



# Transport properties of the QGP within the Dynamical Quasi-Particle Model

#### Olga Soloveva\*, Pierre Moreau, Elena Bratkovskaya



#### Frontiers in Nuclear and Hadronic Physics 2020 GGI Florence 28 February 2020

\*soloveva@fias.uni-frankfurt.de

# **Motivation**

- Explore the QCD phase diagram at finite temperature and chemical potential through heavy-ion collisions
- Available information:
  - Experimental data at SPS, BES at RHIC
  - Lattice QCD calculations



Introduction



How to learn about degrees-of-freedom of QGP ?

→ HIC simulations – transport models

**Transport coefficients** 



Lattice results from: Phys.Rev. D90 (2014) 094503; PoS CPOD2017 (2018) 032

DQPM

Transport models need an input for the partonic phase: cross-sections, masses,..

Summary

# **Transport coefficients of QGP**





#### **QGP** in equilibrium:



DQPM: consider the effects of the nonperturbative nature of the strongly interacting quark-gluon plasma (sQGP) constituents (vs. pQCD models)

# **Dynamical QuasiParticle Model (DQPM)**





gluon propagator:  $\Delta^{-1} = P^2 - \Pi$  & quark propagator  $S_q^{-1} = P^2 - \Sigma_q$ gluon self-energy:  $\Pi = M_g^2 - i2g_g \omega$  & quark self-energy:  $\Sigma_q = M_q^2 - i2g_q \omega$ 

Real part of the self-energy: thermal mass  $(M_g, M_q)$ 

• Imaginary part of the self-energy: interaction width of partons ( $\gamma_g$ ,  $\gamma_q$ ) Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

#### **Parton properties**

Modeling of the quark/gluon masses and widths (inspired by HTL calculations)

$$M_{q(\bar{q})}^{2}(T,\mu_{B}) = \frac{N_{c}^{2}-1}{8N_{c}} g^{2}(T,\mu_{B}) \left(T^{2}+\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$
$$\gamma_{q,g}(T,\mu_{B}) = \frac{c_{A,F}}{3} \frac{g^{2}(T,\mu_{B})T}{8\pi} \ln \left(\frac{2c}{g^{2}(T,\mu_{B})}+1\right)$$

Entropy and baryon density in the quasiparticle limit (G. Baym 1998, Blaizot et al. 2001)  $s^{DQPM}(\Pi, \Delta, S_q, \Sigma), n_B^{DQPM}(\Pi, \Delta, S_q, \Sigma)$ 



Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

## **DQPM coupling constant**

Input: entropy density as a f(T,  $\mu_B = 0$ )  $g^2(s/s_{SB}) = d((s/s_{SB})^e - 1)^f$   $s^{QCD}_{SB} = 19/9\pi^2 T^3$  $s^{DQPM}(\Pi, \Delta, S_q, \Sigma) = s^{lattice}$ 

#### fit S from QP to S from IQCD → fix the model parameters

Scaling hypothesis at finite  $\mu_B \approx 3\mu_q$  $g^2(T/T_c, \mu_B) = g^2 \left(\frac{T^*}{T_c(\mu_B)}, \mu_B = 0\right)$ 

with the effective temperature

$$T^* = \sqrt{T^2 + \mu_q^2 / \pi^2}$$

Introduction



# **DQPM : Thermodynamics**

#### Entropy and baryon density

in the quasiparticle limit (G. Baym 1998, Blaizot et al. 2001):

$$s^{dqp} = n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \left[ d_g \frac{\partial n_B}{\partial T} \left( \operatorname{Im}(\ln - \underline{\Delta}^{-1}) + \operatorname{Im} \underline{\Pi} \operatorname{Re} \underline{\Delta} \right) + \sum_{q=u,d,s} d_q \frac{\partial n_F(\omega - \mu_q)}{\partial T} \left( \operatorname{Im}(\ln - \underline{S}_q^{-1}) + \operatorname{Im} \underline{\Sigma}_q \operatorname{Re} \underline{S}_q \right) + \sum_{\bar{q} = \bar{u}, \bar{d}, \bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left( \operatorname{Im}(\ln - \underline{S}_{\bar{q}}^{-1}) + \operatorname{Im} \underline{\Sigma}_{\bar{q}} \operatorname{Re} \underline{S}_{\bar{q}} \right) \right] + \sum_{\bar{q} = \bar{u}, \bar{d}, \bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left( \operatorname{Im}(\ln - \underline{S}_{\bar{q}}^{-1}) + \operatorname{Im} \underline{\Sigma}_{\bar{q}} \operatorname{Re} \underline{S}_{\bar{q}} \right) \right]$$





## **DQPM : Thermodynamics**



## **Relaxation Time Approximation**

Boltzmann equation  $f_a = f_a^{eq} \left(1 + \phi_a\right)$  $\frac{df_a^{\text{eq}}}{dt} = C_a = -\frac{f_a^{\text{eq}}\phi_a}{\tau_a} \qquad \qquad \text{RTA: system equilibrates within the relax time } \tau,$ Express collisional Integral via  $\tau$  and  $f_a$ Relaxation times:  $\frac{1 + d_a f_a^{\text{eq}}}{\tau_a(E_a^*)} = \sum_{bcd} \frac{1}{1 + \delta_{ab}} \int d\Gamma_b^* d\Gamma_c^* d\Gamma_d^* W(a, b|c, d) f_b^{\text{eq}} (1 + d_c f_c^{\text{eq}}) (1 + d_d f_d^{\text{eq}}) + (\text{cd}), \text{ (bc)}$  $T^{\mu\nu} = -Pq^{\mu\nu} + wu^{\mu}u^{\nu} + \Delta T^{\mu\nu} \qquad J^{\mu}_{B} = n_{B}u^{\mu} + \Delta J^{\mu}_{B}$ Energy-momentum tensor and  $\Delta T^{\mu\nu} = \eta \left( D^{\mu} u^{\nu} + D^{\nu} u^{\mu} + \frac{2}{3} \Delta^{\mu\nu} \partial_{\rho} u^{\rho} \right) - \zeta \Delta^{\mu\nu} \partial_{\rho} u^{\rho}$  $\Delta J^{\mu}_{B} = \lambda \left( \frac{n_{B}T}{w} \right)^{2} D^{\mu} \left( \frac{\mu_{B}}{T} \right) \qquad \text{hydrodynamics}$ baryon diffusion current can be expressed using fa :  $T^{\mu\nu}(f_a, m_{a,a}), J^{\mu}_B(f_a, m_{a,a})$ 

Obtain the transport coefficients using conservation laws, and  $f_a$ :

#### **Relaxation times**

$$1)\tau_i(\mathbf{p}, T, \mu_B) = \frac{1}{\Gamma_i(\mathbf{p}, T, \mu_B)}$$
$$2)\tau_i(T, \mu_B) = \frac{1}{2\gamma_i(T, \mu_B)},$$

 $\begin{array}{l} \blacktriangleright \quad \text{on-shell interaction rates} \\ \Gamma_i^{\text{on}}(\mathbf{p}_i, T, \mu_q) = \frac{1}{2E_i} \sum_{j=q, \bar{q}, g} \int \frac{d^3 p_j}{(2\pi)^3 2E_j} \, d_j \, f_j(E_j, T, \mu_q) \\ \int \frac{d^3 p_3}{(2\pi)^3 2E_3} \int \frac{d^3 p_4}{(2\pi)^3 2E_4} (1 \pm f_3) (1 \pm f_4) \\ |\bar{\mathcal{M}}|^2(p_i, p_j, p_3, p_4) \left(2\pi\right)^4 \delta^{(4)} \left(p_i + p_j - p_3 - p_4\right) \end{array}$ 



## **Partonic interactions: matrix elements**



## **Total cross sections**



Initial masses: pole masses Final masses: pole masses



**Initial masses:** pole masses Final masses: integrated over spectral functions



Introduction DQPM Transport coefficients Summary

## **Transport coefficients: shear viscosity**



Lattice: N. Astrakhantsev, V. Braguta, A. Kotov JHEP 1704 (2017) 101

Introduction DQPM Transport coefficients Summary

## **Transport coefficients: bulk viscosity**



## **Transport coefficients: electric conductivity**



Introduction DQPM Transport coefficients Summary

# **Transport coefficients: baryon diffusion coefficient**



Introduction DQPM Transport coefficients

# Summary / Outlook

- Transport coefficient at finite T and  $\mu_B$  have been found using the  $(T, \mu_B)$ dependent cross sections(for cross-sections see[2])
- $\rightarrow$  At  $\mu_B = 0$  good agreement with the Bayesian analysis estimations and gluodynamic lattice calculations of transport coefficients
- $\geq$  Very weak  $\mu_B$  dependence is found [1,2]

[1] O Soloveva, Pierre Moreau, Elena Bratkovskaya, arXiv:1911.08547 [nucl-th].

[2] P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, arXiv:1903.10157, PRC 100 (19) no. 1, 014911

[3] O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, arXiv:2001.05395



# **Summary / Outlook**

- **>** Outlook:
  - > More precise EoS finite/large  $\mu_B$
  - > Possible 1<sup>st</sup> order phase transition at large  $\mu_B$ , comparison w PNJL model

# Thank you for your attention!









#### QGP out-of equilibrium $\leftarrow \rightarrow$ HIC



**Parton-Hadron-String-Dynamics (PHSD)** 

Transport theory: off-shell transport equations in phase-space representation based on Kadanoff-Baym equations for the partonic and hadronic phase



# Stages of a collision in the PHSD





# Extraction of $(T, \mu_R)$ in PHSD

For each space-time cell of the PHSD:

Calculate the local energy density  $\epsilon^{PHSD}$  and baryon density  $n_{B}^{PHSD}$ 

#### 1) Energy density ε<sup>PHSD</sup>

Intro

In each space-time cell of the PHSD, the energy-momentum tensor is calculated by the  $T^{\mu\nu} = \sum_{i} \frac{p_i^{\mu} p_i^{\nu}}{E_i}$ formula:

Diagonalization of the energy-momentum tensor to get the energy density and pressure components expressed in the local rest frame (LRF)

$$T^{\mu\nu} = \begin{pmatrix} T^{00} T^{01} T^{02} T^{03} \\ T^{10} T^{11} T^{12} T^{13} \\ T^{20} T^{21} T^{22} T^{22} T^{23} \\ T^{30} T^{31} T^{32} T^{33} \end{pmatrix} \longrightarrow \begin{pmatrix} \epsilon^{LRF} & 0 & 0 & 0 \\ 0 & 0 & P_{z}^{LRF} & 0 \\ 0 & 0 & 0 & P_{z}^{LRF} \end{pmatrix} \longrightarrow \epsilon^{\text{PHSD}}$$
  
Xu et al., Phys.Rev. C96 (2017), 024902  
2) Net-baryon density  $n_{B}^{\text{PHSD}} \longrightarrow n_{B} = \gamma_{E} (J_{B}^{0} - \vec{\beta_{E}} \cdot \vec{J_{B}}) = \frac{J_{B}^{0}}{\gamma_{E}}$   
Net-baryon current:  $J_{B}^{\mu} = \sum_{i} \frac{P_{i}^{\mu}}{E_{i}} \frac{(q_{i} - \bar{q}_{i})}{3} \longrightarrow \text{Eckart velocity } \vec{\beta_{E}} = \vec{J_{B}}/J_{B}^{0}$ 



# Extraction of $(T, \mu_R)$ in PHSD

For each space-time cell of the PHSD:

- > Calculate the local energy density  $\epsilon^{PHSD}$  and baryon density  $n_{R}^{PHSD}$
- > use IQCD relations (up to 6th order):  $\frac{n_B}{T^3} \approx \chi_2^B(T) \left(\frac{\mu_B}{T}\right) + \dots \\ \Delta \epsilon/T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T)\right) \left(\frac{\mu_B}{T}\right)^2 + \dots$

Use baryon number susceptibilities  $\chi_n$  from IQCD

 $\rightarrow$  obtain (T,  $\mu_B$ ) by solving the system of coupled equations using  $\epsilon^{PHSD}$  and  $n_B^{PHSD}$ 







# Illustration for HIC ( $\sqrt{s_{NN}} = 17$ GeV)





# Illustration for HIC ( $\sqrt{s_{NN}} = 17$ GeV)



PHS

# Traces of the QGP at finite $\mu_B$ in observables in high energy heavy-ion collisions



Introduction DQPM Transport coefficients HIC Summary



24

Comparison between three different results:

- **1)** PHSD 4.0 : only  $\sigma(T)$  and M(T)
- 2) PHSD 5.0 : with  $\sigma(\sqrt{s}, T, \mu_B = 0)$  and  $M(T, \mu_B = 0)$
- **3)** PHSD 5.0 : with  $\sigma(\sqrt{s}, T, \mu_B)$  and  $M(T, \mu_B)$

# Results for HIC ( $\sqrt{s_{NN}} = 200 \text{ GeV}$ )



#### High- $\mu_B$ regions are probed at low $\sqrt{s_{NN}}$ or high rapidity regions





**Summary** 

Introduction

**Transport coefficients** 

HIC

# Results for HIC ( $\sqrt{s_{NN}} = 17$ GeV)





## **Anisotropic flow coefficients**





Introduction

 $\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$  $v_{\rm n} = \left\langle \cos n \left( \varphi - \psi_n \right) \right\rangle, \quad n = 1, 2, 3...,$ 

Anisotropic flow = correlations with respect to the reaction plane

 $v_n = \langle \cos(n(\phi - \Psi_r)) \rangle$ 



# Elliptic flow ( $\sqrt{s_{NN}} = 200 \ GeV \ vs \ 27 GeV$ )





28

# Directed flow ( $\sqrt{s_{NN}} = 200 \ GeV \ vs \ 27 \ GeV$ )



Introduction

DQPM

Transport coefficients HIC Summary

PHS

## **Transport coefficients: baryon diffusion coefficient**

Transport coefficients

#### Relaxation Time Approximation

Introduction

$$\kappa_B^{\text{RTA}}(T,\mu_B) = \frac{1}{3} \sum_{i=q,\bar{q}} \int \frac{d^3p}{(2\pi)^3} \mathbf{p}^4 \tau_i(\mathbf{p},T,\mu_B)$$
$$\frac{d_i(1\pm f_i)f_i}{E_i^2} \left(b_a - \frac{n_B E_i}{\epsilon+p}\right)^2$$

Baryon diffusion depends on the baryon charge-> Reduces proton v2 and increases antiproton v2

DQPM

G. S. Denicol et al, PRC 98. 034916 (2018)



13 / 15

#### **Transport coefficients: shear viscosity**



# DQPM: Time-like and ,space-like' energy densities

Time/space-like part of energy-momentum tensor  $T_{\mu\nu}$  for quarks and gluons:



space-like energy density of quarks and gluons = ~1/3 of total energy density

- □ space-like energy density dominates for gluons
- space-like parts are identified with potential energy densities

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Introduction

**DQPM** Transport coefficients HIC Summary

# DQPM EoS at finite (T, $\mu_B$ )

Introduction

DQPM



- > Taylor series of thermodynamic quantities in terms of  $(\mu_B/T)$
- With the 6<sup>nd</sup> order susceptibility. Example 2<sup>nd</sup> order:

$$\begin{split} \Delta P/T^4 &= \frac{P(T,\mu_B) - P(T,0)}{T^4} \approx \frac{1}{2} \chi_2^B(T) \left(\frac{\mu_B}{T}\right)^2 \\ \frac{n_B}{T^3} &= \frac{\partial(P/T^4)}{\partial(\mu_B/T)} \bigg|_T \approx \chi_2^B(T) \left(\frac{\mu_B}{T}\right) \\ \Delta s/T^3 &= \frac{s(T,\mu_B) - s(T,0)}{T^3} = \frac{1}{T^3} \frac{\partial \Delta P}{\partial T} \bigg|_{\mu_B} \\ &= T \frac{\partial(\Delta P/T^4)}{\partial T} \bigg|_{\mu_B} + 4(\Delta P/T^4) \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 2\chi_2^B(T)\right) \left(\frac{\mu_B}{T}\right)^2 \\ \Delta \epsilon/T^4 &= \frac{\epsilon(T,\mu_B) - \epsilon(T,0)}{T^4} \\ &= \Delta s/T^3 - \Delta P/T^4 + \left(\frac{\mu_B}{T}\right) \frac{n_B}{T^3} \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T)\right) \left(\frac{\mu_B}{T}\right)^2 \\ \text{A. Bazavov, Phys. Rev. D 96, 054504(2017)} \end{split}$$

Implementation in PHSD

HIC

**Summary**
#### Extraction of $(T, \mu_B)$ in PHSD

- > In each space-time cell of the PHSD, the energy-momentum tensor is calculated by the formula:  $T^{\mu\nu} = \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\nu}}{E_{i}}$
- Diagonalization of the energy-momentum tensor to get the energy density and pressure components expressed in the local rest frame (LRF)

$$T^{\mu\nu} = \begin{pmatrix} T^{00} \ T^{01} \ T^{02} \ T^{03} \\ T^{10} \ T^{11} \ T^{12} \ T^{13} \\ T^{20} \ T^{21} \ T^{22} \ T^{23} \\ T^{30} \ T^{31} \ T^{32} \ T^{33} \end{pmatrix} \longrightarrow \begin{pmatrix} \epsilon^{LRF} \ 0 \ 0 \ 0 \\ 0 \ P_x^{LRF} \ 0 \ 0 \\ 0 \ 0 \ P_y^{LRF} \ 0 \\ 0 \ 0 \ 0 \ P_z^{LRF} \end{pmatrix}$$
  
Xu et al., Phys.Rev. C96 (2017), 024902

For each space-time cell of the PHSD:

- Calculate the local energy density ε<sup>PHSD</sup> and baryon density n<sub>B</sub><sup>PHSD</sup>
- > use IQCD relations (up to 6th order):  $\begin{bmatrix} \frac{n_B}{T^3} \approx \chi_2^B(T) \left(\frac{\mu_B}{T}\right) + \dots \\ \Delta \epsilon/T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T)\right) \left(\frac{\mu_B}{T}\right)^2 + \dots \end{bmatrix}$

 $\rightarrow$  obtain (*T*,  $\mu_B$ ) by solving the system of coupled equations using  $\epsilon^{PHSD}$  and  $n_B^{PHSD}$ 



#### Isentropic trajectories for $(T, \mu_B)$

IQCD: WB, PoS CPOD2017 (2018) 032





Introduction Implementation in PHSD DQPM HIC **Summary** 19 / 15

#### **QuasiParticle model**

Introduction

How to construct a quasi-particle model:

1) assume the properties of quasi-particles → some model parameters involved

2) determine the thermal properties of the system from Grand canonical potential  $\Omega$  in propagator (D,S) representation (2PI):  $\beta\Omega[D,S] = \frac{1}{2} \operatorname{Tr}[\ln D^{-1} - \Pi D] - \operatorname{Tr}[\ln S^{-1} + \Sigma S] + \Phi[D,S]$   $\frac{\delta\Phi}{\delta D} = \frac{1}{2}\Pi$   $\frac{\delta\Phi}{\delta S} = -\Sigma$ Cf. J.P. Blaizot et al. PRD 63 (2001) 065003

i.e. determine entropy *S*, pressure P etc. for QP:

DQPM

$$\Omega/V = -P \qquad d\Omega = -SdT - PdV - Nd\mu \qquad S = -\frac{\partial\Omega}{\partial T} \qquad N = -\frac{\partial\Omega}{\partial \mu} \qquad P = -\frac{\partial\Omega}{\partial V}$$

3) fit S, P from QP to S, P from IQCD → fix the model parameters
 → Properties of quasi-particles

**Transport coefficients** 

HIC

Summary

20

#### **Energy-momentum tensor in PHSD**

Diagonalization of the energy-momentum tensor to get the energy density and pressure components expressed in the local rest frame (LRF)

$$T^{\mu\nu} (x_{\nu})_i = \lambda_i (x^{\mu})_i = \lambda_i g^{\mu\nu} (x_{\nu})_i$$

Landau-matching condition: Xu et al., Phys.Rev. C96 (2017), 024902

$$T^{\mu\nu}u_{\nu} = \epsilon u^{\mu} = (\epsilon g^{\mu\nu})u_{\nu}$$

Evaluation of the characteristic polynomial:

$$P(\lambda) = \begin{vmatrix} T^{00} - \lambda & T^{01} & T^{02} & T^{03} \\ T^{10} & T^{11} + \lambda & T^{12} & T^{13} \\ T^{20} & T^{21} & T^{22} + \lambda & T^{23} \\ T^{30} & T^{31} & T^{32} & T^{33} + \lambda \end{vmatrix}$$

> The four solutions  $\lambda_i$  are identified to  $(e, -P_1, -P_2, -P_3)$ 

The pressure components  $P_i$  do not necessarily correspond to  $(P_x, P_y, P_z)$ 

#### Extraction of $(T, \mu_B)$ in PHSD



Ryblewski, Florkowski, Phys.Rev. C85 (2012) 064901

We have to solve the following system in PHSD:

Done by Newton-Raphson method

Intro

$$\begin{cases} \epsilon^{\rm EoS}(T,\mu_B) = \epsilon^{\rm PHSD}/r(x) \\ n_B^{\rm EoS}(T,\mu_B) = n_B^{\rm PHSD} \end{cases}$$



#### **Models of Heavy-Ion Collisions**



# DQPM: q, qbar, g elastic/inelastic scattering (leading order)









# Di-jets in e-p (e-A) collisions from high energy correlators

Farid Salazar February 28th, 2020



The Galileo Galilei Institute For Theoretical Physics

# Outline

- Nuclear matter at high energies: The Color Glass Condensate
- Eikonal scattering, deep inelastic scattering and the dipole correlator
- Di-jets and the quadrupole correlator
- Cross section and elliptic anisotropy
- Outlook

# Nuclear matter at high energies

## Nuclear matter at high energies

• At high energies (small-x) the dominant degrees of freedom are gluons.





## The Color Glass Condensate: Stochastic Yang-Mills

• Small-x: gluons with a high occupation number.

Classical field:  $A^{\mu,a}$  $[D_{\nu}, F^{\mu\nu}] = J^{\mu}$ 

• Large-x: frozen, localized (time dilation and length contraction)

**Static eikonal color sources:** 

$$J^{\mu,a} = \delta^{\mu,+} \rho^a(x^-, x_\perp)$$

 $W_{\Lambda}[\rho] \quad \mbox{gauge invariant} \\ \mbox{weight functional} \\$ 

Evaluate correlators in two steps:



$$\langle \mathcal{O}[\mathcal{A}] \rangle \rangle = \int [\mathcal{D}\rho] W_{\Lambda}[\rho] \frac{\int^{\Lambda} [\mathcal{D}A] O[A] e^{iS[\rho,A] - i \int j \cdot A}}{\int^{\Lambda} \mathcal{D}A e^{iS[\rho,A]}}$$

 $\langle \mathcal{O}[\mathcal{A}] \rangle = \int [\mathcal{D}\rho] W_{\Lambda}[\rho] \mathcal{O}[\mathcal{A}_{cl}[\rho]]$ 

# The Color Glass Condensate: JIMWLK Quantum Evolution

$$\langle\langle \mathcal{O}[\mathcal{A}] \rangle 
angle = \int [\mathcal{D}\rho] W_{\Lambda}[\rho] rac{\int^{\Lambda} [\mathcal{D}A] O[A] e^{iS[
ho,A] - i\int j \cdot A}}{\int^{\Lambda} \mathcal{D}A e^{iS[
ho,A]}}$$

For correlators with momenta  $k \ll \Lambda$ quantum corrections logarithmically enhanced (bremsstrahlung) are required.

 $\alpha_s \log(\Lambda/k)$ 

$$\langle \mathcal{O}[\mathcal{A}] \rangle_{\Lambda} = \int [\mathcal{D}\rho] W_{\Lambda}[\rho] \mathcal{O}[\mathcal{A}_{qu}[\rho]]$$

not simple classical Yang-Mills, need to solve path integral



#### **Quantum fluctuations**

# The Color Glass Condensate: JIMWLK Quantum Evolution



Eikonal scattering, DIS and dipole correlator

#### Eikonal scattering from classical field: quark

Quark scattering off strong background field

**Color rotation** 

$$\begin{array}{c|c} q \\ (x_{\perp},i) \end{array} \begin{array}{c} V_{ij}(x_{\perp}) = \left[ \mathcal{P}e^{ig\int dz^{-}A^{+,a}(x_{\perp},z^{-})t^{a}} \right]_{ij} \\ (x_{\perp},j) \end{array} \begin{array}{c} t^{a}_{ij} \\ f^{a}_{ij} \end{array} \hspace{0.5cm} \text{generator in fundamental rep.} \end{array}$$

(i, j) color indices in fundamental representation

Multiple scattering: path order exponential encodes all multiple gluon exchanges.



# Deep inelastic scattering

Dipole scatters from shockwave (CGC)



Calculable in QED

QCD dynamics

# Deep inelastic scattering

Dipole scatters from shockwave (CGC)



$$\Psi^{\gamma^* \to q\bar{q}}(Q, r_\perp, z) \qquad \frac{1}{N_c} \left[ 1_{ij} - \left[ V(x_\perp) V^{\dagger}(y_\perp) \right]_{ij} \right]$$

Total DIS cross section:

$$\sigma_{tot}^{q\bar{q}A}(Q^2,x) = \int \frac{d^2r_{\perp}}{4\pi} \int_0^1 \frac{dz}{z(1-z)} \left| \Psi^{\gamma^* \to q\bar{q}}(Q,x_{\perp} - y_{\perp},z) \right|^2 \sigma^{q\bar{q}A}(r_{\perp},x)$$

Optical theorem:

$$\sigma^{q\bar{q}A}(r_{\perp},x) = 2\int d^2b_{\perp}D\left(b_{\perp} + \frac{1}{2}r_{\perp},b_{\perp} - \frac{1}{2}r_{\perp},x\right)$$

$$D(x_{\perp}, y_{\perp}, x) = 1 - \frac{1}{N_c} \left\langle tr V(x_{\perp}) V^{\dagger}(y_{\perp}) \right\rangle_x$$

# The dipole correlator

$$\mathcal{D}(x_{\perp}, y_{\perp})_x = 1 - \frac{1}{N_c} tr(V(x_{\perp})V^{\dagger}(y_{\perp}))$$

$$D(x_{\perp}, y_{\perp})_{x} = 1 - \frac{1}{N_{c}} \left\langle tr(V(x_{\perp})V^{\dagger}(y_{\perp})) \right\rangle_{x}$$
$$= \int [\mathcal{D}\rho] W_{x}[\rho] \left[ 1 - \frac{1}{N_{c}} tr(V(x_{\perp})V^{\dagger}(y_{\perp})) \right]$$





"Dipole amplitude" for one color charge configuration  $\mathcal{D}(r_{\perp}, 0)$ 

"Dipole amplitude" averaged over multiple charge configurations  $D(r_{\perp}, 0)$ 

IV model: 
$$\left< 
ho^a(x_\perp) 
ho^b(y_\perp) \right> = \mu^2 \delta^{ab} \delta^{(2)}(x_\perp - y_\perp)$$

## The dipole correlator

$$\mathcal{D}(x_{\perp}, y_{\perp})_x = 1 - \frac{1}{N_c} tr(V(x_{\perp})V^{\dagger}(y_{\perp}))$$

$$D(x_{\perp}, y_{\perp})_{x} = 1 - \frac{1}{N_{c}} \left\langle tr(V(x_{\perp})V^{\dagger}(y_{\perp})) \right\rangle_{x}$$
$$= \int [\mathcal{D}\rho] W_{x}[\rho] \left[ 1 - \frac{1}{N_{c}} tr(V(x_{\perp})V^{\dagger}(y_{\perp})) \right]$$



"Dipole amplitude" for one color charge configuration  $\mathcal{D}(r_{\perp},0)$ 



Saturation scale grows with density  $\,Q_s^2\sim\mu^2$ 

## The dipole correlator





At higher energies dipole saturation occurs at smaller dipole sizes.

$$Q_s^2 \sim (1/x)^\lambda \sim s^\lambda \qquad \lambda \sim 0.3$$

 $lpha_{s}(Q_{s})\ll 1$  weak coupling

# Di-jets and the quadrupole correlator

# Di-jet production in ep (eA)



Inclusive dijet

two jets + anything else



Convenient choice of coordinates

$$P_{\perp} = z_2 k_{1,\perp} + z_1 k_{2,\perp}$$

 $\Delta_{\perp} = k_{1,\perp} - \overline{k_{2,\perp}}$ 



# Di-jet production in ep (eA) Amplitude **Conjugate amplitude** $\gamma^*$ $\mathcal{V}^{*}$ $\Psi^{\gamma^* \to q\bar{q}}(Q, r_{\perp}, z)$ $\Psi^{\gamma^* \to q \overline{q}}(Q, r'_{\perp}, z)$ $\left|1_{ij} - \left[V(x_{\perp})V^{\dagger}(y_{\perp})\right]_{ij}\right| \quad \times \quad \left|1_{ij} - \left[V(x_{\perp}')V^{\dagger}(y_{\perp}')\right]_{ij}\right|$ $d\sigma^{\gamma^*p}(A) \rightarrow q\bar{q}X$

$$\frac{d\Pi}{d\Pi} \sim \int d^2 r_{\perp} d^2 b_{\perp} d^2 r'_{\perp} d^2 b'_{\perp} e^{-iP_{\perp} \cdot (r_{\perp} - r'_{\perp})} e^{-\Delta_{\perp} \cdot (b_{\perp} - b'_{\perp})} \Psi(r_{\perp}) \Psi^*(r'_{\perp}) \times \left[ Q\left(b_{\perp} + \frac{1}{2}r_{\perp}, b_{\perp} - \frac{1}{2}r_{\perp}; b'_{\perp} - \frac{1}{2}r'_{\perp}, b'_{\perp} + \frac{1}{2}r'_{\perp} \right) \right]$$

$$Q(x_1, x_2; x_3, x_4) \equiv 1 - \frac{1}{N_c} \left\langle tr \left[ V(x_1) V^{\dagger}(x_2) \right] \right\rangle - \frac{1}{N_c} \left\langle tr \left[ V(x_3) V^{\dagger}(x_4) \right] \right\rangle + \frac{1}{N_c} \left\langle tr \left[ V(x_1) V^{\dagger}(x_2) V(x_3) V^{\dagger}(x_4) \right] \right\rangle$$

nsitive to color charge fluctuations Sensitive to quadrupole! **Richer color structure** 

### A familiar limit: back-to-back jets and TMD factorization

In the back-to-back limit  $P_\perp \gg \Delta_\perp$  expand the quadrupole for small dipole (  $r_\perp,\,r_\perp')$  sizes:



Multi-gluon correlations and evidence of saturation from dijet measurements at an Electron Ion Collider

arxiv: 1912.05586 (soon to be published at PRL)



Björn Schenke Niklas Müller Heikki Mäntysaari

Technical aspects (not discussed): Non-linear Gaussian approximation for quadrupole operator, Balitsky-Kovchegov small-x evolution, initial dipole fit to HERA DIS data

#### Angle $\theta_{P\Delta}$ averaged cross section



Region  $\Delta_{\perp} < P_{\perp}$  TMD regime

Region  $P_{\perp} < \Delta_{\perp}$  full multi-gluon correlation

Expected deviation from TMD limit, enhanced at  $P_{\perp} \sim Q_s$  (stronger for Gold)

#### Elliptic anisotropy in $heta_{P\Delta}$



Region  $\Delta_{\perp} < P_{\perp}$  TMD regime

Region  $P_{\perp} < \Delta_{\perp}$  full multi-gluon correlation

Large elliptic anisotropies, generated by color charge correlations, slightly stronger for full multi-gluon correlations.

# Outlook

- Full JIMWLK evolution (beyond the Gaussian, mean field approximation)
- Fragmentation (Pythia, convolution with fragmentation functions)
- Next-to-leading order corrections (impact factors and JIMWLK/BK at NLO)

Thank you!



ИНСТИТУТ ОД НАЦИОНАЛНОГ ЗНАЧАЈА ЗА РЕПУБЛИКУ СРБИЈУ The Galileo Galilei Institute For Theoretical Physics

Centro Nazionale di Studi Avanzati dell'Istituto Nazionale di Fisica Nucleare

Arcetri, Firenze





### Generalization of high-p⊥ particle's energy loss to a finite value of radiated energy

**Bojana Ilic (Blagojevic)** 

**Institute of Physics Belgrade** 

**University of Belgrade** 

**Frontiers in Nuclear and Hadronic Physics 2020** 

#### The soft-gluon approximation

• The soft-gluon approximation (sg) definition – radiated gluon takes away only a small amount of initial parton's energy  $x = \frac{\omega}{E} \ll 1$ .

 Widely-used assumption in calculating radiative energy loss of high p<sub>⊥</sub> particle traversing QGP

ASW (PRD 69:114003), BDMPS (NPB 484:265), BDMPS-Z (JETP Lett. 65:615), GLV (NPB 594:371), DGLV (NPA 733:265), HT (NPA 696:788);

M. Djordjevic, PRC, 80:064909 (2009), M. Djorjevic and U. Heinz, PRL 101:022302 (2008)

#### Why do we test validity of the softgluon approximation?

- Considerable medium induced radiative energy loss obtained by different models → inconsistent with sg approximation?
- Sg approximation used in our Dynamical energy loss model. (M. Djordjevic and M. D. PLB 734:286 (2014))
- Our dynamical energy loss model reported robust agreement with comprehensive set of experimental R<sub>AA</sub> data → implies model applicability.

(M. Djordjevic and M. D., PLB 734:286 (2014); PRC 90:034910 (2014),
M. Djordjevic, M. D. and B. Blagojevic, PLB 737:298 (2014); M. Djordjevic, PRL 112:042302 (2014), M. Djordjevic and M. D., PRC 92:024918 (2015))

- It breaks-down for:
  - 5 < p⊥ < 10 GeV
  - Primarily for gluon-jets

3

**Frontiers in Nuclear and Hadronic Physics 2020** 

#### **Relaxing the soft-gluon approximation**

- Beyond soft-gluon approximation (bsg) in DGLV: x finite
- DGLV formalism assumes:

#### **Relaxing the soft-gluon approximation**

- Beyond soft-gluon approximation (bsg) in DGLV: x finite
- DGLV formalism assumes:

Finite size (L) optically thin QGP medium

#### **Relaxing the soft-gluon approximation**

- Beyond soft-gluon approximation (bsg) in DGLV: x finite
- DGLV formalism assumes:

Finite size (L) optically thin QGP medium

**Static color-screened Yukawa potential:** 

(M. Gyulassy, P. Levai and I. Vitev, NPB 594:371 (2001))

Static scattering centers  $V_n = 2\pi\delta(q_n^0)v(\vec{q}_n)e^{-i\vec{q}_n\cdot\vec{x}_n}T_{a_n}(R)\otimes T_{a_n}(n)$ 

$$\nu(\vec{\boldsymbol{q}}_n) = \frac{4\pi\alpha_s}{\vec{\boldsymbol{q}}_n^2 + \mu^2}$$
### **Relaxing the soft-gluon approximation**

- Beyond soft-gluon approximation (bsg) in DGLV: x finite
- DGLV formalism assumes:

Finite size (L) optically thin QGP medium

**Static color-screened Yukawa potential:** 

(M. Gyulassy, P. Levai and I. Vitev, NPB 594:371 (2001))

Static scattering centers  $V_n = 2\pi\delta(q_n^0)v(\vec{q}_n)e^{-i\vec{q}_n\cdot\vec{x}_n}T_{a_n}(R)\otimes T_{a_n}(n)$ 

$$v(\vec{\boldsymbol{q}}_n) = \frac{4\pi\alpha_s}{\vec{\boldsymbol{q}}_n^2 + \mu^2}$$

Gluons as transversely polarized partons with effective mass  $m_g = \mu/\sqrt{2}$ 

(M. Djordjevic and M. Gyulassy, PRC 68:034914 (2003))

### **Calculations beyond soft-gluon approximation**



Interaction with two scatterers in contact limit



Assumptions:

### **Calculations beyond soft-gluon approximation**



- Assumptions:
- Initial gluon propagates along the longitudinal axis

(consistently for all diagrams!)

### **Calculations beyond soft-gluon approximation**



- Assumptions:
- Initial gluon propagates along the longitudinal axis

(consistently for all diagrams!)

The soft-rescattering (eikonal) approximation

### **Calculations beyond soft-gluon approximation**



- Assumptions:
- Initial gluon propagates along the longitudinal axis (consistently for all diagrams!)

The soft-rescattering (eikonal) approximation

• The 1<sup>st</sup> order in opacity approximation

(M. Gyulassy, P. Levai and I. Vitev, PLB 538:282 (2002))

#### **Calculations beyond soft-gluon approximation**

$$M_{0} = J_{a}(p+k)e^{i(p+k)x_{0}}(-2ig_{s})(1-x+x^{2})$$
$$\times \frac{\epsilon \cdot \mathbf{k}}{\mathbf{k}^{2}+m_{g}^{2}(1-x+x^{2})}(T^{c})_{da}$$

No interactions with QGP medium

$$\begin{split} M_{1,1,0} &= J_a(p+k)e^{i(p+k)x_0}(-i)(1-x+x^2)(T^cT^{a_1})_{da}T_{a_1}\int \frac{d^2\mathbf{q}_1}{(2\pi)^2}v(0,\mathbf{q}_1)e^{-i\mathbf{q}_1\cdot\mathbf{b}_1} \\ &\times (-2ig_s)\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2+m_g^2(1-x+x^2)}e^{\frac{i}{2w}(\mathbf{k}^2+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_1)^2+\frac{m_s^2(1-x+x^2)}{1-x})(z_1-z_0)} \end{split}$$

$$M_{1,0,0} = J_a(p+k)e^{i(p+k)x_0}(-i)(1-x+x^2)(T^{a_1}T^c)_{da}T_{a_1}\int \frac{d^2\mathbf{q}_1}{(2\pi)^2}v(0,\mathbf{q}_1)e^{-i\mathbf{q}_1\cdot\mathbf{b}_1}$$
$$\times (2ig_s)\frac{\boldsymbol{\epsilon}\cdot\mathbf{k}}{\mathbf{k}^2+\chi} \Big(e^{\frac{i}{2\omega}(\mathbf{k}^2+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_1)^2+\frac{\chi}{1-x})(z_1-z_0)} - e^{-\frac{i}{2\omega}\frac{x}{1-x}(\mathbf{k}^2-(\mathbf{k}-\mathbf{q}_1)^2)(z_1-z_0)}\Big)$$

One interaction with QGP medium

Symmetric under the exchange of radiated (k) and final gluon (p).

$$M_{1,0,1} = J_a(p+k)e^{i(p+k)x_0}(-i)(1-x+x^2)[T^c,T^{a_1}]_{da}T_{a_1}\int \frac{d^2\mathbf{q}_1}{(2\pi)^2}v(0,\mathbf{q}_1)e^{-i\mathbf{q}_1\cdot\mathbf{b}_1}$$
$$\times (2ig_s)\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-\mathbf{q}_1)}{(\mathbf{k}-\mathbf{q}_1)^2+\chi} \Big(e^{\frac{i}{2\omega}(\mathbf{k}^2+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_1)^2+\frac{\chi}{1-x})(z_1-z_0)} - e^{\frac{i}{2\omega}(\mathbf{k}^2-(\mathbf{k}-\mathbf{q}_1)^2)(z_1-z_0)}\Big)$$

Recovers *sg* result for  $x \ll 1$ .



### **Calculations beyond soft-gluon approximation**

| $M_{2,2,0}^{c} = -J_{a}(p+k)e^{i(p+k)x_{0}}(T^{c}T^{a_{2}}T^{a_{1}})_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}}$ $\times \frac{1}{2}(2ig_{s})\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-x(\mathbf{q}_{1}+\mathbf{q}_{2}))}{(\mathbf{k}-x(\mathbf{q}_{1}+\mathbf{q}_{2}))^{2}+\chi}e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\chi}{1-x})(z_{1}-z_{0})}$                                                                                                                                                                                                                                                                                                                                                                                          | Two<br>interactions<br>with QGP<br>medium                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| $M_{2,0,3}^{c} = J_{a}(p+k)e^{i(p+k)x_{0}}[[T^{c}, T^{a_{2}}], T^{a_{1}}]_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{a^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{a^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0, \mathbf{q}_{1})v(0, \mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}}$ $\times \frac{1}{2}(2ig_{s})\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})}{(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}}\left(e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{\pi}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\chi}{1-x})(z_{1}-z_{0})}-e^{\frac{i}{2\omega}(\mathbf{k}^{2}-(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2})(z_{1}-z_{0})}\right)$                                                                                                                                                                                                                                                                             |                                                             |
| $\begin{split} &M_{2,0,0}^{c} = J_{a}(p+k)e^{i(p+k)x_{0}}(T^{a_{2}}T^{a_{1}}T^{c})_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}}\\ &\times \frac{1}{2}(2ig_{s})\frac{\boldsymbol{\epsilon}\cdot\mathbf{k}}{\mathbf{k}^{2}+\chi} \left(e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\chi}{1-x})(z_{1}-z_{0})}-e^{\frac{i}{2\omega}\frac{x}{1-x}((\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}-\mathbf{k}^{2})(z_{1}-z_{0})}\right)\\ &M_{2,0,1}^{c} = J_{a}(p+k)e^{i(p+k)x_{0}}(T^{a_{2}}[T^{c},T^{a_{1}}])_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}} \end{split}$ | Symmetric<br>under the<br>exchange<br>of k and p<br>gluons. |
| $\times (2ig_s) \frac{\epsilon \cdot (\mathbf{k} - \mathbf{q}_1)}{(\mathbf{k} - \mathbf{q}_1)^2 + \chi} \Big( e^{\frac{i}{2\omega} (\mathbf{k}^2 + \frac{x}{1-x} (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2)^2 + \frac{\chi}{1-x} (z_1 - z_0)} - e^{\frac{i}{2\omega} (\mathbf{k}^2 - \frac{(\mathbf{k} - \mathbf{q}_1)^2}{1-x} + \frac{x}{1-x} (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2)^2 )(z_1 - z_0)} \Big)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recovers                                                    |
| $\begin{split} M_{2,0,2}^{c} &= J_{a}(p+k)e^{i(p+k)x_{0}}(T^{a_{1}}[T^{c},T^{a_{2}}])_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}} \\ &\times (2ig_{s})\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-\mathbf{q}_{2})}{(\mathbf{k}-\mathbf{q}_{2})^{2}+\chi} \Big(e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\chi}{1-x})(z_{1}-z_{0})} - e^{\frac{i}{2\omega}(\mathbf{k}^{2}-\frac{(\mathbf{k}-\mathbf{q}_{2})^{2}}{1-x}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2})(z_{1}-z_{0})}\Big) \end{split}$                                                                                                                                                                                                                                  | sg result<br>for<br>x ≪ 1.                                  |
| Two negligible amplitudes are omitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |

B. Blagojevic, M. Djordjevic and M. Djordjevic, Phys. Rev. C 99, no. 2, 024901 (2019)

7

#### **Calculations beyond soft-gluon approximation**

$$\begin{aligned} \frac{xd^3N_g^{(0)}}{dxd\mathbf{k}^2} &= \frac{\alpha_s}{\pi} \frac{C_2(G) \ \mathbf{k}^2}{(\mathbf{k}^2 + m_g^2(1 - x + x^2))^2} \\ &\times \frac{(1 - x + x^2)^2}{1 - x} \end{aligned}$$

Reduces to well-known Altarelli-Parisi (G. Altarelli and G. Parisi, NPB 126:298 (1977)) result for massless particles.

Single gluon radiation spectrum beyond soft-gluon approximation:

$$\begin{split} \frac{dN_g^{(1)}}{dx} &= \frac{C_2(G)\alpha_s}{\pi} \frac{L}{\lambda} \frac{(1-x+x^2)^2}{x(1-x)} \int \frac{d^2\mathbf{q}_1}{\pi} \frac{\mu^2}{(\mathbf{q}_1^2+\mu^2)^2} \int d\mathbf{k}^2 \\ & \times \Big\{ \frac{(\mathbf{k}-\mathbf{q}_1)^2 + \chi}{(\frac{4x(1-x)E}{L})^2 + ((\mathbf{k}-\mathbf{q}_1)^2 + \chi)^2} \Big( 2\frac{(\mathbf{k}-\mathbf{q}_1)^2}{(\mathbf{k}-\mathbf{q}_1)^2 + \chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-\mathbf{q}_1)}{\mathbf{k}^2 + \chi} - \frac{(\mathbf{k}-\mathbf{q}_1)\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2 + \chi} \Big) \\ & + \frac{\mathbf{k}^2 + \chi}{(\frac{4x(1-x)E}{L})^2 + (\mathbf{k}^2 + \chi)^2} \Big( \frac{\mathbf{k}^2}{\mathbf{k}^2 + \chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2 + \chi} \Big) + \Big( \frac{(\mathbf{k}-x\mathbf{q}_1)^2}{((\mathbf{k}-x\mathbf{q}_1)^2 + \chi)^2} - \frac{\mathbf{k}^2}{(\mathbf{k}^2 + \chi)^2} \Big) \Big\} \end{split}$$

$$\chi = m_g^2 (1 - x + x^2)$$

 $\sum$ 

B. Blagojevic, M. Djordjevic and M. Djordjevic, Phys. Rev. C 99, no. 2, 024901 (2019) Introduction of <u>effective gluon</u> mass in *bsg* radiative energy loss expression for the first time!

#### Comparison of analytical expressions (



$$f_{bsg}(k,q_{1},x) = \frac{(1-x+x^{2})^{2}}{x(1-x)} \left\{ \left( 2\frac{(k-q_{1})^{2}}{(k-q_{1})^{2}+\chi} - \frac{k\cdot(k-q_{1})}{k^{2}+\chi} - \frac{(k-q_{1})\cdot(k-xq_{1})}{(k-xq_{1})^{2}+\chi} \right) \frac{(k-q_{1})^{2}+\chi}{\left(\frac{4x(1-x)E}{L}\right)^{2} + \left((k-q_{1})^{2}+\chi\right)^{2}} + \frac{k^{2}+\chi}{\left(\frac{4x(1-x)E}{L}\right)^{2} + \left(k^{2}+\chi\right)^{2}} \left(\frac{k^{2}}{k^{2}+\chi} - \frac{k\cdot(k-xq_{1})}{(k-xq_{1})^{2}+\chi} \right) + \left(\frac{(k-xq_{1})^{2}}{((k-xq_{1})^{2}+\chi)^{2}} - \frac{k^{2}}{(k^{2}+\chi)^{2}} \right) \right\}$$

Soft-gluon approximation:

$$f_{sg}(\boldsymbol{k},\boldsymbol{q}_{1},\boldsymbol{x}) = \frac{1}{x} \frac{(\boldsymbol{k}-\boldsymbol{q}_{1})^{2} + m_{g}^{2}}{\left(\frac{4xE}{L}\right)^{2} + \left((\boldsymbol{k}-\boldsymbol{q}_{1})^{2} + m_{g}^{2}\right)^{2}} 2 \left(\frac{(\boldsymbol{k}-\boldsymbol{q}_{1})^{2}}{(\boldsymbol{k}-\boldsymbol{q}_{1})^{2} + m_{g}^{2}} - \frac{\boldsymbol{k}\cdot(\boldsymbol{k}-\boldsymbol{q}_{1})}{\boldsymbol{k}^{2} + m_{g}^{2}}\right)$$

M. Djordjevic and M. Gyulassy, NPA 733:265 (2004)

Only this term remains in sg and reduces to:

B. Blagojevic, M. Djordjevic and M. Djordjevic, Phys. Rev. C 99, no. 2, 024901 (2019) **Bsg** expression is clearly different and significantly more complex than its sg analogon!

 $\chi = m_g^2 (1 - x + x^2)$ 

#### Comparison of <u>numerical predictions</u> between <u>bsg</u> and <u>sg</u>

Comparison of <u>numerical predictions</u> between bsg and sg

1. Fractional radiative energy loss  $\Delta E^{(1)}/E$  and number of radiated gluons  $N_g^{(1)}$ 

Comparison of <u>numerical predictions</u> between bsg and sg

- 1. Fractional radiative energy loss  $\Delta E^{(1)}/E$  and number of radiated gluons  $N_g^{(1)}$
- 2. Fractional differential radiative energy loss  $\frac{1}{E} \frac{dE^{(1)}}{dx}$ and single gluon radiation spectrum  $\frac{dN_g^{(1)}}{dx}$

Comparison of <u>numerical predictions</u> between bsg and sg

- 1. Fractional radiative energy loss  $\Delta E^{(1)}/E$  and number of radiated gluons  $N_g^{(1)}$
- 2. Fractional differential radiative energy loss  $\frac{1}{E} \frac{dE^{(1)}}{dx}$ and single gluon radiation spectrum  $\frac{dN_g^{(1)}}{dx}$
- 3. Angular averaged nuclear modification factor  $R_{AA}$

**Frontiers in Nuclear and Hadronic Physics 2020** 

### Effect of relaxing sga on integrated variables



### Effect of relaxing sga on differential variables



### Computational formalism for <u>bare gluon</u> suppression



 Initial gluon p⊥ spectrum

2. Radiative energy loss

## Gluon production: Initial $p_{\perp}$ distribution

(Z.B. Kang, I. Vitev and H. Xing, PLB 718:482 (2012); R. Sharma, I. Vitev and B.W. Zhang, PRC 80:054902 (2009))

 Radiative energy loss in finite size static QGP medium *beyond soft gluon approximation*

(B. Blagojevic, M. Djordjevic and M. Djordjevic, Phys. Rev. C 99, no. 2, 024901 (2019))

Multi-gluon fluctuations

(M. Gyulassy, P. Levai and I. Vitev, PLB 538:282 (2002))

• Path-length fluctuations

(S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, NPA 784:426 (2007); A. Dainese, EPJ C 33:495 (2004))



### Effect of relaxing sga on R<sub>AA</sub>



- 1. Why is  $R_{AA}$  barely affected by this relaxation?
- How the large differential variables discrepancies between *bsg* and *sg* cases at x > 0.4 do not influence R<sub>AA</sub>?

### **Explanation of negligible effect on R<sub>AA</sub> (1)**



Phys. Rev. C 99, no. 2, 024901 (2019)

### **Explanation of negligible effect on R<sub>AA</sub> (2)**



B. Blagojevic, M. Djordjevic and M. Djordjevic, Phys. Rev. C 99, no. 2, 024901 (2019)

16

#### **Conclusions and outlook**

Different theoretical models obtained considerable radiative energy loss questioning the validity of the soft-gluon approximation.

We relaxed the approximation for high  $p_{\perp}$ gluons, which are most affected by it, within DGLV formalism, and although analytical results differ to a great extent in *bsg* and *sg* cases, surprisingly the <u>numerical predictions were nearly</u> <u>indistinguishable</u>.

Consequently, this relaxation should have even smaller impact on high  $p_{\perp}$  quarks.

This implies that soft gluon approximation is well-founded within DGLV formalism.

We expect that the soft-gluon approximation can be reliably applied within the dynamical energy loss formalism, which needs to be rigorously tested in the future.

## Thank you for your attention!

In collaboration with: Magdalena Djordjevic and Marko Djordjevic







МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА



# Backup

### **Generalization on dynamical medium**

- Implicitly suggested by robust agreement of our  $R_{AA}$  predictions with experimental data
- Only  $f(\mathbf{k}, \mathbf{q}, \mathbf{x})$  depends on  $\mathbf{x}$
- f(k, q, x) in soft-gluon approximation is the same in static and in dynamical case



We expect dynamical  $f(\mathbf{k}, \mathbf{q}, x)$  to be modified in the similar manner to the static (DGLV) case.

### **Calculations beyond soft-gluon approximation**



B. Blagojevic, M. Djordjevic and M. Djordjevic, Phys. Rev. C 99, no. 2, 024901 (2019)

21

### **Calculations beyond soft-gluon approximation**

#### Longitudinal initial gluon direction:



#### **Calculations beyond soft-gluon approximation**

$$d^{3}N_{g}^{(1)}d^{3}N_{J} = \left(\frac{1}{d_{T}}\operatorname{Tr}\left\langle|M_{1}|^{2}\right\rangle + \frac{2}{d_{T}}Re\operatorname{Tr}\left\langle M_{2}M_{0}^{*}\right\rangle\right)\frac{d^{3}\vec{\mathbf{p}}}{(2\pi)^{3}2p^{0}}\frac{d^{3}\vec{\mathbf{k}}}{(2\pi)^{3}2\omega}$$
 New!  
$$d^{3}N_{J} = d_{G}|J(p+k)|^{2}\frac{d^{3}\vec{\mathbf{p}}_{J}}{(2\pi)^{3}2E_{J}}$$
 
$$\frac{d^{3}\vec{\mathbf{p}}}{(2\pi)^{3}2p^{0}}\frac{d^{3}\vec{\mathbf{k}}}{(2\pi)^{3}2\omega} = \frac{d^{3}\vec{\mathbf{p}}_{J}}{(2\pi)^{3}2E_{J}}\frac{dxd^{2}\mathbf{k}}{(2\pi)^{3}2x(1-x)}$$

$$\frac{xd^3 N_g^{(0)}}{dxd\mathbf{k}^2} = \frac{\alpha_s}{\pi} \frac{C_2(G) \,\mathbf{k}^2}{(\mathbf{k}^2 + m_g^2(1 - x + x^2))^2} \\ \times \frac{(1 - x + x^2)^2}{1 - x}$$

Z. B. Kang, F. Ringer and I. Vitev, JHEP 1703, 146 (2017)

$$\begin{split} \frac{dN_g^{(1)}}{dx} &= \frac{C_2(G)\alpha_s}{\pi} \frac{L}{\lambda} \frac{(1-x+x^2)^2}{x(1-x)} \int \frac{d^2\mathbf{q}_1}{\pi} \frac{\mu^2}{(\mathbf{q}_1^2+\mu^2)^2} \int d\mathbf{k}^2 \\ &\times \Big\{ \frac{(\mathbf{k}-\mathbf{q}_1)^2 + \chi}{(\frac{4x(1-x)E}{L})^2 + ((\mathbf{k}-\mathbf{q}_1)^2+\chi)^2} \Big( 2\frac{(\mathbf{k}-\mathbf{q}_1)^2}{(\mathbf{k}-\mathbf{q}_1)^2+\chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-\mathbf{q}_1)}{\mathbf{k}^2+\chi} - \frac{(\mathbf{k}-\mathbf{q}_1)\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2+\chi} \Big) \\ &+ \frac{\mathbf{k}^2 + \chi}{(\frac{4x(1-x)E}{L})^2 + (\mathbf{k}^2+\chi)^2} \Big( \frac{\mathbf{k}^2}{\mathbf{k}^2+\chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2+\chi} \Big) + \Big( \frac{(\mathbf{k}-x\mathbf{q}_1)^2}{((\mathbf{k}-x\mathbf{q}_1)^2+\chi)^2} - \frac{\mathbf{k}^2}{(\mathbf{k}^2+\chi)^2} \Big) \Big\} \end{split}$$

$$m_g = m_\infty = \sqrt{\Pi_T(p_0/|\vec{\mathbf{p}}|=1)} = \mu_E/\sqrt{2}$$
  
Effective gluon mass

(M. Djordjevic and M. Gyulassy, PRC 68:034914 (2003))



Non-relevance of x > 0.4 region for the importance of relaxing the soft-gluon approximation



Non-relevance of x > 0.3 region for the importance of relaxing the soft-gluon approximation



M. Djordjevic, PRL 112:042302 (2014).

$$\frac{d\sigma_{el}}{d^2\mathbf{q}_1} = \frac{C_2(G)C_2(T)}{d_G} \frac{|v(0,\mathbf{q}_1)|^2}{(2\pi)^2}$$

Opacity =  $L/\lambda = N\sigma_{el}/A_{\perp}$ 

Small transverse momentum transfer elastic cross section (GW) (M. Gyulassy and X.N. Wang, NPB 420, 583 (1994))

# Two limits of longitudinal distance distribution

Longitudinal distance between gluon production site and target rescattering site:



# Two limits of longitudinal distance distribution

#### **Exponential distribution**

$$\begin{split} \frac{dN_g^{(1)}}{dx} &= \frac{C_2(G)\alpha_s}{\pi} \frac{L}{\lambda} \frac{(1-x+x^2)^2}{x(1-x)} \int \frac{d^2\mathbf{q}_1}{\pi} \frac{\mu^2}{(\mathbf{q}_1^2+\mu^2)^2} \int d\mathbf{k}^2 \\ &\times \Big\{ \frac{(\mathbf{k}-\mathbf{q}_1)^2 + \chi}{(\frac{4x(1-x)E}{L})^2 + ((\mathbf{k}-\mathbf{q}_1)^2+\chi)^2} \Big( 2\frac{(\mathbf{k}-\mathbf{q}_1)^2}{(\mathbf{k}-\mathbf{q}_1)^2+\chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-\mathbf{q}_1)}{\mathbf{k}^2+\chi} - \frac{(\mathbf{k}-\mathbf{q}_1)\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2+\chi} \Big) \\ &+ \frac{\mathbf{k}^2 + \chi}{(\frac{4x(1-x)E}{L})^2 + (\mathbf{k}^2+\chi)^2} \Big( \frac{\mathbf{k}^2}{\mathbf{k}^2+\chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2+\chi} \Big) + \Big( \frac{(\mathbf{k}-x\mathbf{q}_1)^2}{((\mathbf{k}-x\mathbf{q}_1)^2+\chi)^2} - \frac{\mathbf{k}^2}{(\mathbf{k}^2+\chi)^2} \Big) \Big\} \end{split}$$

#### **Uniform distribution**

$$\begin{split} \frac{dN_g^{(1)}}{dx} &= \frac{C_2(G)\alpha_s}{\pi} \frac{L}{\lambda} \frac{(1-x+x^2)^2}{x(1-x)} \int \frac{d^2\mathbf{q}_1}{\pi} \frac{\mu^2}{(\mathbf{q}_1^2+\mu^2)^2} \int d\mathbf{k}^2 \\ &\times \Big\{ \Big(1 - \frac{\sin\left(\frac{(\mathbf{k}-\mathbf{q}_1)^2+\chi}{2x(1-x)E}L\right)}{\frac{(\mathbf{k}-\mathbf{q}_1)^2+\chi}{2x(1-x)E}} \Big) \frac{1}{(\mathbf{k}-\mathbf{q}_1)^2+\chi} \Big(2 \frac{(\mathbf{k}-\mathbf{q}_1)^2}{(\mathbf{k}-\mathbf{q}_1)^2+\chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-\mathbf{q}_1)}{\mathbf{k}^2+\chi} - \frac{(\mathbf{k}-\mathbf{q}_1)\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2+\chi} \Big) \\ &+ \Big(1 - \frac{\sin\left(\frac{\mathbf{k}^2+\chi}{2x(1-x)E}L\right)}{\frac{\mathbf{k}^2+\chi}{2x(1-x)E}L} \Big) \frac{1}{\mathbf{k}^2+\chi} \Big(\frac{\mathbf{k}^2}{\mathbf{k}^2+\chi} - \frac{\mathbf{k}\cdot(\mathbf{k}-x\mathbf{q}_1)}{(\mathbf{k}-x\mathbf{q}_1)^2+\chi} \Big) + \Big(\frac{(\mathbf{k}-x\mathbf{q}_1)^2}{((\mathbf{k}-x\mathbf{q}_1)^2+\chi)^2} - \frac{\mathbf{k}^2}{(\mathbf{k}^2+\chi)^2} \Big) \Big\} \end{split}$$

$$R_{AA}(p_{\perp}) = \frac{dN_{AA}/dp_{\perp}}{N_{bin}dN_{pp}/dp_{\perp}}$$

D. Molnar and D. Sun, NPA 932:140; NPA 910:486, T. Renk, PRC 85:044903.

$$\frac{E_f d^3 \sigma(g)}{dp_f^3} = \frac{E_i d^3 \sigma(g)}{dp_i^3} \otimes P(E_i \to E_f)$$

pQCD convolution

$$a,\mu \xrightarrow{\mathbf{P}} b,\nu = \frac{i\delta_{ab}P_{\mu\nu}}{p^2 - m_g^2 + i\epsilon}$$

$$P_{\mu\nu} = -\left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}n^2 + n_{\mu}n_{\nu}p^2 - n_{\mu}p_{\nu}(np) - n_{\nu}p_{\mu}(np)}{n^2p^2 - (np)^2}\right)$$

(M. Djordjevic and M. Gyulassy, PRC 68:034914 (2003))



The Galileo Galilei Institute for Theoretical Physics GGI Firenze, 28 February 2020



### The influence of electromagnetic fields in relativistic proton-nucleus collisions

### Lucia Oliva



LO, Pierre Moreau, Vadim Voronyuk and Elena Bratkovskaya Phys. Rev. C 101 (2020) 014917 [arXiv: 1909.06770]







Helmholtzzentrum für Schwerionenforschung GmbH


High energy collisions recreate the extreme condition of temperature and density are required to form the QUARK-GLUON PLASMA (QGP)

initially expected only in heavy-ion collisions

small colliding systems as control measurements



#### SIGNATURES OF COLLECTIVE FLOW IN SMALL SYSTEMS p+Pb at LHC p/d/<sup>3</sup>He+Au at RHIC

Creation of quark-gluon plasma droplets with three distinct geometries

PHENIX Collaboration

nature

physics

PHENIX, Nature Phys. 15 (2019) 214

Short-lived droplets of QGP in proton-induced collisions

LETTERS

https://doi.org/10.1038/s41567-018-0360-







HICs ~ 10<sup>18</sup>-10<sup>19</sup> G Many interesting phenomena in HICs driven by the intense electromagnetic fields (EMF) produced since the early stage of the collision

#### CHIRAL MAGNETIC EFFECT

$$\boldsymbol{J_m} = \frac{e^2}{2\pi^2} \,\mu_5 \boldsymbol{B}$$



magnetars ~ 10<sup>14</sup>-10<sup>15</sup> G

Kharzeev, McLerran and Warringa, NPA 803 (2008) 227

CHARGE-ODD DIRECTED FLOW  $F_{em} = q(E + \nu \times B) \rightarrow v_1^+ \neq v_1^-$ 





2

Gursoy, Kharzeev and Rajagopal, PRC 89 (2014) 054905 Voronyuk, Toneev, Voloshin and Cassing, PRC 90 (2014) 064903 Das, Plumari, Greco et al., PLB 768 (2017) 260

EMF in proton-nucleus collisions?

laboratory

~ 10<sup>6</sup> G

Earth's field

~1 G

## PHSD: Parton-Hadron-String Dynamics

non-equilibrium transport approach to describe large and small colliding systems

To study the phase transition from hadronic to partonic matter and QGP properties from a microscopic origin



b = 2.2 fm - Section view

talk of O. Soloveva

Gluons

made by P. Moreau



- INITIAL A+A COLLISIONS: nucleon-nucleon collisions lead to the formation of strings that decay to pre-hadrons
- FORMATION OF QGP: if energy density ε > ε<sub>c</sub> pre-hadrons dissolve in massive quarks and gluons + mean-field potential
- PARTONIC STAGE: evolution based on off-shell transport equations with the DQPM defining parton spectral functions
- HADRONIZATION: massive off-shell partons with broad spectral functions hadronize to off-shell baryons and mesons
- HADRONIC PHASE: evolution based on the off-shell transport equations with hadron-hadron interactions Cassing and Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215 Cassing, EPJ ST 168 (2009) 3; NPA856 (2011) 162





3



### PHSD + electromagnetic fields

**PHSD** includes the dynamical formation and evolution of the retarded electomagnetic field (EMF) and its influence on quasi-particle dynamics Voronyuk *et al.* (HSD), PRC 83 (2011) 054911; Toneev *et al.* (PHSD), PRC 86 (2012) 064907



4

$$\begin{cases} \frac{\partial}{\partial t} + \left(\frac{\mathbf{p}}{p_0} + \nabla_{\mathbf{p}} U\right) \nabla_{\mathbf{r}} + (-\nabla_{\mathbf{r}} U + e\mathbf{E} + e\mathbf{v} \times \mathbf{B}) \nabla_{\mathbf{p}} \\ \end{bmatrix} f = C_{\text{coll}}(f, f_1, \dots, f_N) \\ \text{Consistent solution of particle} \\ \text{and field evolution equations} \\ \nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \nabla \cdot \mathbf{E} = 4\pi\rho \quad \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{2} \mathbf{j} \quad \begin{array}{l} \text{MAXWELL} \\ \text{EQUATIONS} \end{array}$$

$$e\mathbf{E}(t, \mathbf{r}) = \alpha_{em} \frac{1 - \beta^2}{\left[ \left( \mathbf{R} \cdot \boldsymbol{\beta} \right)^2 + R^2 \left( 1 - \beta^2 \right) \right]^{3/2}} \mathbf{R}$$
$$e\mathbf{B}(t, \mathbf{r}) = \boldsymbol{\beta} \times e\mathbf{E}(t, \mathbf{r})$$

single freely moving charge



### Electromagnetic fields in symmetric systems

in a nuclear collision the magnetic field is a superposition of solenoidal fields from different moving charges



#### t=0.01 fm/c t=0.2 fm/c t=0.05 fm/c 1.5 e $B_y(x,y{=}0,z)/m_\pi^2$ 2.5 2.5 42 2 -0 2 0 0 0 0 -2.5 -2.5 -1.5 -2 -2 -2 -0.3 -0.3 -0.4 -0.15 -0.15 -0.2 0 0 -20 0 -20 -20 -10 -10 0.15 -10 0 z [fm] 0 0.15 z [fm] 0.2 z [fm] 10 10 0.3 0.3 10 20 20 20 0.4 x [fm] x [fm] x [fm]

#### Au+Au @RHIC 200 GeV - b = 10 fm

# Electromagnetic fields in symmetric systems

in a nuclear collision the magnetic field is a superposition of solenoidal fields from different moving charges



#### Au + Au @RHIC 200 GeV - b = 10 fm



#### MAGNETIC FIELD

- dominated by the y-component
- maximal strength reached during nuclear overlapping time
- only due to spectators up to  $t \sim 1 \text{ fm}/c$
- drops down by three orders of magnitude and become comparable with that from participants



Voronyuk et al. (HSD), PRC 83 (2011) 054911

# Electromagnetic fields: A+A vs p+AAu+Au @ RHIC 200 GeV b=7 fm



#### SYMMETRIC SYSTEMS

transverse momentum increments due to electric and magnetic fields compensate each other



Ľ,

#### p+Au @ RHIC 200 GeV b=4 fm

#### **ASYMMETRIC SYSTEMS**

an intense electric fields directed from the heavy nuclei to light one appears in the overlap region

LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917

### Centrality determination : A+A vs p+A

**A+A** 

centrality characterizes the amount of overlap in the interaction area

multiplicity fluctuation mixes events from different impact parameters

p+A



LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917 7

### p+Au: rapidity distributions

#### PSEUDORAPIDITY DISTRIBUTION OF CHARGED PARTICLES



$$\eta = -\ln\left(\tan\frac{\theta}{2}\right)$$

pseudorapidity ( $\theta$ : polar angle of the particle)

- enhanced particle production in the Au-going directions
- asymmetry increases with centrality of the collision



### p+Au: rapidity distributions

**RAPIDITY DISTRIBUTION OF IDENTIFIED PARTICLES channel decomposition** 

large amount of particles escapes from the medium just after production from QGP hadronization without further rescattering



p+A: production of kaons directly from QGP hadronization larger than from K\* decay
 A+A: kaons created by K\* decay are about twice those generated directly from QGP

### Anisotropic radial flow v<sub>n</sub>

#### Quark-Gluon Plasma

hydrodynamical behavior with very low specific viscosity  $\eta$ /s and formation of collective flows

#### azimuthal particle distributions w.r.t. the reaction plane

$$\frac{dN}{d\varphi} \propto 1 + \sum_{n} 2(v_n(p_T)\cos[n(\varphi - \Psi_n)])$$
flow coefficients
$$v_n = \frac{(\cos[n(\varphi - \Psi_n)])}{Res(\Psi_n)}$$
event-plane angle
resolution

# The DIRECTED FLOW v<sub>1</sub> is a collective sidewards deflection of particles

- initial-state fluctuations
- orbital angular momentum
- ELECTROMAGNETIC FIELDS



not a simple **almond shape** but a **''lumpy'' profile** due to fluctuations of nucleon position in the overlap region



Plumari et al., PRC 92 (2015) 054902 10

 $v_1(y) = \frac{\langle \cos[\varphi(y) - \Psi_1] \rangle}{Res(\Psi_1)}$ 



 $y = \tanh^{-1} \frac{\nu}{-1}$ 

rapidity (*v*: velocity of the particle)

# **SPLITTING**



of positively and negatively charged particles **INDUCED BY THE EMF?** 

5% central collisions no visible changes with and without

electromagnetic fields

BUT...

LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917

#### rapidity dependence of the DIRECTED FLOW OF PION

 $v_1(y) = \langle \cos[\varphi(y)] \rangle$ 

# fixed impact parameter b



LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917

SPLITTING INDUCED BY THE EM FIELD?



#### rapidity dependence of the DIRECTED FLOW OF PION

 $v_1(y) = \langle \cos[\varphi(y)] \rangle$ 



LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917



Splitting of  $\pi^+$  and  $\pi^$ induced by the electromagnetic field

#### rapidity dependence of the DIRECTED FLOW OF PIONS

collective sidewards deflection of particles

$$v_1 = \langle \cos \varphi \rangle = \langle p_x / p_T \rangle$$





#### rapidity dependence of the DIRECTED FLOW OF PIONS



#### rapidity dependence of the DIRECTED FLOW OF PIONS



#### rapidity dependence of the DIRECTED FLOW OF PION

 $v_1(y) = \langle \cos[\varphi(y)] \rangle$ 



LO, Moreau, Voronyuk and Bratkovskaya

Splitting of  $\pi^+$  and  $\pi^$ induced by the electromagnetic field



 $v_1(y) = \langle \cos[\varphi(y)] \rangle$ 

#### rapidity dependence of the DIRECTED FLOW OF KAON



LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 0149

different  $v_1$  also in simulations without EMF more contributions to  $K^+$  ( $\bar{s}u$ ) with respect to  $K^-$  ( $s\bar{u}$ ) from quarks of the initial colliding nuclei STAR Coll., PRL 120 (2018) 062301



16

#### rapidity dependence of the DIRECTED FLOW OF KAON

 $v_1(y) = \langle \cos[\varphi(y)] \rangle$ 



LO, Moreau, Voronyuk and Bratkovskaya

Splitting of K<sup>+</sup> and K<sup>-</sup> induced by the electromagnetic field



17

ELECTROMAGNETICALLY-INDUCED SPLITTING in the directed flow of hadrons with same mass and opposite charge

$$\Delta v_1^{emf} \equiv \Delta v_1^{(PHSD+EMF)} - \Delta v_1^{(PHSD)}$$

 $\Delta v_1 \equiv v_1^+ - v_1^-$ 

LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917



magnitude increasing with impact parameter

larger splitting for kaons than for pions

$$F_{Lorentz} = q(E + v \times B)$$

ELECTROMAGNETICALLY-INDUCED SPLITTING in the directed flow of hadrons with same mass and opposite charge

$$\Delta v_1^{emf} \equiv \Delta v_1^{(PHSD + EMF)} - \Delta v_1^{(PHSD)}$$

 $\Delta v_1 \equiv v_1^+ - v_1^-$ 

LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917



splitting generated at partonic level higher than that induced in the hadronic phase, especially for kaons

### CONCLUDING....

The Parton-Hadron-String-Dynamics (PHSD) approach describes the entire dynamical evolution of large and small colliding systems

PHSD includes consistently and dynamically the electromagnetic fields produced since the very early stage of the collision



### Study of p+Au collisions at top RHIC energy



- ✓ asymmetry of charged-particle rapidity distributions increasing with centrality
- $\checkmark$  the electric field is strongly asymmetric inside the overlap region
- effect of electromagnetic fields in directed flow of mesons: splitting between positively and negatively charged particle
- electromagnetically-induced splitting generated in the deconfined phase larger than that produced in the hadronic phase

### CONCLUDING....

The Parton-Hadron-String-Dynamics (PHSD) approach describes the entire dynamical evolution of large and small colliding systems

PHSD includes consistently and dynamically the electromagnetic fields produced since the very early stage of the collision



### Study of p+Au collisions at top RHIC energy



- ✓ asymmetry of charged-particle rapidity distributions increasing with centrality
- $\checkmark$  the electric field is strongly asymmetric inside the overlap region
- effect of electromagnetic fields in directed flow of mesons: splitting between positively and negatively charged particle
- electromagnetically-induced splitting generated in the deconfined phase larger than that produced in the hadronic phase



### Generalized Transport Equations (GTE)

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one obtain GTE which describes the dynamics of broad strongly interacting quantum states

drift term Vlasov term  $\diamond \{P^2 - M_0^2 - Re\Sigma_{XP}^{ret}\} \{S_{XP}^{<}\} - \diamond \{\Sigma_{XP}^{<}\} \{ReS_{XP}^{ret}\}$ collision term = ,gain' - ,loss' term  $\diamond \{P^2 - M_0^2 - Re\Sigma_{XP}^{ret}\} \{S_{XP}^{<}\} - \diamond \{\Sigma_{XP}^{<}\} \{ReS_{XP}^{ret}\}$   $= \frac{i}{2} [\Sigma_{XP}^{>} S_{XP}^{<} - \Sigma_{XP}^{<} S_{XP}^{>}]$ off-shell behavior GTE govern the propagation of the Green functions i  $S^{<}_{XP} = A_{XP} N_{XP}$ Dressed propagators  $(S_q, \Delta_g)$   $S = (P^2 - \Sigma^2)^{-1}$ number of particles particle spectral function

with complex self-energies ( $\Sigma_q$ ,  $\Pi_g$ ):

$$\Sigma = m^2 - i2\gamma\omega$$

★ the real part describes a dynamically generated mass  $(m_q, m_g)$ ★ the imaginary part describes the interaction width  $(\gamma_q, \gamma_g)$ 

Cassing and Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

# Dynamical QuasiParticel Model (DQPM)

The DQPM describes QGP in terms of interacting quasiparticle: massive quarks and gluons with Lorentzian spectral functions

$$A_j(\omega, \mathbf{p}) = \frac{\gamma_j}{\tilde{E}_j} \left( \frac{1}{(\omega - \tilde{E}_j)^2 + \gamma_j^2} - \frac{1}{(\omega + \tilde{E}_j)^2 + \gamma_j^2} \right) \qquad \tilde{E}_j = p^2 + m^2 - \gamma^2$$

#### GLUONS QUARKS



S 
$$m_g^2 = \frac{g^2}{6} \left( N_c + \frac{1}{2} N_f \right) T^2$$
,  $m_q^2 = g^2 \frac{N_c^2 - 1}{8N_c} T^2$   
(S)  $\gamma_g = \frac{1}{3} N_c \frac{g^2 T}{8\pi} \ln \left( \frac{2c}{g^2} + 1 \right)$ ,  $\gamma_q = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2 T}{8\pi} \ln \left( \frac{2c}{g^2} + 1 \right)$ 



parameters from fit of lattice QCD thermodinamics

Peshier, PRD 70 (2004) 034016 Peshier and Cassing, PRL 94 (2005) 172301 Cassing, NPA 791 (2007) 365; NPA 793 (2007)

PHSD extended to include chemical potential dependence of scattering cross sections Moreau, Soloveva, LO, Song, Cassing and Bratkovskaya, PRC 100 (2019) 014911

 $48\pi^{2}$ 

 $g^2(T/T_c) = \frac{1}{(11N_c - 2N_f) \ln(\lambda^2 (T/T_c - T_s/T_c)^2)}$ 



"IGevi

4 % [GeV]

5 5

o [GeV2]

light quark  $T=2T_c$ 

### retarded electromagnetic fields

$$\mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{E} = -\nabla \Phi - \frac{\partial \mathbf{A}}{\partial t}$$

General solution of the wave equation for the electromagnetic potentials

$$\mathbf{A}(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{\mathbf{j}(\mathbf{r}',t') \ \delta(t-t'-|\mathbf{r}-\mathbf{r}'|/c)}{|\mathbf{r}-\mathbf{r}'|} \ d^3r' dt'$$
$$\Phi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{\rho(\mathbf{r}',t') \ \delta(t-t'-|\mathbf{r}-\mathbf{r}'|/c)}{|\mathbf{r}-\mathbf{r}'|} \ d^3r' dt'$$

$$\mathbf{r}' \equiv \mathbf{r}(t')$$
$$t' = t - \frac{\mathbf{r} - \mathbf{r}'}{c}$$

Liénard-Wiechert potentials for a moving point-like charge

$$\Phi(\mathbf{r},t) = \frac{e}{4\pi} \left[ \frac{1}{R(1-\mathbf{n}\cdot\boldsymbol{\beta})} \right]_{\text{ret}} \qquad \mathbf{A}(\mathbf{r},t) = \frac{e}{4\pi} \left[ \frac{\boldsymbol{\beta}}{R(1-\mathbf{n}\cdot\boldsymbol{\beta})} \right]_{\text{ret}}$$

$$\mathbf{R} = \mathbf{r} - \mathbf{r}'$$
$$\mathbf{n} = \frac{\mathbf{R}}{R}$$
$$\boldsymbol{\beta} = \frac{\mathbf{v}}{c}$$

ret: evaluated at the times t'

### retarded electromagnetic fields

#### Retarded electric and magnetic fields for a moving point-like charge

$$\mathbf{E}(\mathbf{r},t) = \frac{e}{4\pi} \left[ \frac{\mathbf{n} - \boldsymbol{\beta}}{(1 - \mathbf{n} \cdot \boldsymbol{\beta})^3 \gamma^2 R^2} + \frac{\mathbf{n} \times \left( (\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right)}{(1 - \mathbf{n} \cdot \boldsymbol{\beta})^3 c R} \right]_{\text{ret}} \qquad \mathbf{B}(\mathbf{r},t) = [\mathbf{n} \times \mathbf{E}(\mathbf{r},t)]_{\text{ret}}$$

elastic Coulomb scatterings inelastic bremsstrahlun

magnetic field created by a single freely moving charge

# $\mathbf{R} = \mathbf{r} - \mathbf{r}' \qquad \mathbf{n} = \frac{\mathbf{R}}{R} \qquad \mathbf{\beta} = \frac{\mathbf{v}}{c}$

#### Neglecting the acceleration

$$e\mathbf{E}(t, \mathbf{r}) = \alpha_{em} \frac{1 - \beta^2}{\left[ (\mathbf{R} \cdot \boldsymbol{\beta})^2 + R^2 (1 - \beta^2) \right]^{3/2}} \mathbf{R}$$
$$e\mathbf{B}(t, \mathbf{r}) = \alpha_{em} \frac{1 - \beta^2}{\left[ (\mathbf{R} \cdot \boldsymbol{\beta})^2 + R^2 (1 - \beta^2) \right]^{3/2}} \boldsymbol{\beta} \times \mathbf{R}$$



Voronyuk et al. (HSD), PRC 83 (2011) 054911

### Electromagnetic fields in asymmetric systems

 $RHIC 200 \ GeV - b = 7 \ fm$ 



Voronyuk *et al.* (PHSD), PRC 90 (2014) 064903 Toneev *et al.* (PHSD), PRC 95 (2017) 034911 ✓ SYMMETRIC SYSTEMS (e.g. Au+Au) transverse momentum increments due to electric and magnetic fields compensate each other

✓ ASYMMETRIC SYSTEMS (e.g. Cu+Au) an intense electric fields directed from the heavy nuclei to light one appears in the overlap region



### p+Au: electromagnetic fields p+Au @ RHIC 200 GeV b=4 fm



### Centrality determination : A+A vs p+A

LO, Moreau, Voronyuk and Bratkovskaya, 1909.06770



In p+A multiplicity fluctuation in the final state mixes events from different impact parameters!

PHENIX, PRC 95 (2017) 034910

Miller et al., ARNPS 57 (2007) 205

### p+Au: rapidity distributions



LO, Moreau, Voronyuk and Bratkovskaya, 1909.06770

### Anisotropic radial flow

#### A DEEPER INSIGHT... INITIAL-STATE FLUCTUATIONS AND FINITE EVENT MULTIPLICITY

#### azimuthal particle distributions w.r.t. the reaction plane

$$\frac{dN}{d\varphi} \propto 1 + \sum_{n} 2 (v_n(p_T) \cos[n(\varphi + \Psi_n)])$$

#### n-th order flow harmonics

$$v_n = \frac{\langle \cos[n(\varphi - \Psi_n)] \rangle}{Res(\Psi_n)}$$

event-plane angle resolution (three-subevent method)

Important especially for small colliding system, e.g. p+A

Since the finite number of particles produces limited resolution in the determination of  $\Psi_n$ , the  $v_n$  must be corrected up to what they would be relative to the real reaction plane

Poskanzer and Voloshin, PRC 58 (1998) 1671

n-th order event-plane angle

$$\Psi_n = \frac{1}{n} \operatorname{atan2}(Q_n^y, Q_n^x)$$

$$Q_n^x = \sum_i \cos[n\varphi_i]$$

$$Q_n^{\gamma} = \sum_i \sin[n\varphi_i]$$

ELLIPTICITY



# p+Au: elliptic flow

ELLIPTIC FLOW OF CHARGED PARTICLES

$$v_2(p_T) = \frac{\langle \cos[2(\varphi(p_T) - \Psi_2)] \rangle}{Res(\Psi_2)}$$



LO, Moreau, Voronyuk and Bratkovskaya, PRC 101 (2020) 014917 Exp. data: Aidala et al. (PHENIX Collaboration), PRC 95 (2017) 034910

- magnitude correlated with the determination of the reaction plane
- comparable to that found in large colliding systems



PHENIX, PRL 91 (2003) 182301

#### pseudorapidity dependence of the DIRECTED FLOW OF CHARGED PARTICLES



LO, Moreau, Voronyuk and Bratkovskaya, 1909.06770

$$v_1(\eta) = \frac{\langle \cos[\varphi(\eta) - \Psi_1] \rangle}{Res(\Psi_1)}$$

Event-plane angle in  $-4 < \eta < -3$ :  $Res(\Psi_1^{PHSD}) = 0.397$ 

magnitude correlated with the determination of the reaction plane



Voloshin and Niida, PRC 94 (2016) 021901
# p+Au: directed flow

#### STAR Collaboration, PRL 101 (2008) 252301 3 0.2 2 -0.2 0.25 1 -0.5 0 0.5 v<sub>1</sub> (%) RHIC 200 GeV 0 PHSD, w/ resolution p+Au 0-5% PHSD, w/o resolution 0% - 5% -1 0.2 charged particles $v_1^{\{\Psi_i\}}$ 5% - 40% 40% - 80% -2 PHOBOS: 6% - 40% -3 △ 〈 p 〉 / 〈 p 〉: 0% - 5% 0.15 -2 2 0.1 RHIC 200GeV Au+Au 0.02 0.05 PHSD, $\pi^+ + \pi$ 0.0 0 -2 -1 2 RHIC 200GeV p+Au -0.01 RHIC 200 GeV LO, Moreau, Voronyuk and Bratkovskaya, 1909.06770 Cu+Au 10-50% -0.02 RHIC 200GeV Cu+Au

Voronyuk *et al.*, PRC 90 (2014) 064903 Toneev *et al.*, PRC 95 (2017) 034911

# Quark charm process scattering in Quark-Gluon Plasma medium : extension to off-shell dynamics

#### Maria Lucia Sambataro



University of Catania INFN - Laboratori Nazionali del Sud sambataro@Ins.infn.it

#### GGI School 'Frontiers in Nuclear and Hadronic Physics 2020' Feb.24-Mar.06 2020

- Hard probes in Quark-Gluon Plasma
- Quasi-particle model(QPM) and Dynamical quasi-particle model(DQPM)
- $\bullet\,$  Transport coefficients for quark charm  $\rightarrow\,$  on-shell vs off-shell mode
- Momentum evolution of quark charm: Fokker-Planck approach, Boltzmann approach and off-shell extension.
- Conclusions

# Heavy quarks in QGP medium $M_c \sim 1.3 \text{ GeV}/c^2 \in M_B \sim 4.2 \text{ GeV}/c^2$

Plasma physics  $M_{HQ} >> T_{QGP}$ 

- negligible thermal production
- $\tau_C \gtrsim \tau_{QGP}, \ \tau_B > \tau_{QGP}$

with  $au_{QGP} pprox 5 - 10 \textit{fm}/c$ 

Particle physics  $M_{HQ} >> \Lambda_{QCD}$ 

• pQCD initial production



# Nonperturbative effects in HQ scattering: QPM vs. DQPM

#### Quasi Particle Model (QPM)

The interaction is encoded in the quasi-particle masses:

$$\begin{split} m_g^2 &= \frac{1}{6} g(T)^2 \left[ \left( N_c + \frac{1}{2} N_f \right) T^2 + \frac{N_c}{2\pi^2} \sum_q \mu_q^2 \right], \\ m_{u,d,s}^2 &= \frac{N_c^2 - 1}{8N_c} g(T)^2 \left[ T^2 + \frac{\mu_{u,d}^2}{\pi^2} \right] \end{split}$$

Coupling constant g(T) fitted to the energy density of IQCD:

$$g^{2}(T) = \frac{48\pi^{2}}{[(11N_{c} - 2N_{f})ln[\lambda(\frac{T}{T_{c}} - \frac{T_{s}}{T_{c}})]]^{2}}$$



Salvatore Plumari et. al. Phys. Rev. D84, 094004 (2011).

# Nonperturbative effects in HQ scattering: QPM vs. DQPM

## Dynamical Quasi Particle Model (DQPM)

Partons are dressed by non perturbative spectral function  $A(q^0)$ . In N.R. approximation:

$$A_i^{BW}(m_i) = rac{2}{\pi} rac{m_i^2 \gamma_i^*}{(m_i^2 - M_i^2)^2 + (m_i \gamma_i^*)^2}$$

with

$$\int_0^\infty dm_i A_i(m_i, T) = 1.$$

Fitting IQCD thermodynamics:

$$\gamma_{g}(T) = \frac{1}{3} N_{C} \frac{g^{2}(T/T_{C})T}{8\pi} ln \left[ \frac{2c}{g^{2}(T/T_{C})} + 1 \right]$$
$$\gamma_{q}(T) = \frac{1}{3} \frac{N_{C}^{2} - 1}{2N_{C}} \frac{g^{2}(T/T_{C})T}{8\pi} ln \left[ \frac{2c}{g^{2}(T/T_{C})} + 1 \right]$$



i.e T=200 MeV DQPM widths  $\gamma_g^* \approx$  260 MeV,  $\gamma_q^* \approx$  110 MeV

Artif.widths ( $\gamma^*/M = 0.75$ )  $\gamma_g^* \approx 520$  MeV,  $\gamma_q^* \approx 330$  MeV, 2-3 times larger than DQPM widths.

H.Berrehrah et al., Phys. Rev. C89, 054901 (2014).

Maria Lucia Sambataro (INFN-LNS)

# Transport coefficients: Drag and Diffusion coefficients

Soft scattering approx. Fokker Planck approach:

$$\begin{aligned} \frac{df_c}{dt} &= \gamma \frac{\partial (pf_c)}{\partial p} + D \frac{\partial^2 f_c}{\partial p^2}, \\ \langle p \rangle &= p_0 e^{-\gamma t} \\ \langle \Delta p^2 \rangle &= \frac{3D}{\gamma (1 - e^{-2\gamma t})}. \end{aligned}$$

#### Drag and diffusion coefficients:

$$\gamma = \int d^3k |M_{g(q)+C \to g(q)+C}(k,p)|^2 p$$
$$D = \frac{1}{2} \int d^3k |M_{g(q)+C \to g(q)+C}(k,p)|^2 p^2$$

 $D = TE\gamma 
ightarrow$  Fluctuation dissipation theorem

$$\gamma 
ightarrow A(p) \text{ and } D 
ightarrow B_{i,j}(p) \ B_{i,j}(\mathbf{p}, T) = B_L(p, T) P_{i,j}^{||}(\mathbf{p}) + B_T(p, T) P_{i,j}^{\perp}(\mathbf{p})$$



# Transport coefficients: Drag and Diffusion coefficients



High momentum p region: DQPM widths  $\rightarrow \sim 30\%$  decrease Larger widths ( $\gamma^*/M = 0.75$ )  $\rightarrow \sim 40\%$  decrease

- Transport coefficient scales with density of the system  $\rho$
- Larger breaking of the scaling for larger widths, especially for low p region  $(p \leq 2 3 GeV)$ .

# Charm dynamics in QGP: Energy loss

# Boltzmann vs.Langevin vs.Off-shell extension DQPM widths

Boltzmann equation and off-shell extension

 $p^{\mu}\partial_{\mu}f_Q=C[f_Q,f_{g,q}]$ 

Plasma uniform  $\rightarrow p^0 \partial_0 f_Q = C[f_Q, f_{g,q}]$  $\frac{\partial f_Q}{\partial t} = \frac{1}{E_Q} C[f_q, f_g, f_Q]$  $f(t + \Delta t, p) = f(t, p) + \frac{1}{E_Q} C[f]$ 

 $C[f_q, f_g, f_Q]$  Collision integral calculated both in on-shell and off-shell mode

#### Langevin equation

Soft scattering approx.

 $dx_i = \frac{\rho_i}{E} dt$  $dp_i = -Ap_i dt + C_{i,j} \rho_j \sqrt{dt}$ 

A drag force,  $C_{i,j}$  stochastic force Fluc.Diss.Theorem (FDT)  $\rightarrow D = TEA$ 

Maria Lucia Sambataro (INFN-LNS)

BOX CALCULATION (T=200 MeV)



# Charm dynamics in QGP: Energy loss

Boltzmann vs.Langevin vs.Off-shell extension  $\gamma^*/M = 0.75$ 

Boltzmann equation and off-shell extension

 $p^{\mu}\partial_{\mu}f_Q=C[f_Q,f_{g,q}]$ 

Plasma uniform  $\rightarrow p^0 \partial_0 f_Q = C[f_Q, f_{g,q}]$  $\frac{\partial f_Q}{\partial t} = \frac{1}{E_Q} C[f_q, f_g, f_Q]$  $f(t + \Delta t, p) = f(t, p) + \frac{1}{E_Q} C[f]$ 

 $C[f_q, f_g, f_Q]$  Collision integral calc. both in on-shell and off-shell mode

#### Langevin equation

Soft scattering approx.

 $dx_i = \frac{p_i}{E} dt$  $dp_i = -Ap_i dt + C_{i,j} \rho_j \sqrt{dt}$ 

A drag force,  $C_{i,j}$  stochastic force Fluc.Diss.Theorem (FDT)  $\rightarrow D = TEA$ 

Maria Lucia Sambataro (INFN-LNS)

BOX CALCULATION (T=200 MeV)



# Charm dynamics in QGP: Energy loss

Boltzmann vs. Off-shell extension  $\gamma^*/M = 0.75 \rightarrow \text{Drag}$  scaled with  $\rho$  !



- Off-shell effects sizeable especially at low p region
- $\bullet \ \ \, \text{Off-shell evolution} \sim \ \, \text{On-shell evolution}$

# The difference between on-shell and off-shell mode can be adsorbed by multiplying scattering matrix for a k-factor!

Maria Lucia Sambataro (INFN-LNS) Quark charm process scattering in QGP

- The off-shell effect can be sizeable at low momentum of quark charm ( $\sim 15\%).$
- The decrease of transport coefficients in the high momentum region can be seen mostly as a mere effects of the equilibrium bulk density  $\rho$ .
- Breaking of scaling for  $\gamma^* = 0.75M$ , but momentum evolution does not show significant difference with respect to on-shell one.
- Boltzmann approach seems to be a better approximation than Langevin equation for momentum evolution of quark charm at fixed *T*.



# Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# FDT validity



• (DQPM widths)  $\rightarrow$  Improvement for FDT validity of about 10%.

• (Larger widths) ightarrow Improvement for FDT validity of about 17%

for different values of momentum p and T of the system.

# QGP observable: Nuclear modification factor

#### $R_{A,A}$

It expresses the effective energy loss of high  $p_T$  partons experimentally visible in A-A collision with respect to production in p-p collisions

$$R_{AA} = \frac{f_C(p, t_f)}{f_C(p, t_0)}$$



No interaction means  $R_{AA} = 1$ .

• Off-shell dynamics  $(\gamma_{DQPM}^*) \sim \text{On-shell dynamics in high } p$  region, sizeable difference  $\sim 10\%$  in low p region.

• Off-shell dynamics ( $\gamma^* = 0.75M$ )  $\rightarrow$  difference of about 15% respect to on-shell evolution.

As for momentum evolution, the difference between on-shell and off-shell mode can be adsorbed by multiplying scattering matrix for a k factor!







# Femtoscopy of the D meson and nucleon interaction

Isabela Maietto\*, Gastao Krein, Sandra Padula Institute of Theoretical Physics - IFT - UNESP



Motivation

- □ Femtoscopy and Correlations
- $\Box \ \bar{D}N$  observables
- Results
- □ Summary

 $\hfill\square$  Femtoscopy: correlation function of two particles as a function of relative momentum

- Obtain the source size
- Sensitive to the effects of the final-state interaction
  - Coulomb interaction
  - Strong Interaction
  - o Isospin

□ Femtoscopy: correlation function of two particles as a function of relative momentum

- Obtain the source size
- Sensitive to the effects of the final-state interaction
  - Coulomb interaction
  - Strong Interaction
  - Isospin

□ Here, discuss **DN interaction**, no experimental data available yet

- Important for the quest of possible existence of D-mesic nuclei (an exotic nuclear state)
- Through D-mesic nuclei, one can possibly access chiral symmetry restoration effects
  - $\circ\,$  Because, properties of light quarks in D mesons are sensitive to temperature and density

Two-particle correlation function:

$$C(\mathbf{p_1}, \mathbf{p_2}) = \frac{P(\mathbf{p_1}, \mathbf{p_2})}{P(\mathbf{p_1})P(\mathbf{p_2})}$$

Experimentally can be obtained as:

$$C(q) \propto \frac{N_{\text{same}}(q)}{N_{\text{mixed}}(q)}$$

(1)

(2)

Two-particle correlation function:

$$C(\mathbf{p_1}, \mathbf{p_2}) = \frac{P(\mathbf{p_1}, \mathbf{p_2})}{P(\mathbf{p_1})P(\mathbf{p_2})}$$

Experimentally can be obtained as:

$$C(q) \propto rac{N_{
m same}(q)}{N_{
m mixed}(q)}$$

If  $C(\mathbf{p_1}, \mathbf{p_2}) \to 1$  no particle correlation If  $C(\mathbf{p_1}, \mathbf{p_2}) \neq 1$  particles are correlated (1)

(2)

The Correlation Function can be written with an equal-time approximation, e.g., the particles states are emitted simultaneously in the pair rest frame  $t_1 = t_2$  and  $P = p_1 + p_2 = 0$ :

$$C(\mathbf{p_1}, \mathbf{p_2}) = \frac{N(\mathbf{p_1}, \mathbf{p_2})}{N(\mathbf{p_1})N(\mathbf{p_2})} \approx \int d\mathbf{r} S_{12}(\mathbf{r}) |\Psi(\mathbf{r}, \mathbf{q})|^2$$
(3)

The Correlation Function can be written with an equal-time approximation, e.g., the particles states are emitted simultaneously in the pair rest frame  $t_1 = t_2$  and  $P = p_1 + p_2 = 0$ :

$$C(\mathbf{p_1}, \mathbf{p_2}) = \frac{N(\mathbf{p_1}, \mathbf{p_2})}{N(\mathbf{p_1})N(\mathbf{p_2})} \approx \int d\mathbf{r} S_{12}(\mathbf{r}) |\Psi(\mathbf{r}, \mathbf{q})|^2$$
(3)

where,

•  $S(\mathbf{r})$  is the source function. Tipically, this can be represented with a spherical Gaussian source:

$$S_{12}(\mathbf{r}) = \frac{1}{(4\pi R^2)^{\frac{3}{2}}} \exp\left\{\left[-\frac{r^2}{4R^2}\right]\right\}$$
(4)

- $\circ$  *R* is the width of the source.
- $\Psi({f r},{f q})$  is the wave function, where  ${f q}$  is the relative momentum:  $q=|p_1-p_2|$

Partial Wave Decomposition:

$$\Psi(r,q) = \sum_{l=0}^{\infty} (2l+1)i^l \psi_l(r) P_l(\cos\theta)$$
(5)

Partial Wave Decomposition:

$$\Psi(r,q) = \sum_{l=0}^{\infty} (2l+1)i^l \psi_l(r) P_l(\cos\theta)$$

Supose now, that only the s-wave is affected by the interaction:

$$\Psi(r,q) = \psi_0(r,q) + \sum_{l=1}^{\infty} (2l+1)i^l \psi_l^{free}(r,q) P_l(\cos\theta)$$

(5)

Partial Wave Decomposition:

$$\Psi(r,q) = \sum_{l=0}^{\infty} (2l+1)i^l \psi_l(r) P_l(\cos\theta)$$
(5)

Supose now, that only the s-wave is affected by the interaction:

$$\Psi(r,q) = \psi_0(r,q) + \sum_{l=1}^{\infty} (2l+1)i^l \psi_l^{free}(r,q) P_l(\cos\theta)$$
  
=  $\psi_0(r,q) + \sum_{l=0}^{\infty} (2l+1)i^l \psi_l^{free}(r,q) P_l(\cos\theta) - \psi_0^{free}$  (6)

•  $\psi_0$  is the wave function for l = 0;

• 
$$\psi_0^{free} = j_0(qr) = \frac{\sin(qr)}{qr}; \sum_l \psi_l^{free}(r,q) P_l(\cos\theta) = e^{iqr}$$

Then,

$$\Psi(r,q) = \psi_0(r,q) + e^{iqr} - j_0(qr)$$
(7)

Replacing this expression in (2):

Then,

$$\Psi(r,q) = \psi_0(r,q) + e^{iqr} - j_0(qr)$$
(7)

Replacing this expression in (2):

$$C(q) = 1 + 4\pi \int dr r^2 S(r) \left[ |\psi_0(q,r)|^2 - j_0^2(qr) \right]$$

(8)

Then,

$$\Psi(r,q) = \psi_0(r,q) + e^{iqr} - j_0(qr)$$
(7)

Replacing this expression in (2):

$$C(q) = 1 + 4\pi \int dr r^2 S(r) \left[ |\psi_0(q,r)|^2 - j_0^2(qr) \right]$$

Expressing  $\psi_0$  in the assymptotic form:

$$\psi_0(r,q) = \frac{1}{qr} \sin\left(qr + \delta(q)\right) = \frac{1}{2iqr} \left(e^{ikr + i\delta_0} - e^{-ikr - i\delta_0}\right)$$
$$= \frac{e^{-i\delta_0}}{qr} \left(sin(qr) + qe^{iqr}f_0(q)\right)$$

(9)

(8)

# Correlation Function - Lednicky Model

Finally, one can obtain the Lednicky Model for the Correlation Function [Lednicky, 1982]:

### Correlation Function - Lednicky Model

Finally, one can obtain the Lednicky Model for the Correlation Function [Lednicky, 1982]:

• 
$$F_1(z) = \int_0^z \frac{e^{t^2 - z^2}}{z} dt$$
, with  $z = 2qR$ ;  
•  $F_2(z) = \frac{\int_0^z e^{t^2 - z^2}}{z} dt$ , with  $z = 2qR$ ;

(10)

## Correlation Function - Lednicky Model

Finally, one can obtain the Lednicky Model for the Correlation Function [Lednicky, 1982]:

$$C(q) = 1 + \frac{|f(q)|^2}{2R^2} + \frac{2\operatorname{Re}[f(q)]}{\sqrt{\pi R}}F_1(2qR) - \frac{\operatorname{Im}[f(q)]}{R}F_2(2qR)$$
$$(z) = \int_0^z \frac{e^{t^2 - z^2}}{z} dt, \text{ with } z = 2qR; \qquad \bullet \ F_2(z) = \frac{(1 - e^{-z^2})}{z}$$

An additional commonly used aporoximation is to use the effective range expansion for the scattering amplitude:

• 
$$f(q) \approx \left[ -\frac{1}{a_l^I} + \frac{1}{2}r_l^Iq^2 + iq \right]^{-1}$$
, for  $q \to 0$   
 $a_l^I$  is the scattering lenght and  $r_l^I$  is the effective range

•  $F_1$ 

(10)



C. E. Fontoura, G. Krein, and V. E. Vizcarra, 2013

□ Models:

- Short distance: quark-interchange (Model 1 and Model 2)
- Long distance: meson-exchange
- □ Model 1 (MELTT):
  - Lattice Simulation of QCD in Coulomb gauge
- □ Model 2 (MESS2):
  - Szczepaniak and Swanson

Extract the observables (for I=0):

$$q\cot\delta_0^I(q)\approx-\frac{1}{a_0^I}+\frac{1}{2}r_0^Iq^2$$



# Results

# MELTT\_model1: $a_0^0 = -0.16$ fm and $r_0^0 = 21$ fm



## $MELTT\_model1 \ and \ MESS2\_model2$




# Summary

## Summary

 $\hfill\square$  Correlation function of the D meson and Nucleon

• Contains information on the DN interaction, unknown so far

□ Important for quest D-mesic nuclei [1,2]

D-mesic nuclei, possibly access chiral symmetry restoration in medium

□ Explore other models for the DN interaction

K. Tsushima, D. H. Lu, A. W. Thomas, K. Saito, and R. H. Landau, 1999
 G. Krein, A. W. Thomas, K. Tsushima, 2018



# Thanks!

# **Grazie mille!**



#### The Galileo Galilei Institute For Theoretical Physics

Centro Nazionale di Studi Avanzati dell'Istituto Nazionale di Fisica Nucleare



# Backup

#### Microscopic Hamiltonian

$$H = H_0 + H_{int} \tag{11}$$

with,

$$H_{int} = -\frac{1}{2} \int dx dy \rho^{a}(x) V_{C}(|x-y|) \rho^{a}(y) + \frac{1}{2} \int dx dy J_{i}^{a}(x) D^{ij}(|x-y|) J_{j}^{a}(y)$$
(12)

## Models

□ Model 1:

$$V_C(k) = \frac{8\pi}{k^4} \sigma_{Coul} + \frac{4\pi}{k^2} C$$
(13)

with 
$$\sigma_{Coul} = (552 \text{ MeV})^2$$
 and  $C = 6.0$   
 $\Box$  Model 2:

$$V_C(k) = \frac{8\pi}{k^4}\sigma + \frac{4\pi}{k^2}\alpha(k)$$

with,

$$\alpha(k) = \frac{4\pi Z}{\beta^{\frac{3}{2}} \ln \left(C + \frac{k^2}{\Lambda_{\rm QCD}}\right)^{\frac{3}{2}}}$$
  
and  $\Lambda_{\rm QCD} = 250$  MeV,  $Z = 5.94$ ,  $C = 40.68$ ,  $\beta = \frac{121}{12}$ 

(14)

## MELTT\_model1: $a_0^1 = 0.25 \text{ fm and } r_0^1 = 2.2 \text{ fm}$



#### MELTT\_model1 and MESS2\_model2 for I=1, L=0



### MESS2\_I0\_Model2 - (Lednicky Model) - $a_0 = 0.03$ fm and $r_0 = 350$ fm

