
The Eikonal Approach to

Gravitational Scattering and Radiation

Rodolfo Russo

29 April 2021 (GGI: Gravitational scattering, inspiral, and radiation)

Queen Mary University of London



The aim

Use a particle-physicist approach to derive classical observables relevant

to gravitational binaries see Parra-Martinez’s lectures and Bern’s and Kosower’s talk

� Model the celestial bodies as “elementary” particles with known

couplings to gravity (massless fields in general)

� Use quantum perturbative amplitudes to describe the large-distance

scattering and take the classical PM limit

� Analytically continue the results from open to closed orbits
see Porto’s talk

In the eikonal approach it is possible to implement this programme by

focusing on gauge invariant quantities

Classical physics is obtained by resumming an infinite set of

contributions which leads to exponentiation

It is a general approach applicable to all perturbative gravitational

theories (GR, supergravity, string theory; shockwaves, spin . . . )
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Based on:

2104.03256, 2101.05772, 2008.12743:

N = 8, m1,2 6= 0, 3PM, also results in GR

1911.11716, 1908.05603:

N = 8, m1,2 = 0, 3PM

1904.02667:

GR, m1,2 6= 0, general d , 2PM

1807.04588:

N = 8, m1 →∞, m2 = 0, 2PM

in (various) collaboration with: P. Di Vecchia, C. Heissenberg,

A. Koemans Collado, A. Luna, S. G. Naculich, S. Thomas, G. Veneziano,

C. D. White
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The elastic scattering



The setup

Consider the 2→ 2 scattering with p2
1 = p2

4 =−m2
1, p2

2 = p2
3 =−m2

2

1 4π − χ

χ

2
3 π − χ

χ

b
bJχ

2

Tree amplitude

1 n

1 m

Tree amplitude

Tree amplitude

(also disconnected)

p2

p1

p3

p4

A spacetime picture of the scattering Diagrammatic picture

. . .

. . .

Key classical quantities:

The centre-of-mass energy E , E2 =s =−(p1 + p2)2 =(m2
1 +m2

2 + 2m1m2σ)

The angular momentum J = p bJ , p = |~pi |, Ep = m1m2

√
σ2 − 1

The momentum transferred Q = p1 + p4, |Q| = 2p sin
(
χ
2

)
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One particle exchange

Let us start from the 1-particle exchange

q A0 =
8πGβ
q2 + . . .

βN=8 = 4m2
1m

2
2σ

2

βGR = 4m2
1m

2
2

(
σ2 − 1

D−2

)
1

2 3

4

q is quantum and the dots contain analytic terms as q → 0

In terms of classical quantity b ∼ ~/q

Ã(s, b) =

∫
dD−2q

(2π)D−2

A(s, q2)

4pE
e−ib·q .

In D = 4− 2ε→ 4 we have

iÃN=8
0 =

2im1m2G (πb2)εσ2Γ(−ε)√
σ2 − 1

→ −i Gm1m2

~
log(b)

4σ2

√
σ2 − 1

No well defined classical limit?!
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Two particle exchange

Consider the two particle exchange. The non-analytic contributions are

q1

1

2 3

4

q2
A1(s, q

2) = a
(1)
1 (s)

(q2)1+ε +
a
(2)
1 (s)

(q2)
1
2+ε

+ a
(3)
1 (s)
(q2)ε + . . .

with q1 + q2 = qq1

1

2 3

4

q2

+

This captures the whole N = 8 result

(I) From a
(1)
1 we have O

(
1
~2

)
term: iÃ(1)

1 (s, b) = 1
2 (iÃ0)2. Then

resumming the leading contributions (as ~→ 0) we expect

1 + iÃ0 + iÃ(1)
1 + . . . = e iÃ0 (eikonal exponentiation)

(II) a
(2)
1 yield a new contribution O

(
1
~
)

(which is O(ε) in N = 8)

(III) a
(n≥3)
1 yields a long-range, but quantum terms O(~n−3)

Terms with negative powers of ~ exponentiate
for Ã0: Kabat, Ortiz; Akhoury, Saotome, Sterman; Parra-Martinez’s lecture
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The eikonal

The semi-classical limit requires that long range part of Ã takes the form

1 + iÃ(s, b) =
(

1 + 2i∆(s, b)
)
e

i
~ 2δ(s,b)

where δ is O(~0) and ∆ encodes the quantum terms O(~m) with m ≥ 0

δk and ∆k , k ≥ 0, encode contributions of order G k+1 (PM expansion)

N = 8 in D = 4: we have 2δ0 = − log(b) 4Gm1m2σ
2

√
σ2−1

, δ1 = 0
Caron-Huot, Zahraee

GR in D = 4: we have 2δ0 = − log(b) 2Gm1m2(2σ2−1)√
σ2−1

and

2δ1 = 3πG 2m1m2(m1+m2)
4b

5σ2−1√
σ2−1

Ignoring the quantum terms the inverse FT reads

i A(s,Q2)
4pE =

∫
dD−2b

(
e

i
~ 2δ(s,b) − 1

)
e

i
~ b·Q

and a stationary phase approximation yields Qµ=−∂ Re 2δ(s,b)
∂bµ and so χ
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Connection to bound orbits

The derivatives of the eikonal give standard observables

Time delay ∆T =
∂ Re 2δ

∂E
, Scatt. angle χ =

∂ Re 2δ

∂J

An analytic continuation to σ < 1 describes bound states (E < m1 + m2).

This implies
√
σ2 − 1→ i

√
1− σ2, b → ±ib so as to have J → ±J

Kälin, Porto

By using the eikonal δ̃ after analytic continuation, we can introduce the

periastron advance K and the period P

P =
[∂ Re 2δ̃

∂E
− (J → −J)

]
, K − 1 =

1

2π

[∂ Re 2δ̃

∂J
+ (J → −J)

]
From δ̃0,1 we can derive Eqs. (347) for K and n = 2π

P of Blanchet’s

review at all orders in ε and first subleading order in jB = J2

G 2
ε

(m1m2)2
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The 3-PM eikonal in N = 8

The 2-loop integrand in N = 8 is known in terms of scalar integrals

Extract the first non-analytic terms in the small q expansion

A2(s, q2) =
asscl2 (s)
(q2)1+2ε +

ascl2 (s)

(q2)
1
2

+2ε
+

acl2 (s)
(q2)2ε + . . .

Go to b-space and solve for δ2. By using also δ0,1 and ∆1, we get DHRV

(2δ2) =
16m2

1m
2
2G

3σ6

b2(σ2−1)2
− 16m2

1m
2
2σ

4G3

b2(σ2−1)
cosh−1(σ)

[
1− σ(σ2−2)

(σ2−1)
3
2

]
−i16m

2
1m

2
2G

3

πb2
σ4

(σ2−1)2

{
1
ε

(
σ2 + σ(σ2−2)

(σ2−1)
1
2
cosh−1(σ)

)

− (log(4(σ2 − 1))− 3 log(πb2eγE))
[
σ2 + σ(σ2−2)

(σ2−1)
1
2
cosh−1(σ)

]

+(σ2 − 1)
[
1 + σ(σ2−2)

(σ2−1)
3
2

]
(cosh−1(σ))2 + σ(σ2−2)

(σ2−1)
1
2
Li2(1− z2) + 2σ2

}

Parra-Martinez, Ruf, Zeng: 2005.04236

A consequence of analyticity

and crossing – DHRV: 2104.03256

radiation reaction

Confirmed independently by
Bjerrum-Bohr, Damgaard,

Planté, Vanhove

PN limit v → 0, (b v) fixed

σ2 − 1 = v2(1− v2)−1 ∼ v2 ,
cosh−1(σ) ∼ vz = σ −

√
σ2 − 1

In the UR limit (σ � 1), Re(2δ2)→ 16G 3(m1m2σ)2

b2 which is universal!
Amati, Ciafaloni, Veneziano; Ademollo, Bellini, Ciafaloni; DNRVW 1911.11716; Bern, Ita, Parra-Martinez, Ruf; DHRV: 2008.12743
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A comment on the integrals

The integrals depend on one scale and can be translated into a set of

differential equations for a basis of soft master integrals
. . . , Parra-Martinez, Ruf, Zeng. Tools: LiteRed, Fire6, epsilon

The full soft contribution q → 0 has been included, i.e. no separation in

potential gravitons (near region) and radiation gravitons (far region)
see also Herrmann, Parra-Martinez, Ruf, Zeng

The key step is the evaluation of the σ → 1 boundary conditions

One element of the double-box basis of integrals is

fIII,3 = ε3q2τ

τ =
√
σ2 − 1 +O

(
q2

m2

)
propagator squared

t1 t2
t3

t5

t4

As τ → 0 we have two regions

ordinary region: t1,2,3 ∼ O(τ0)

singular region: t1,2 ∼ O(τ0), t3 ∼ O(τ−2)

The “singular static” contributions is crucial to restore crossing symmetry.

It will play a useful role also in the cut version of these integrals
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Radiative effects



The 3-particle cut

Why do we have Im(2δ2) 6= 0? It is related to the 3-particle cut

p2

p1 k1

k2

k

q1

q2 −k2

−k1 p4

p3

−k

q4

q3

A5(p1, p2, k1, k2, k) A∗
5(p3, p4,−k1,−k2,−k)

Unitarity implies

[Im 2A2]3pc =

∫
dDk

(2π)D
dDk1

(2π)D
dDk2

(2π)D
(2π)Dδ(p1 + p2 + k1 + k2 + k)

2πθ(k0) δ(k2) 2πθ(k0
1 ) δ(k2

1 + m2
1) 2πθ(k0

2 ) δ(k2
2 + m2

2) |A5|2

In b-space we have
[
Im Ã2

]
3pc

= Im(2δ2): so this is a shortcut to the

derivation of the imaginary part! Amati, Ciafaloni, Veneziano
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Inelastic amplitudes (3-particle cut)

A unified GR and N = 8 expression for the 2→ 3 classical amplitude
Goldberger, Ridgway; Luna, Nicholson, O’Connell, White; Mogull, Plefka, Steinhoff

AMN
5 = (8πG)

3
2

{
8(P1kPM

2 −P2kPM
1 )(P1kPN

2 −P2kPN
1 )

q21q
2
2

+8P1P2

[
PM
1 PN

1
kP2
kP1

−P (M
1 P

N)
2

q22
+

PM
2 PN

2
kP1
kP2

−P (M
1 P

N)
2

q21
− 2

P1kP
(M
2 q

N)
1 −P2kP

(M
1 q

N)
1

q21q
2
2

]

+β

[
− PM

1 PN
1 (kq1)

(P1k)2q22
− PM

2 PN
2 (kq2)

(P2k)2q21
+ 2

(
P

(M
1 q

N)
1

(P1k)q22
− P

(M
2 q

N)
1

(P2k)q21
+

qM1 qN1
q21q

2
2

) ]} Leading term in the Weinberg

limit k � qi

P1 = (p1; 0, 0, 0, 0, 0,m1) , P 2
1 = 0

P2 = (p2; 0, 0, 0, 0,m2, 0) , P 2
2 = 0

N = 8 setup: Pi, Ki are 10D momenta, q and k 4D

P1 = (p1; 0, 0, 0, 0, 0, 0) , P 2
1 = p21 = −m2

1

P2 = (p2; 0, 0, 0, 0, 0, 0) , P 2
2 = p22 = −m2

2

GR setup: all vectors are 4D

. . . . . .

This provides explicit integrands for the discontinuity

|AN=8
5 |2→AMN

5 (P1,P2,K1,K2,k) ηMRηNS ARS
5 (P4,P3,−K1,−K2,−k)

|Agr
5 |

2→Aµν
5 (p1,p2,k1,k2,k)

[
ηµρηνσ− 1

D−2ηµνηρσ

]
Aρσ

5 (p3,p4,k4,k3,−k)

The phase-space integrals can be performed by recycling the loop

integrals Anastasiou, Melnikov; Herrmann, Parra-Martinez, Ruf, Zeng
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The 3-PM eikonal in GR

The unitarity approach leads to Im(2δ2) in GR (and reproduces the

N = 8 result). By combining it with previous results we have

+i
2m2

1m
2
2G

3

πb2
(2σ2−1)2
(σ2−1)2

{
− 1

ε

[
8−5σ2

3
− σ(3−2σ2)

(σ2−1)
1
2
cosh−1(σ)

]

+(log(4(σ2 − 1))− 3 log(πb2eγE))
[
8−5σ2

3
− σ(3−2σ2)

(σ2−1)
1
2
cosh−1(σ)

]

+(cosh−1(σ))2
[
σ(3−2σ2)
(σ2−1)

1
2
− 24σ6−16σ4+9σ2+3

(2σ2−1)2

]

+cosh−1(σ)
[
σ(88σ6−240σ4+240σ2−97)

3(2σ2−1)2(σ2−1)
1
2

]

+σ(3−2σ2)

(σ2−1)
1
2
Li2(1− z2) + −140σ6+220σ4−127σ2+56

9(2σ2−1)2

}

2δ
(gr)
2 =

4G3m2
1m

2
2

b2

{
(2σ2−1)2(8−5σ2)

6(σ2−1)2 − σ(14σ2+25)

3
√
σ2−1

+ s(12σ4−10σ2+1)

2m1m2(σ2−1)
3
2
+ cosh−1 σ

[
σ(2σ2−1)2(2σ2−3)

2(σ2−1)
5
2

+ −4σ4+12σ2+3
σ2−1

] }
radiation reaction

(agrees with Damour’s result)

A consequence of analyticity

and crossing

probe limit

the universal UR terms

σ2
(
− 10

3 −
14
3 + 12

)
= 4

Re(2δ2)→ 16G3(m1m2σ)
2

b2

⇓

Bern, Cheung, Roiban,
Shen, Solon, Zeng
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Radiation Reaction from Soft Theorems

The radiation-reaction contribution is fully determined by Weinberg’s

leading term AW
5 in the soft expansion DHRV: 2101.05772

In b-space, the soft limit takes the following form

ÃW
5 = −i κ3β

8πm1m2

(πb2)ε

b2
√
σ2−1

[
(kb)

(
p̄µ1 p̄

ν
1

(p̄1k)2 −
p̄µ2 p̄

ν
2

(p̄2k)2

)
− p̄µ1 b

ν+p̄ν1b
µ

(p̄1k) + p̄µ2 b
ν+p̄ν2b

µ

(p̄2k)

]
pµ1 = −p̄µ

1 + qµ/2 , pµ2 = −p̄µ
2 − qµ/2

Use this to calculate
[
Im Ã2

]
3pc

= Im(2δ2)

� The integral over ω = |~k | yields the 1/ε divergence

� The integral over the angles is identical to the one appearing in

Damour’s linear-response approach

Exploit soft-theorems more systematically: do subleading terms play an

interesting role? Apply them at 4PM and beyond? BMS group?
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Radiated energy

One can use A5 to derive other quantities, just by inserting the

appropriate generator in the integrand. For the emitted energy

|A(...)
5 |2 → kµ|A(...)

5 |2

The phase-space integrals can again be performed by using the same

technology discussed previously

However, we have access to differential quantities as well. A simple

example is the Zero-Frequency-Limit of the energy spectrum

dE rad

dω
(ω → 0) = lim

ε→0

[
− 4~ε(Im2δ2)

]
−→
σ→1

32G 3m2
1m

2
2

5πb2
Smarr

Also the angular distribution can be derived with the same approach

14



Waveforms

One can also consider directly the waveforms (in the CoM frame)

Instead of focusing on |A5|2, perform the FT to b-space of A5

Ã5,i (b, ~k) =

∫
dD−2∆
(2π)D−2

e−ib∆

4Ep A5,i (p1, p2, k1, k2, k)

∆ ≡ 1
2 (q1 − q2) is a (D − 2)-vector; the other momenta (except ~k)

are fixed by the onshell/conservation conditions

A5,i = AMN
5 ε

(i)
MN for the physical polarizations i = +,× (in the

N = 8 case one has also other massless particles: dilaton, . . . )

One extra FT yields the result in terms of the retarded time u = t − r

rather than the frequency ω

Ã5,i (u, b, k̂) =

∫
dω

2π
e−iωuÃ5,i (b, ~k)

A unified approach for N = 8 and pure GR
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Waveforms: an example

In DHRV 2104.03256 we give the N = 8 dilaton waveform as an example

The extension to GR is tedious but straightforward

Our result for the × polarisation in GR is Alert: perliminary

Ã5,× = i
κ3(b̂eφ)
4pE(2π)

{
− β

[
m2 sin θ√

s
eibk/2K1(bc2|k|) + m1 sin θ√

s
e−ibk/2K1(bc1|k|)

]

+β

∫ 1

0

dx ei
kb
2 (1−2x)

(
i(b̂eθ)(b

√
f |k|)K1(b|k|

√
f)− (x− 1

2 )(keθ)bK0(b|k|
√
f)

)

+
[
4(p1p2)pEω sin θ − β ω

s sin θ
(

(m1+m2σ)(m2+m1σ)√
σ2−1 +

m2
1−m

2
2

2 cos θ
)] ∫ 1

0

dx ei
kb
2 (1−2x)bK0(b|k|

√
f)

}

|k|
√
f =

√
k2
(
x(1− x) + c21x+ c22(1− x)

)
, |k|c2 = (p1 k)

m1

√
σ2−1 ,|k|c1 = (p2 k)

m2

√
σ2−1 ,

Bold vectors are and b

|k| = |ω sin θ|

eµφ = (0,− sinφ, cosφ, 0) , eµθ = (0, cos θ cosφ, cos θ sinφ,− sin θ) , kµ = ω(1, sin θ cosφ, sin θ sinφ, cos θ)

(D-2)-dimensional

This result is written in the center of mass frame

The FT to u-space is straightforward and then the x-integral is simple
We are in the process of comparing with Jakobsen, Mogull, Plefka, Steinhoff; Mougiakakos, Riva, Vernizzi

16



Conclusions

The eikonal provides a conceptually simple approach to gravitational

binaries: it leads directly to classical, observable quantities starting from

a full quantum framework

The state of the art is the full 3PM analysis

It can be extended to different situations of experimental (spin) or

theoretical (susy, string theory) interest

What next?

� Derive the 4PM eikonal (N = 8 is again the perfect laboratory)

� Clarify the exponentiation of the radiative part: promote δ to a

Hermitean operator, extend the analysis of the waveforms . . .

� Consider more complicated objects: here string theory can (again)

be a useful guide to analyse spin, tidal effects, . . .
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