Post-Newtonian, Near and Far zone & All That

Riccardo Sturani

International Institute of Physics - UFRN - Natal (Brazil)

S. Foffa, RS arXiv:2103.03190, submitted to PRD S. Foffa, RS, arXiv:1907.02869 PRD (2020)

Apr 30th, 2021 Gravitational scattering, inspiral, and radiation - GGI

PN, Near & Far, & All That

Usefulness of PN approximation (EFT point of view)

PN, Near & Far, & All That

Apr 30th - GGI 2 / 27

Outline

Usefulness of PN approximation (EFT point of view)

- 2 Near-Far Zone Interplay
- 3 Green's function boundary conditions
- 4 Up-to-date results in NRGR
- 5 Conclusions & prospects

(日) (四) (日) (日) (日)

1PM potential

Out of different ways of computing 2-body Post-Minkowskian expansion e.g. 1PM $O(G_N^1)$ potential gravity coupled to particle world-lines:

$$V_{PM}^{(1)}(x_a^{\mu} - x_b^{\mu}) = G_N T_{\mu\nu}^a T_{\rho\sigma}^b \Delta^{\mu\nu,\rho\sigma} \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik^{\mu}(x_{a\mu} - x_{b\mu})}}{|\mathbf{k}|^2 - k_0^2 + \epsilon \text{ terms}}$$

< □ > < 同 > < 三 > < 三 >

PM at higher orders

It is a formidable task to go to higher order: complete result so far at 3PM $O(G_N^3)$ (2PM beyond Newtonian interaction) with "particle physics" approach by

 Scattering amplitude method by Bern, Cheung, Roiban, Shen, Solon PRL '19 and partial result at 4PM by

Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng 2101.07254

EFT+Boundary2Bound by Kälin, Porto PRL '20

and up to 4PM $O(G_N^4)$ via the

(a) "syncretic" TuttiFrutti method initiated by Bini, Damour, Geralico, PRL '20

This talk is about PN approximation to 2-body motion in GR in EFT flavour, aka Non-Relativistic General Relativity initiated by Goldberger& Rothstein PRD '05 (name inspired by NRQCD)

イロト 不得 トイラト イラト 一日

PM gets complicated

These kinds of conservative diagrams computed up to 4PM order

Riccardo Sturani (IIP-UFRN)

PN, Near & Far, & All That

PN simplifies: Near

• Near Zone: consider $|{\bf k}| \gg k_0$, with ${k_0^2 \over |{\bf k}|^2} \sim v^2$

$$V_{PN-Near} = \int \frac{dk_0}{2\pi} \frac{d^3k}{(2\pi)^3} e^{ik_0(t_a - t_b)} \frac{e^{i\mathbf{k} \cdot (\mathbf{x}_a - \mathbf{x}_b)}}{|\mathbf{k}|^2} \left(1 + \frac{k_0^2}{|\mathbf{k}|^2} + \cdots \not\in\right)$$

 k_0 dependence factorizes $\rightarrow \int dk_0 k_0^{2n} e^{ik_0 t_{ab}} \sim \frac{d^n}{dt^n} \delta^{(2n)}(t_{ab})$ Near-Zone approximation $V_{PM} - V_{PN-Near}$ under control for $k_0^2 < |\mathbf{k}|^2$ Effects for $k_0 \simeq |\mathbf{k}|$ are missed: internal gravitons going on-shell

PN, Near & Far, & All That

< □ > < □ > < □ > < □ > < □ > < □ >

PN Simplifies: Far

• Far Zone, expand the numerator:

$$V_{PN-Far} \propto \int \frac{d^4k}{(2\pi)^4} e^{ik_0 t_{12}} \sum_n \frac{(i\mathbf{k} \cdot \mathbf{x}_{ab})^n}{n} \frac{1}{|\mathbf{k}|^2 - k_0^2 \pm iak_0(A, R)}$$

 $G_{A,R} = -\frac{1}{4\pi} \frac{\delta(t \pm r)}{r} \qquad ilde{G}^*_{A,R}(k_0) = ilde{G}_{A,R}(-k_0)$

• From individual world-lines to multipole expansions $Q_{i_1...i_n}$, $L_{i_1...i_n}$ with small parameter approximation $\mathbf{k} \cdot \mathbf{x}_{ab} \sim \frac{\mathbf{v}}{\mathbf{r}} \times \mathbf{r} = \mathbf{v}$

- 2 Time-symmetric process determined by $G_R + G_A$ (see later in this talk)
- Solution Longitudinal modes are present in Far Zone too, sourced by M, P_i, L_i
- Old friend of particle physicists: method of regions

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Near vs. Far zone graphs (topology)

PN, Near & Far, & All That

Controlling the approximation

$$I \equiv \frac{e^{i\mathbf{k}\cdot\mathbf{x}}}{\mathbf{k}^2 - k_0^2 + \epsilon}$$

$$N \equiv \frac{e^{i\mathbf{k}\cdot\mathbf{x}}}{\mathbf{k}^2} \sum_{n\geq 0}^{\infty} \left(\frac{k_0^2}{\mathbf{k}^2}\right)^n$$

$$F \equiv \frac{1}{\mathbf{k}^2 - k_0^2 + \epsilon} \sum_{r\geq 0}^{\infty} \frac{(i\mathbf{k}\cdot\mathbf{x})^r}{r!}$$

$$D \equiv \frac{1}{\mathbf{k}^2} \sum_{n,r\geq 0}^{\infty} \left(\frac{k_0^2}{\mathbf{k}^2}\right)^n \frac{(i\mathbf{k}\cdot\mathbf{x})^r}{r!}$$

Using scale separation $\frac{v}{r} < \kappa < \frac{1}{r}$ and dim. reg.: $\int_{\mathbf{k}} |\mathbf{k}|^{\alpha} = 0$, $H : \kappa < k$, $S : k < \kappa$ (Manohar+ PRD '07, Jantzen JHEP '12)

$$\int_{k} I - (N + F) = \int_{H} (PM - N - F) + \int_{S} (PN - N - F) + \underbrace{\int_{k} D}_{=0}$$
$$= \int_{H} \left[\underbrace{I - N}_{=0} - \underbrace{(F - D)}_{=0} \right] + \int_{S} \left[\underbrace{I - F}_{=0} - \underbrace{(N - D)}_{=0} \right]$$

PN, Near & Far, & All That

Riccardo Sturani (IIP-UFRN)

9 / 27

Apr 30th - GGI

Diagram topology

Diagram topology

•
$$V_{PM} = V_{PN-Near} + V_{PN-Far}$$

• Parameter of expansion in NZ and FZ approximation are related

Near + Far with no mixing

Outline

Usefulness of PN approximation (EFT point of view)

2 Near-Far Zone Interplay

Green's function boundary conditions

4 Up-to-date results in NRGR

5 Conclusions & prospects

(日) (四) (日) (日) (日)

NZ calls for FZ processes

NZ produces spurious IR divergences

In the full theory:

$$V \supset G_N^2 m_1 m_2^2 \int dt_{1,2,2'} d^4 p \, e^{i p_\mu (x_1^\mu(t_1) - x_2^\mu(t_2))} \frac{p^\alpha p^\beta}{p^2} \int d^4 k \frac{e^{i k^\mu (x_2(t_2) - x_2(t_2'))}}{(p - k)^2 k^2} \\ = G_N^2 m_1 m_2^2 \int dt_{1,2,2'} d^4 p e^{i p_\mu (x_1^\mu(t_1) - x_2^\mu(t_2))} \frac{p^\alpha p^\beta}{p^2} \Delta (p^\mu (x_2(t_2) - x_2(t_2')))$$

after near/far breaking:

$$\int dt \, d^3 p \, e^{i\vec{p}(\vec{x}_1 - \vec{x}_2)} \frac{p^i p^j}{|\mathbf{p}^2|} \int d^3 k \frac{1}{|\mathbf{k}|^2 |\mathbf{p} - \mathbf{k}|^2} \left(1 + \dots + \frac{\omega^4}{|\mathbf{k}|^4} + \dots \right)$$

= $\int dt \, d^3 p e^{i\vec{p}\cdot\vec{x}_{12}} \frac{p^i p^j}{|\mathbf{p}|^3} \left\{ 1 + \dots + \frac{1}{|\mathbf{p}|^4} \left[(\vec{p} \cdot \vec{v}_1)^3 (\vec{p} \cdot \vec{v}_2)^3 + \dots + \underbrace{\vec{p} \cdot \vec{a}_1 \vec{p} \cdot \vec{a}_2}_{IR \ divergence} \right] \right\}$

Riccardo Sturani (IIP-UFRN)

PN, Near & Far, & All That

Divergence and finite terms

Near IR/Far UV

$$V \supset G^2 M \widetilde{Q}_{ij}^2 \left(\frac{1}{\epsilon_{UV}} + 2\log\left(\frac{k_0}{\mu}\right) - \frac{41}{30} + \frac{i\pi sgn(k_0)}{i\pi sgn(k_0)} \right) \\ + m_1 m_2^2 r^2 \dot{a}_1^j \dot{a}_{2i} \left(-\frac{1}{\epsilon_{IR}} + \log(\mu r) + \dots \right) + 1 \leftrightarrow 2$$

Theory at short and large distances have compensating spurious divergences, finite terms derived straightforwardly (S. Foffa, RS PRD '13) Effect $G_N^2 M^3 v^6 \rightarrow G_N^4 M^5 v^2$ using e.o.m. (4PN)

• Near zone UV divergences canceled by local counterterms:

$$G^2 m_a^3 \int d\tau \left(a^\mu \dot{v}_\mu + R_{\mu\nu} v^\mu v^\nu\right)$$

S. Foffa, R. Porto, I. Rothstein, RS PRD '19

 $a^\mu=0=R_{\mu
u}$ on the equations of motion

- No far zone IR divergences
- FZ alone → leading UV logs in the Energy at all orders via Ren. Group flow
 W. Goldberger, A. Ross PRD '10; W. Goldberger, A. Ross, I. Rothstein PRD '14;
 L. Blanchet, S. Foffa, F. Larrouturou, RS PRD '20

Riccardo Sturani (IIP-UFRN)

PN, Near & Far, & All That

Apr 30th – GGI 14 / 27

Outline

2 Near-Far Zone Interplay

4 Up-to-date results in NRGR

5) Conclusions & prospects

(日) (四) (日) (日) (日)

First emission, then absorption

• Diagram with 1 full propagator

Averaging over $1 \rightarrow 2 + 2 \rightarrow 1 \implies 1/2(G_R + G_A)$ Green's pag. 29 of these slides

$$G_F = \frac{1}{2} (G_A + G_R) - \frac{i}{2} (\Delta_+ + \Delta_-)$$

$$\Delta_{\pm}(t, \mathbf{x}) = \int_k \frac{dk_0}{2\pi} \theta(\pm k_0) \delta(k_0^2 - \mathbf{k}^2) e^{-ik_0 t + i\mathbf{k} \cdot \mathbf{x}}$$

 G_F gives correct conservative result + bonus: "probability loss" (optical theorem)

Diagram with 2 full propagators

 $Q(k_0)\frac{1}{2}\left(\tilde{G}_R(k_0)\tilde{G}_R(k_0) + \tilde{G}_A(k_0)\tilde{G}_A(k_0)\right)Q(-k_0), \text{ using } \tilde{G}_F \text{ same result because}$ $\tilde{G}_F^2 - \frac{1}{2}\left(\tilde{G}_R^2 + \tilde{G}_A^2\right) = \frac{i}{2}\left(\tilde{G}_A + \tilde{G}_R\right)\left(\tilde{\Delta}_+ + \tilde{\Delta}_-\right) \text{ (dissipative bonus)} \quad \text{ and } \tilde{G}_F \text{ same result because}$ Riccardo Sturani (IIP-UFRN)
PN, Near & Far, & All That
Apr 30th - GGI
16/27

3 Radiative Green's functions

• With 3 full propagators

 $Q(k_{01})Q(k_{02})Q(-k_{01}-k_{02})\tilde{G}_R(k_{01})\tilde{G}_R(k_{02})\tilde{G}_A(-k_{01}-k_{02})$ + symmetrization not expressible in terms of product of \tilde{G}_F Diagram involves UV divergent 2-loop master integral which however drops out when adding all polarizations: it is finite

PN, Near & Far, & All That

Outline

- Usefulness of PN approximation (EFT point of view)
- 2 Near-Far Zone Interplay
- Green's function boundary conditions
- 4 Up-to-date results in NRGR
- 5 Conclusions & prospects

(日) (四) (日) (日) (日)

5PN √

Poles at G_N^2 from Far Zone known for all multipoles

(S. Foffa,RS arXiv:2103.03190)

Far zone Self Energy results at 5PN and beyond

Real part \rightarrow conservative dynamics (to be added to near zone results, starting 4PN order)

Imaginary part matches into flux formula $F \propto \widetilde{Q}_{ii}^2 + \dots$ Divergent graphs regularized in dim. reg.:

divergence (and coeff. of logarithmic term) linked to imaginary part

$$S_{5PN \ tail} = G_N^2 M \int \frac{dk_0}{2\pi} k_0^6 \left[-\frac{1}{5} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi + \frac{41}{30} \right) k_0^2 |Q_{ij} - \frac{1}{189} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi + \frac{163}{35} \right) |O_{ijk}|^2 - \frac{16}{45} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi - \frac{127}{60} \right) |J_{ij}|^2 \right]$$

$$S_{5PN \ Ltail} = \frac{8}{15} G_N^2 \int dt \ Q_{il} Q_{jl} \epsilon_{ijk} L_k$$

$$PN \ memory = -\frac{G_N^2}{15} \int dt \left[\begin{array}{c} \Box & \Box & \Box \\ Q_{il} & Q_{jl} Q_{ij} + \frac{4}{7} \ Q_{il} & Q_{jl} Q_{ij} \end{array} \right]$$

$$Extract Sturani \ (IIP-UERN) \qquad PN, Near \& Ear, \& \text{All That} \qquad \text{Apr 30th - GGl} \qquad 20/27$$

Riccardo Sturani (IIP-UFRN)

Sъ

Diagram proliferation at higher orders

However only 1 of the two topologies is intrinsically G_N^2

< □ > < 同 > < 回 > < 回 > < 回 >

Factorizable vs. prime diagrams

Number grows exponentially

3PN	prime top	prime dgrs	fac	4PN	prime dgrs	fac
G _N	1	3	0		3	0
G_N^2	1	16	3		18	23
G_N^3	5	31	22		158	54
G_N^4	12	0	8		171	146
G_N^5				25	25	25

S. Foffa, RS PRD'19

At 5PN the $G_N^5 v^2$ sector has 40 prime topologies (~ 700 prime diagrams) and 1232 fac. diags Effective action does not efficiently store perturbative G_N information NRGR can help tackling the high $n G_N^n v^{0,2}$ side (orthogonal to PM)

Riccardo Sturani (IIP-UFRN)

PN, Near & Far, & All That

Factorizable diagrams at G^6 5PN

5PN G^6 static sector has 0 prime toplgs and 154 fac dgrs Static sectors at 2n + 1-PN order have no prime sector:

impossible to build prime digrs with 2n+1 m(ass) insertions and m- ϕ and $\phi^2\sigma$ vertices

Factorizable diagrams at G^5 5PN

Foffa, RS. W. J. Torres Bobadilla, JHEP '20 in agreement with subset of full 5PN by BMMS PLB '21

Outline

- Usefulness of PN approximation (EFT point of view)
- 2 Near-Far Zone Interplay
- 3 Green's function boundary conditions
- 4 Up-to-date results in NRGR

(日) (四) (日) (日) (日)

Take home message

- PN approximation breaks difficult integrals into simpler ones
- This introduces some spurious divergences UV/IR divergences, which allow non-trivial sanity checks of the calculation, now available at all PN order at $O(G_N^2)$ (but be careful with G_N off-shell \rightarrow on-shell power counting)
- Near zone UV divergences are short-distance singularities absorbable by counterterms vanishing on the e.o.m. up to at least 5PN included
- Going to higher order one has to face two kinds of problem:
 - I diagram proliferation
 - 2 solving new master integrals possibly at G^6v^2 , very likely at G_N^7 (6PN)

< □ > < □ > < □ > < □ > < □ > < □ >

Summary of 2 body dynamics expansions (spin-less)

Post-Minkowskian expansion parameter is $G_N M/r$, vs PN expansion

$$\mathcal{L} = -Mc^2 + rac{\mu v^2}{2} + rac{GM\mu}{r} + rac{1}{c^2} [\ldots] + rac{1}{c^4} [\ldots]$$

Terms known so far

		Ν	1PN	2PN	3PN	4PN	5PN	6PN	
0PM	1	v^2	v^4	v ⁶	v ⁸	v^{10}	v^{12}	v^{14}	
1PM		1/r	v^2/r	v^4/r	v^6/r	v ⁸ /r	v ¹⁰ /r	v^{12}/r	
2PM			$1/r^{2}$	v^{2}/r^{2}	v^{4}/r^{2}	v^{6}/r^{2}	v^{8}/r^{2}	v^{10}/r^{3}	
3PM				$1/r^{3}$	v^{2}/r^{3}	v^{4}/r^{3}	v^{6}/r^{3}	v^{8}/r^{4}	
4PM					$1/r^{4}$	v^{2}/r^{4}	v^{4}/r^{4}	v^{6}/r^{5}	
5PM						$1/r^{5}$	v^{2}/r^{5}	v^{4}/r^{5}	
6PM							$1/r^{6}$	v^{2}/r^{6}	
7PM								$1/r^{7}$	

< □ > < □ > < □ > < □ > < □ > < □ >

Spare slides

Riccardo Sturani (IIP-UFRN)

PN, Near & Far, & All That

Apr 30th – GGI 28 / 27

- 2

<ロト <問ト < 目と < 目と

Green's function

$$G_F = -i \left[\theta(t) \Delta_+ + \Theta(-t) \Delta_- \right]$$

$$G_R = -i \theta(t) \left[\Delta_+ - \Delta_- \right]$$

$$G_A = i \theta(-t) \left[\Delta_+ - \Delta_- \right]$$

$$G_H = \frac{1}{2} \left[\Delta_+ - \Delta_- \right]$$

$$G_R - G_A = -i \left[\Delta_+ - \Delta_- \right]$$

Riccardo Sturani (IIP-UFRN)

PN, Near & Far, & All That

Apr 30th – GGI 29 / 27

- 2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

EFT and amplitude: tale of a happy marriage

The other obstruction to scalability of the NRGR PN calculation program is the computation of master integrals E.g. in the static 4PN sector (i.e. G_N^5) one meets

PN, Near & Far, & All That

Apr 30th - GGI 30 / 27

Reduction in terms of master integrals

No new master integrals at 5PN, 4PN ones did it all

Foffa, Mastrolia, RS, Sturm '17

$$- \underbrace{e^{2\varepsilon\gamma_{E}}}_{\varepsilon^{2-2\varepsilon} (4\pi)^{4+2\varepsilon}} \left\{ \frac{1}{2\varepsilon^{2}} - \frac{1}{2\varepsilon} - 4 + \frac{\pi^{2}}{24} - \varepsilon \left[9 - \pi^{2} \left(\frac{13}{8} - \log 2 \right) - \frac{77}{6} \zeta_{3} \right] + \mathcal{O} \left(\varepsilon^{2} \right) \right\}$$

Numerical result obtained via Summertime by Lee& Mingulov analytic result via PSLQ algorithm, fitting trascendentals to numerical result

Confirmed up to $O(\varepsilon^0)$ by Damour, Jaranowski '18

< □ > < 同 > < 回 > < 回 > < 回 >

Double copy for EFT

Master integrals have to do with denominators, however numerators can be simplified too by writing $A_{GR} = A_{YM}^2$

Bern, Carrasco, Johansson PRD '08

On-shell three vertices can be mapped:

PN, Near & Far, & All That

Apr 30th – GGI 32 / 27

Double Copy of Far-Zone amplitudes

Goldberger, Ridgway '18, Shen '18, Almeida, RS, Foffa JHEP '20

Yet to be verified derivation how YM \rightarrow GR mapping propagates from "microscopic physics" to multipoles

Double Copy Far-Zone continued

Electric Self-Energy

LO: $I^{iji_1...i_r}(\omega)Q^{iji_1...i_r}(-\omega)\frac{k_{i_1}...k_{i_r}k_{k_1}...k_{k_r}}{k^2-\omega^2} \left(\omega^2\delta_{ik}-k_ik_k\right) \left(\omega^2\delta jl-k_jk_l\right)$ NLO: $I^{iji_1...i_r}(\omega)I^{iji_1...i_r}(-\omega)\frac{k_{i_1}...k_{i_r}k_{k_1}...k_{k_r}}{(k^2-\omega^2)((k+q)^2-\omega^2)q^2}k_0^2$ $\times \left(\omega^2\delta_{ik}-(k+q)_ik_k+q_iq_k\right) \left(\omega^2\delta_{jl}-(k+q)_jq_l+q_jq_l\right)$

analogously for the magnetic self-Energy at LO and NLO

Gravity+dilaton+anti-symmetric tensor amplitude matches gauge²

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

All leading logs in $E_{circ}(x)$

$$E_{circ} = -\frac{M\nu}{2} x \left(1 + \frac{16\nu x^2}{15\beta_l} \left[\left(1 + 24\beta_l x^3 \log x \right) x^{4\beta_l x^3} - 1 \right] \right) \qquad \beta_l = -\frac{214}{105}$$

 In PN approximation Log terms arise from tail processes at 4PN order, non-local (but causal) effective term in conservative dynamics (x ~ v² ~ Gm/r ≡ γ):

$$\mathcal{L} = \frac{M\nu}{2}v^2 + \ldots + \frac{2G^2M}{5}\ddot{Q}_{ij}(t)\int d\tau \log(\tau)\ddot{Q}_{ij}(t-\tau)\ldots$$
$$\rightarrow E_{circ} = -\frac{M\nu x}{2}\left(1 + \ldots + \frac{448}{15}\nu x^5\log x + \ldots\right)$$

which turns local on circular orbits

• Expansion in $GM\omega = \frac{GM}{r} \times r\omega \sim v^3$:

LO tail: Blanchet, Damour PRD ('88)

PN, Near & Far, & All That

Re-summing Logs

Leading Logs at all orders

Renormalization group enables to compute all leading logs: E-logs formula extends logs in E(x) at $O(\nu)$ from self-force expanded up to 22 PN in Kavanagh-Ottewill-Wardell PRD 92 (2015)

Far UV divergences

Suppose one had the Far zone theory only: the UV divergence is not compensated by the NZ but it can be renormalized:

- drop the divergence (absorb it with a local counterterm)
- impose μ -independence Goldberger, Ross, Rothstein PRD '14

$$\frac{d\mathcal{L}_{tail}}{d\log\mu} = 0 \implies \frac{dM}{d\log\mu} = -\frac{2G^2M}{5} \left(2Q_{ij}^{(1)}Q^{(5)} - 2Q_{ij}^{(2)}Q_{ij}^{(4)} + \left(Q_{ij}^{(3)}\right)^2 \right)$$

which can be solved by short-circuiting with analog equation for

$$\frac{dQ_{ij}}{d\log\mu} = \frac{214}{105} (GM)^2 \ddot{Q}_{ij}(t,\mu)$$
Goldberger, Ross PRD '09
(see also Anderson+ '82!)

Adding analogous formula for J (Bernard, Blanchet, Faye, Marchand, Phys. Rev. D97 (2018)) and taking orbital average:

$$\begin{split} \mathcal{M}(\mu) &= \mathcal{M}(\mu_0) - \mathcal{M}G^2 \sum_{n \ge 1} \frac{(2\log(\mu/\mu_0))^n}{n!} \left(\beta_I G^2 \mathcal{M}^2\right)^{n-1} \langle Q_{ij}^{(n+2)} Q_{ij}^{(n+2)} \rangle \\ \mathcal{L}(\mu) &= \mathcal{L}(\mu_0) - \frac{12\mathcal{M}G^2}{5} \sum_{n \ge 1} \frac{(2\log(\mu/\mu_0))^n}{n!} \left(\beta_I G^2 \mathcal{M}^2\right)^{n-1} \langle Q_{ij}^{(n+1)} Q_{ij}^{(n+2)} \rangle \end{split}$$

Goldbe

Not quite there for E_{circ} : need for $dE = \omega dL$

Using $Q_{ij}(M,\mu)$ one has (leading log part of) $M(M_0, v, \gamma)$, $L(L_0, v, \gamma)$, adding $dE = \omega dL$ one can compute r(v) on circular orbits: $Energy(r, v) \rightarrow E_{circ}(x) \ (x \equiv (GM\omega)^{2/3})$

$$\gamma \equiv \frac{GM}{r} = x \left[1 + \frac{32\nu}{15} \sum_{n \ge 1} \frac{3n - 7}{n!} \left(4\beta_l \right)^{n-1} x^{3n+1} \left(\log x \right)^n \right]$$

$$E = -\frac{m\nu x}{2} \left[1 + \frac{64\nu}{15} \sum_{n \ge 1} \frac{6n+1}{n!} (4\beta_l)^{n-1} x^{3n+1} (\log x)^n \right]$$
$$J = \frac{m^2 \nu}{\sqrt{x}} \left[1 - \frac{64\nu}{15} \sum_{n \ge 1} \frac{3n+2}{n!} (4\beta_l)^{n-1} x^{3n+1} (\log x)^n \right]$$

Remarkably E(x) agrees 22PN order $x^{3n+1} (\log x)^n$ (up to n = 7), expanded self-force result by Kavanagh, Ottewill, Wardell, PRD (2015)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >