2} \quad d^8 Q = \frac{d\phi_1 \, d\phi_2 \, d\phi_3 \, d\pi_1 \, d\pi_2 \, d\pi_3 \, dm \, dn}{2} \left(mn(m+n) \frac{\sqrt{3}}{48} \right) \end{aligned}$$

Canonically conjugate Darboux variables

 $\bar{3} = (0,1)$

2-D classical EFT

Soln. of Yang-Mills eqns in IMF (P+ $\rightarrow \infty$): pure gauges separated by shockwave discontinuity

$$A_{i} = 0 \qquad A_{i} = -\frac{-1}{ig} \cup \partial_{i} U^{\dagger} \qquad \text{Gauge choice } A^{*} = 0 \\ Classical \ \text{soln: } A_{-} = 0 \\ D_{i} \frac{dA^{i,a}}{dy} = g\rho^{a}(x_{t}, y) \text{ with the solution } U = P \exp\left(i\int_{y}^{\infty} dy' \frac{\rho(x_{t}, y')}{\nabla_{t}^{2}}\right) \quad \text{rapidity } y=\ln(x/x_{0}^{-}) \\ \langle P|\mathcal{O}|P \rangle \rightarrow \int [d\rho]W_{\Lambda^{+}}[\rho] \mathcal{O}(A_{\text{cl.}}[\rho]) \\ \text{For } A >>1 \text{ (Gaussian W), compute n-point correlators} \end{cases}$$

 $\Lambda_{\rm OCD}$

 $Q_{s}(A_{1})$

 $Q_{s}(A_{2})$

 $A_2 > A$

 \mathbf{k}_{\perp}

 $\begin{array}{ll} {\rm Gluon\ distribution\ in\ nucleus:} & (2\pi)^3 & dN \\ {\rm non-Abelian\ Weizacker-Williams\ dist.} & \overline{2(N_c^2-1)} \, \overline{\pi R_A^2 d^2 k_\perp} \end{array}$

Quantum evolution of classical theory: Wilson RG

Integrate out small fluctuations => Increase color charge of sources - Extends validity of the classical EFT to finite nuclei...

Wilsonian RG equations describe evolution of all N-point correlation functions with energy

JIMWLK Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

JIMWLK RG evolution for a single nucleus

$$\begin{split} \mathcal{O}_{\mathrm{NLO}} &= \left(\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ \end{array} \right) \mathcal{O}_{\mathrm{LO}} \\ &= \ln \left(\frac{\Lambda^{+}}{p^{+}} \right) \mathcal{H} \mathcal{O}_{\mathrm{LO}} \text{ (keeping leading log divergences)} \\ & & \\ &$$

JIMWLK Hamiltonian now computed to NLLx accuracy

Balitsky, Chirilli; Kovchegov, Weigert; Grabovsky; Kovner, Lublinsky, Mulian; Caron-Huot

JIMWLK RG evolution in DIS

Wilsonian RG describes evolution $W_{\Lambda_0^+}[\rho] \rightarrow W_{\Lambda_1^+}[\rho']$ with scale separation between static sources and fields

"Shockwave" propagators in strong background fields in "wrong" light-cone gauge ($A^-=0$)

Effective vertices identical to quark-quark-reggeon and gluon-gluon-reggeon vertices in Lipatov's Reggeon EFT Bondarenko,Lipatov,Pozdynyakov,

Bondarenko,Lipatov,Pozdynyakov, Prygarin, arXiv:1708.05183 Hentschinski, arXiv:1802.06755

B-JIMWLK hierarchy of many-body correlators in QCD

Diffusion of fuzz of "wee" partons in the functional space of colored fields

Can be represented as a Langevin equation that can be solved numerically to "leading logs in x" accuracy to compute n-point Wilson line correlators

JIMWLK :Jalilian-Marian,Kovner,Leonidov,Weigert (1997); Iancu,Leonidov,McLerran

(2001); Independent and equivalent formulation: Balitsky (1996)

BFKL: Balitsky-Fadin-Kuraev-Lipatov (1976-1978)

Inclusive DIS: dipole evolution

Inclusive DIS: dipole evolution

B-JIMWLK eqn. for dipole correlator:

$$\frac{\partial}{\partial Y} \langle \operatorname{Tr}(V_x V_y^{\dagger}) \rangle_Y = -\frac{\alpha_S N_c}{2\pi^2} \int_{z_{\perp}} \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \langle \operatorname{Tr}(V_x V_y^{\dagger}) - \frac{1}{N_c} \operatorname{Tr}(V_x V_z^{\dagger}) \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y$$

Dipole factorization:
$$\mathbf{Y} = \operatorname{Ln}(\mathbf{1}/\mathbf{x})$$

 $\langle \operatorname{Tr}(V_x V_z^{\dagger}) \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \longrightarrow \langle \operatorname{Tr}(V_x V_z^{\dagger}) \rangle_Y \langle \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \quad A >> 1, N_c \twoheadrightarrow \infty$

Resulting closed form eqn. for a large nucleus is the Balitsky-Kovchegov (BK) eqn. widely used in phenomenological applications –

The BFKL equation is the low density $V \approx 1 - ig\rho/\nabla t^2$ limit of the BK equation...

Analytical approximations to the BK equation

The 2-point correlator $\mathcal{N}_Y = 1 - \frac{1}{N_c} \operatorname{Tr} \left(V \left(b + \frac{r_{\perp}}{2} \right) V^{\dagger} \left(b - \frac{r_{\perp}}{2} \right) \right)$ for $N_c \to \infty$ and A >> 1

$$\frac{\partial \mathcal{N}_Y(x,y)}{\partial Y} = \bar{\alpha}_s \int_z \frac{(x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \mathcal{N}_{\underline{Y}}(x,z) + \mathcal{N}_{Y}(z,y) - \mathcal{N}_{Y}(x,y) - \mathcal{N}_{Y}(x,z)\mathcal{N}_{Y}(z,y) \right\}$$

$$\frac{\partial \mathcal{N}_Y(x,y)}{\mathsf{BFKL}} = \bar{\alpha}_s \int_z \frac{(x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \mathcal{N}_{\underline{Y}}(x,z) + \mathcal{N}_{Y}(z,y) - \mathcal{N}_{Y}(x,z) - \mathcal{N}_{Y}(x,z)\mathcal{N}_{Y}(z,y) \right\}$$

$$\frac{\partial \mathcal{N}_Y(x,y)}{\mathsf{BFKL}} = \bar{\alpha}_s \int_z \frac{(x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \mathcal{N}_{\underline{Y}}(x,z) + \mathcal{N}_{Y}(z,y) - \mathcal{N}_{Y}(x,z) - \mathcal{N}_{Y}(x,z)\mathcal{N}_{Y}(z,y) \right\}$$

For small dipole, $(r \ll 1/Q_s(Y)) => BFKL eqn.$ $\mathcal{N}_Y(r) \approx (r^2 Q_0^2)^{1/2} e^{\omega \bar{\alpha}_s Y} \exp\left(-\frac{\ln^2(1/r^2 Q_0^2)}{2\beta \bar{\alpha}_s Y}\right)$

Imposng a saturation condition,

$$\mathcal{N} = 1/2$$
 when $r \sim 1/Q_s(Y) \Longrightarrow Q_s^2(Y) \approx Q_0^2 e^{\lambda Y}$ with $\lambda \sim 4.8 \alpha_s$

18

For a large dipole, $(r >> 1/Q_s(Y))$

Levin,Tuchin; Iancu,McLerran;Mueller

$$\mathcal{N}_Y(r) \approx 1 - \kappa \exp\left(-\frac{1}{4c}\ln^2(r^2Q_s^2(Y))\right)$$
 $c \approx 4.8$

Geometrical scaling

Can write the solution of BFKL as:

Plugging into \mathcal{N}_Y , can show simply

$$\mathcal{N}_Y \approx \left(r_\perp^2 Q_s^2(Y)\right)^{\gamma} \text{ for } Q_s^2 << Q^2 << \frac{Q_s^4}{Q_0^2}$$

 $\gamma \sim 0.64\,$ is larger than BFKL anomalous dimension = 1/2 $\,$

lancu, Itakura, McLerran; Mueller, Triantafyllopolous

Geometrical scaling window in QCD at high energies

20

How does Q_s behave as function of Y?

Fixed coupling LO BFKL: $Q_s^2 = Q_0^2 e^{c \, ar lpha_s Y}$

LO BFKL+ running coupling: $Q_s^2 = \Lambda_{
m QCD}^2 e^{\sqrt{2b_0 c(Y+Y_0)}}$

Very close to HERA result! Triantafyllopolous

Y

Such interesting systematics may be tested at the EIC !

Dipole evolution in the Color Glass Condensate EFT

The BK equation describes how $q\bar{q}$ "dipole" probe evolves with energy – providing a clean demonstration of unitarization in strong fields

Its dynamics can be mapped* to that of the Fischer-Kolmogorov (FKPP) eqn. describing the evolution of non-linear wave fronts. Rich synergy with stat. mech.

Munier, Peschanski (2003) * small caveat

Semi-inclusive DIS: quadrupole evolution

Dominguez, Marquet, Xiao, Yuan (2011)

$$\frac{d\sigma^{\gamma^*_{\mathrm{T},\mathrm{L}}A\to q\bar{q}X}}{d^3k_1d^3k_2} \propto \int_{x,y,\bar{x}\bar{y}} e^{ik_{1\perp}\cdot(x-\bar{x})} e^{ik_{2\perp}\cdot(y-\bar{y})} \left[1 + Q(x,y;\bar{y},\bar{x}) - D(x,y) - D(\bar{y},\bar{x})\right]$$

Functional Langevin solutions of JIMWLK hierarchy

Rummukainen,Weigert (2003)

Dumitru, Jalilian-Marian, Lappi, Schenke, RV, PLB706 (2011)219

We are now able to compute all n-point correlations of a theory of strongly correlated gluons and study their evolution with energy!

Semi-inclusive DIS: quadrupole evolution

 $ar{x}_4$

RG evolution provides fresh insight into multi-parton correlations

Rate of energy evolution of dipole and quadrupole saturation scales

lancu, Triantafyllopolous, arXiv:1112.1104