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Usefulness of PN approximation (EFT point of view) PM in short

1PM potential

Out of different ways of computing 2-body Post-Minkowskian expansion
e.g. 1PM O(G 1

N) potential gravity coupled to particle world-lines:

xa(ta)

xb(tb)

V
(1)
PM(xµa − xµb ) = GNT

a
µνT

b
ρσ∆µν,ρσ

∫
d4k

(2π)4

e ik
µ(xaµ−xbµ)

|k|2 − k2
0 + ε terms

Riccardo Sturani (IIP-UFRN) PN, Near & Far, & All That Apr 30th – GGI 3 / 27



Usefulness of PN approximation (EFT point of view) PM in short

PM at higher orders

It is a formidable task to go to higher order: complete result so far at 3PM
O(G 3

N) (2PM beyond Newtonian interaction) with “particle physics”
approach by

1 Scattering amplitude method by Bern, Cheung, Roiban, Shen, Solon PRL ’19
and partial result at 4PM by

Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng 2101.07254

2 EFT+Boundary2Bound by Kälin, Porto PRL ’20

and up to 4PM O(G 4
N) via the

3 “syncretic” TuttiFrutti method initiated by Bini, Damour, Geralico, PRL

’20

This talk is about PN approximation to 2-body motion in GR in EFT
flavour, aka Non-Relativistic General Relativity initiated by
Goldberger& Rothstein PRD ’05 (name inspired by NRQCD)
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Usefulness of PN approximation (EFT point of view) PM in short

PM gets complicated

At higher order things rapidly complicate

xa(ta)

xb(tb) xb(t ′b)

V (2PM) ⊃ G 2
Nm1m

2
2

∫
d4pe ipµ(xµa (ta)−x

µ
b

(tb)) p
αpβ

p2

∫
d4k

e ik
µ(x

µ
b

(tb)−x
µ
b

(t′b))

(p − k)2k2

= G 2
Nm1m

2
2

∫
d4pe ipµ(xµa (ta)−x

µ
b

(tb)) p
αpβ

p2
∆(pµ(x2µ(tb)− x2µ(t′b)))

These kinds of conservative diagrams computed up to 4PM order
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Usefulness of PN approximation (EFT point of view) PN-induced simplificaitons

PN simplifies: Near

Near Zone: consider |k| � k0, with
k2

0
|k|2 ∼ v2

VPN−Near =

∫
dk0

2π

d3k

(2π)3
e ik0(ta−tb) e

ik·(xa−xb)

|k|2

(
1 +

k2
0

|k|2
+ · · · 6 ε

)
k0 dependence factorizes →

∫
dk0k

2n
0 e ik0tab ∼ dn

dtn δ
(2n)(tab)

Near-Zone approximation VPM −VPN−Near under control for k2
0 < |k|2

Effects for k0 ' |k| are missed: internal gravitons going on-shell
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Usefulness of PN approximation (EFT point of view) PN-induced simplificaitons

PN Simplifies: Far

Far Zone, expand the numerator:

VPN−Far ∝
∫

d4k

(2π)4
e ik0t12

∑
n

(ik · xab)n

n

1

|k|2 − k2
0 ± iak0(A,R)

GA,R = − 1

4π

δ(t ± r)

r
G̃ ∗A,R(k0) = G̃A,R(−k0)

1 From individual world-lines to multipole expansions Qi1...in , Li1...in
with small parameter approximation k · xab ∼ v

r × r = v
2 Time-symmetric process determined by GR + GA (see later in this talk)
3 Longitudinal modes are present in Far Zone too, sourced by M,Pi , Li

Old friend of particle physicists: method of regions

Riccardo Sturani (IIP-UFRN) PN, Near & Far, & All That Apr 30th – GGI 7 / 27



Usefulness of PN approximation (EFT point of view) Near-Far Zone Graphs

Near vs. Far zone graphs (topology)

m1

m2

And 1 pt diagrams → radiation
In this talk only conservative sector
No radiation to ∞
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Usefulness of PN approximation (EFT point of view) PM=N+F

Controlling the approximation

I ≡ e ik·x

k2 − k2
0 + ε

N ≡ e ik·x

k2

∑
n≥0

(
k2

0

k2

)n

F ≡ 1

k2 − k2
0 + ε

∑
r≥0

(ik · x)r

r !

D ≡ 1

k2

∑
n,r≥0

(
k2

0

k2

)n
(ik · x)r

r !

Using scale separation v
r
< κ < 1

r
and dim. reg.:

∫
k
|k|α = 0, H : κ < k, S : k < κ

(Manohar+ PRD ’07, Jantzen JHEP ’12)∫
k

I − (N + F ) =

∫
H

(PM − N − F ) +

∫
S

(PN − N − F ) +

∫
k

D︸︷︷︸
=0

=

∫
H

I − N︸ ︷︷ ︸
=0

− (F − D)︸ ︷︷ ︸
=0

+

∫
S

I − F︸ ︷︷ ︸
=0

− (N − D)︸ ︷︷ ︸
=0
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Usefulness of PN approximation (EFT point of view) Diagram topology

Diagram topology

VPM = VPN−Near + VPN−Far

Parameter of expansion in NZ and FZ approximation are related

VPN−N ∼
GNm1m2

r

[
1 + v2 + v4 . . .

]

Q Q︸ ︷︷ ︸
∼Q̈ij

...
Q ij=0(A,R) , Im 6=0 (Feynman)

Q QM

Lowest-order non 0 FZ diag:
GNM ×

...
Q

2
ij

NZ diag expansion parameter GNMk0 ∼ v3 (Kepler’s law)
Multipole couplings: Mh00, Lh0i ,j ∼ Mv2h, Q̈hij ∼ Mv2hij
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Usefulness of PN approximation (EFT point of view) PM=Near+Far O(G2
N )

Near + Far with no mixing

3 Green’s functions remainder∫
kqp
δ(k + q + p)

(
I 3 − N3 − F 3

)
=
[∫

HHH
+
∫
SSS

+
∫
HHS

+
∫
HSH

+
∫
SHH

+
∫
HSS

]
δ(k + q + p)(I 3 − N3 − F 3 + D3︸︷︷︸∫

k D=0

)∫
HHH

δ
(
I 3 − N3 − F 3 + D3

)
=

∫
HHH

δ[I 3 − N3︸ ︷︷ ︸
=0

− (F 3 − D3)︸ ︷︷ ︸
=0

]∫
SSS

δ
(
I 3 − N3 − F 3 + D3

)
=

∫
SSS

δ[I 3 − F 3︸ ︷︷ ︸
=0

− (N3 − D3)︸ ︷︷ ︸
=0

]∫
HHS

δ
(
I 3 − N3 − F 3 + D3

)
=

∫
HHS

δ[(I 2 − N2︸ ︷︷ ︸
=0

+N2)(I − F︸ ︷︷ ︸
=0

+F )

−NN(N − D︸ ︷︷ ︸
=0

+D)− (FF − DD︸ ︷︷ ︸
=0

+DD)F + D3]

=

∫
HHS

δ (NN − DD) (F − D)∫
kqp

δ (NN − DD) (F − D) =

∫
kqp

NNF

p-dependence has been factorized apart from F (p), imaginary integral =⇒ remainder

is O(G 2
N) correction to flux, not to conservative potential QED

Riccardo Sturani (IIP-UFRN) PN, Near & Far, & All That Apr 30th – GGI 11 / 27



Near-Far Zone Interplay
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Near-Far Zone Interplay Divergences are your friends

NZ calls for FZ processes

NZ produces spurious IR divergences

x1(t1)

x2(t2) x2(t′2)

In the full theory:

V ⊃ G 2
Nm1m

2
2

∫
dt1,2,2′d

4p e ipµ(x
µ
1 (t1)−x

µ
2 (t2)) p

αpβ

p2

∫
d4k

e ik
µ(x2(t2)−x2(t′2))

(p − k)2k2

= G 2
Nm1m

2
2

∫
dt1,2,2′d

4pe ipµ(x
µ
1 (t1)−x

µ
2 (t2)) p

αpβ

p2
∆(pµ(x2(t2)− x2(t′2)))

after near/far breaking:∫
dt d3p e i~p(~x1−~x2) p

ipj

|p2|

∫
d3k

1

|k|2|p− k|2

(
1 + . . .+

ω4

|k|4 + . . .

)
=

∫
dt d3pe i~p·~x12

pipj

|p|3

1 + . . .+
1

|p|4

(~p · ~v1)3(~p · ~v2)3 + . . .+ ~p · ~̇a1~p · ~̇a2︸ ︷︷ ︸
IR divergence
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Near-Far Zone Interplay Divergences are your friends

Divergence and finite terms

Near IR/Far UV

V ⊃ G 2M
...
Q

2
ij

(
1

εUV
+ 2 log

(
k0

µ

)
− 41

30
+ iπsgn(k0)

)
+m1m

2
2r

2ȧi1ȧ2i

(
− 1

εIR
+ log(µr) + . . .

)
+ 1↔ 2

Theory at short and large distances have compensating spurious divergences, finite
terms derived straightforwardly (S. Foffa, RS PRD ’13)
Effect G 2

NM
3v 6 → G 4

NM
5v 2 using e.o.m. (4PN)

Near zone UV divergences canceled by local counterterms:

G 2m3
a

∫
dτ (aµv̇µ + Rµνv

µvν)

S. Foffa, R. Porto, I. Rothstein, RS PRD ’19

aµ = 0 = Rµν on the equations of motion

No far zone IR divergences

FZ alone → leading UV logs in the Energy at all orders via Ren. Group flow

W. Goldberger, A. Ross PRD ’10; W. Goldberger, A. Ross, I. Rothstein PRD ’14;
L. Blanchet, S. Foffa, F. Larrouturou, RS PRD ’20
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Green’s function boundary conditions Time ordering does not matter

First emission, then absorption

Diagram with 1 full propagator

Q Q
Averaging over 1→ 2 + 2→ 1 =⇒ 1/2(GR + GA) Green’s pag. 29 of these
slides

GF =
1

2
(GA + GR)− i

2
(∆+ + ∆−)

∆±(t, x) =

∫
k

dk0

2π
θ(±k0)δ(k2

0 − k2)e−ik0t+ik·x

GF gives correct conservative result + bonus: “probability loss” (optical theorem)

Diagram with 2 full propagators

Q QM, L

Q(k0) 1
2

(
G̃R(k0)G̃R(k0) + G̃A(k0)G̃A(k0)

)
Q(−k0), using G̃F same result because

G̃ 2
F − 1

2

(
G̃ 2

R + G̃ 2
A

)
= i

2

(
G̃A + G̃R

)(
∆̃+ + ∆̃−

)
(dissipative bonus)
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Green’s function boundary conditions Time ordering matters

3 Radiative Green’s functions

With 3 full propagators

I II

Q(k01)Q(k02)Q(−k01 − k02)G̃R(k01)G̃R(k02)G̃A(−k01 − k02)
+ symmetrization not expressible in terms of product of G̃F

Diagram involves UV divergent 2-loop master integral which however
drops out when adding all polarizations: it is finite
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Up-to-date results in NRGR
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Up-to-date results in NRGR 5PN completed with NRGR

5PN X

5PN Near Zone recently computed by
J. Blümlein, A. Maier, P. Marquard, G. Schäfer PLB ’21
Computed 188533 diagrams with same master integrals as 4PN
All UV divergences vanish on e.o.m. →

BHs still looking for Love ∼ Ṙ2
µνρσ

Also results at NZ 6PN up to G 4
N Blümlein+ PLB ’21

5PN Far Zone done in S. Foffa, RS PRD ’20 (+ Erratum ’21)

Q QM, L

Tail

QQ Q

Memory

Poles at G 2
N from Far Zone known for all multipoles

(S. Foffa,RS arXiv:2103.03190)
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Up-to-date results in NRGR 5PN completed with NRGR

Far zone Self Energy results at 5PN and beyond

Real part → conservative dynamics (to be added to near zone results,
starting 4PN order)

Imaginary part matches into flux formula F ∝
...
Q

2
ij + . . .

Divergent graphs regularized in dim. reg.:
divergence (and coeff. of logarithmic term) linked to imaginary part

S5PN tail = G 2
NM

∫
dk0

2π
k6

0

[
−1

5

(
1

ε
+ log

(
k2

0/µ̄
2
)
− iπ +

41

30

)
k2

0 |Qij |2

− 1

189

(
1

ε
+ log

(
k2

0/µ̄
2
)
− iπ +

163

35

)
|Oijk |2

−16

45

(
1

ε
+ log

(
k2

0/µ̄
2
)
− iπ − 127

60

)
|Jij |2

]
S5PN Ltail =

8

15
G 2
N

∫
dt

....
Q il

...
Q jlεijkLk

S5PN memory = −
G 2
N

15

∫
dt

[
....
Q il

....
Q jlQij +

4

7

...
Q il

...
Q jl Q̈ij

]
Riccardo Sturani (IIP-UFRN) PN, Near & Far, & All That Apr 30th – GGI 20 / 27



Up-to-date results in NRGR Prospects: Diagram proliferation

Diagram proliferation at higher orders

For PN expansion it is useful to distinguish gravity polarizations, e.g. G 2
N

2 topologies
(Post-Minkowskian, GN -expansion)

23 Feynman diagrams at 4PN
(G 2v3)

∼ h00 → v0; ∼ h0i → v i ; ∼ hij → v iv j ;

However only 1 of the two topologies is intrinsically G 2
N
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Up-to-date results in NRGR Prospects: Diagram proliferation

Factorizable vs. prime diagrams

Number grows exponentially

3PN prime top prime dgrs fac 4PN prime dgrs fac

GN 1 3 0 3 0

G 2
N 1 16 3 18 23

G 3
N 5 31 22 158 54

G 4
N 12 0 8 171 146

G 5
N 25 25 25

S. Foffa, RS PRD’19

At 5PN the G 5
Nv

2 sector has 40 prime topologies (∼ 700 prime diagrams)
and 1232 fac. diags
Effective action does not efficiently store perturbative GN information
NRGR can help tackling the high n Gn

Nv
0,2 side (orthogonal to PM)
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Up-to-date results in NRGR Prospects: Diagram proliferation

Factorizable diagrams at G 6 5PN

5PN G 6 static sector has 0 prime toplgs and 154 fac dgrs
Static sectors at 2n + 1-PN order have no prime sector:

impossible to build prime digrs with 2n + 1 m(ass) insertions and m-φ and φ2σ vertices

Foffa, Mastrolia, RS, Sturm, W. Torres Bobadilla, PRL ’19

1PN( )2

3PN( )4

+

( )
×

( )
5PN

+

( )6

+

( )3

×

( )
+

×

(
26 · · ·

50

)
+

( )2
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Up-to-date results in NRGR Prospects: Diagram proliferation

Factorizable diagrams at G 5 5PN

At G 5v2:

( )5

+ ×
( )3

+
(
31G 3

Nprime dgrs
)
×

(
+

( )2
)

+
(
171G 4

Nv
2prime dgrs

)
×
( )2

They amount to 1232 out of 1907 G 5v2 diagrams

Foffa, RS. W. J. Torres Bobadilla, JHEP ’20 in agreement with subset of full 5PN by

BMMS PLB ’21
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Conclusions & prospects I/II

Take home message

PN approximation breaks difficult integrals into simpler ones

This introduces some spurious divergences UV/IR divergences, which
allow non-trivial sanity checks of the calculation, now available at all
PN order at O(G 2

N) (but be careful with GN off-shell → on-shell
power counting)

Near zone UV divergences are short-distance singularities absorbable
by counterterms vanishing on the e.o.m. up to at least 5PN included

Going to higher order one has to face two kinds of problem:

1 diagram proliferation
2 solving new master integrals possibly at G 6v2, very likely at G 7

N (6PN)
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Conclusions & prospects II/II

Summary of 2 body dynamics expansions (spin-less)

Post-Minkowskian expansion parameter is GNM/r , vs PN expansion

L = −Mc2 +
µv2

2
+

GMµ

r
+

1

c2
[. . .] +

1

c4
[. . .]

Terms known so far

N 1PN 2PN 3PN 4PN 5PN 6PN . . .
0PM 1 v2 v4 v6 v8 v10 v12 v14 . . .
1PM 1/r v2/r v4/r v6/r v8/r v10/r v12/r . . .
2PM 1/r2 v2/r2 v4/r2 v6/r2 v8/r2 v10/r3 . . .
3PM 1/r3 v2/r3 v4/r3 v6/r3 v8/r4 . . .
4PM 1/r4 v2/r4 v4/r4 v6/r5 . . .
5PM 1/r5 v2/r5 v4/r5 . . .
6PM 1/r6 v2/r6 . . .
7PM 1/r7 . . .
. . . . . .
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Spare slides

Spare slides
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Spare slides Green’s Function table

Green’s function

GF = −i [θ(t)∆+ + Θ(−t)∆−]
GR = −iθ(t) [∆+ −∆−]
GA = iθ(−t) [∆+ −∆−]

GH =
1

2
[∆+ −∆−]

GR − GA = −i [∆+ −∆−]
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Spare slides EFT marries Amplitude

EFT and amplitude: tale of a happy marriage

The other obstruction to scalability of the NRGR PN calculation program
is the computation of master integrals
E.g. in the static 4PN sector (i.e. G 5

N) one meets

= −i (8πGN)5
(

(d−2)
(d−1)

m1m2

)3 ︸ ︷︷ ︸∫
k1,2,3,4

N50
k2

1
k2

2
k2

3
k2

4
k2

12
k2

34
k̂2

24
p2

13
p̂2

14

= c1 +c2 +c3

+c4 +c5

in terms of 4-loop self-energy diagrams in gauge theory
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Spare slides EFT marries Amplitude

Reduction in terms of master integrals

No new master integrals at 5PN, 4PN ones did it all

Foffa, Mastrolia, RS, Sturm ’17

=

e2εγE

s2−2ε (4π)4+2ε

{
1

2ε2
− 1

2ε
− 4 +

π2

24

−ε
[

9− π2

(
13

8
− log 2

)
− 77

6
ζ3

]
+O

(
ε2
)}

Numerical result obtained via Summertime by Lee& Mingulov
analytic result via PSLQ algorithm, fitting trascendentals to numerical result

Confirmed up to O(ε0) by Damour, Jaranowski ’18
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Spare slides Far zone double copy

Double copy for EFT

Master integrals have to do with denominators, however numerators can be simplified
too by writing AGR = A2

YM

Bern, Carrasco, Johansson PRD ’08

On-shell three vertices can be mapped:

gauge theory → gravity theory

gf abc
(
ηµν (k1 − k2)ρ + cyclic

)
→

√
GN

(
ηµν (k1 − k2)ρ + cyclic

)
×
(
ηµν (k1 − k2)ρ + cyclic

)
color factors → kinematic numerator
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Spare slides Far zone double copy

Double Copy of Far-Zone amplitudes

Q Q Q QM

also doubling of world-line vertex diF0i → IijEij , µiFij → JijBij

Verified for both electric and magnetic multipoles at NLO in GN

Goldberger, Ridgway ’18, Shen ’18, Almeida, RS, Foffa JHEP ’20

Yet to be verified derivation how YM→ GR mapping propagates from “microscopic

physics” to multipoles
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Spare slides Far zone double copy

Double Copy Far-Zone continued

LO

Q Q

(k0, k)

NLO

Q QM
(ω, ~k)

(ω, ~k) (0, ~q)

Electric Self-Energy

1 LO: I iji1...ir (ω)Q iji1...ir (−ω)
ki1 ...kir kk1

...kkr
k2−ω2

(
ω2δik − kikk

) (
ω2δjl − kjkl

)
2 NLO: I iji1...ir (ω)I iji1...ir (−ω)

ki1 ...kir kk1
...kkr

(k2−ω2)((k+q)2−ω2)q2 k
2
0

×
(
ω2δik − (k + q)ikk + qiqk

) (
ω2δjl − (k + q)jql + qjql

)
analogously for the magnetic self-Energy at LO and NLO

Gravity+dilaton+anti-symmetric tensor amplitude matches gauge2
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All leading logs in Ecirc(x)

Ecirc = −Mν

2
x

(
1 +

16νx2

15βI

[(
1 + 24βI x

3 log x
)
x4βI x

3

− 1
])

βI = −214

105

In PN approximation Log terms arise from tail processes at 4PN order, non-local
(but causal) effective term in conservative dynamics (x ∼ v 2 ∼ Gm/r ≡ γ):

Q QM

L =
Mν

2
v 2 + . . .+

2G 2M

5

...
Q ij(t)

∫
dτ log(τ)

....
Q ij(t − τ) . . .

→ Ecirc = −Mνx

2

(
1 + . . .+

448

15
νx5 log x + . . .

)
which turns local on circular orbits

Expansion in GMω = GM
r
× rω ∼ v 3:

Q Q Q QM Q QM M Q QMMM

LO tail: Blanchet, Damour PRD (’88)
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Leading Logs at all orders

Real
part
E :

Imaginary
dE

dt
:

Self-E∼
(Q̈)(

...
Q) ∼ 0

Q Q

LO flux

tail1 ∼
GM(

...
Q)2 log t

x4 log x

Q QM

tail1 ∼ πx3/2

tail2 ∼
(GM)2(

...
Q)(

....
Q ) log

∼ (GM)2(
...
Q)(

....
Q )

x11/2

Q QM M

tail2 ∼ x3log(x)

tail3 ∼
(GM)3

(
log + log2

)
×

(
....
Q )(

....
Q )

x7(log x + log2 x)

Q QMMM

tail3 ∼?× x9/2

Other insertions possible:
M → Q, L

but do not contribute to leading E-logs: ν2x3n+1 logn x from tail2n−1

Renormalization group enables to compute all leading logs: E-logs formula extends logs
in E(x) at O(ν) from self-force expanded up to 22 PN in Kavanagh-Ottewill-Wardell
PRD 92 (2015)
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Far UV divergences

Suppose one had the Far zone theory only: the UV divergence is not compensated by
the NZ but it can be renormalized:

drop the divergence (absorb it with a local counterterm)

impose µ−independence Goldberger, Ross, Rothstein PRD ’14

dLtail

d logµ
= 0 =⇒ dM

d logµ
= −2G 2M

5

(
2Q

(1)
ij Q(5) − 2Q

(2)
ij Q

(4)
ij +

(
Q

(3)
ij

)2
)

which can be solved by short-circuiting with analog equation for
dQij

d logµ
=

214

105
(GM)2 Q̈ij(t, µ)

Goldberger, Ross PRD ’09
(see also Anderson+ ’82!)
Adding analogous formula for J (Bernard, Blanchet, Faye, Marchand, Phys. Rev. D97
(2018)) and taking orbital average:

M(µ) = M(µ0)−MG 2
∑
n≥1

(2 log(µ/µ0))n

n!

(
βIG

2M2
)n−1

〈Q(n+2)
ij Q

(n+2)
ij 〉

L(µ) = L(µ0)− 12MG 2

5

∑
n≥1

(2 log(µ/µ0))n

n!

(
βIG

2M2
)n−1

〈Q(n+1)
ij Q

(n+2)
ij 〉

Riccardo Sturani (IIP-UFRN) PN, Near & Far, & All That Apr 30th – GGI 37 / 27



Spare slides Re-summing Logs

Not quite there for Ecirc : need for dE = ωdL

Using Qij(M, µ) one has (leading log part of) M(M0, v , γ), L(L0, v , γ),
adding dE = ωdL one can compute r(v) on circular orbits:
Energy(r , v)→ Ecirc(x) (x ≡ (GMω)2/3)

γ ≡ GM

r
= x

1 +
32ν

15

∑
n≥1

3n − 7

n!
(4βI )

n−1 x3n+1 (log x)n



E = −mνx

2

1 +
64ν

15

∑
n≥1

6n + 1

n!
(4βI )

n−1 x3n+1 (log x)n


J =

m2ν√
x

1− 64ν

15

∑
n≥1

3n + 2

n!
(4βI )

n−1 x3n+1 (log x)n


Remarkably E (x) agrees 22PN order x3n+1 (log x)n (up to n = 7),

expanded self-force result by Kavanagh, Ottewill, Wardell, PRD (2015)
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