Thermal Field Theory and Cosmology

Phase transitions in particle physics, GGI Firenze, March 292022

Rates in the early universe

- Over the long thermal history, many phenomena enter and / or leave equilibrium
- DM candidates
- Mechanisms for baryogenesis
- Thermal relics
- governed by rates (production, equilibration, interaction, nucleation...) competing with the Hubble rate

In this talk

- Thermodynamics: phase transitions, the Hubble rate itself,...
- Defining and computing (some of) these rates using modern Thermal Field Theory (TFT) techniques
- Slowly-varying modes over a fast background
- Massless states: the example of gravitational waves
- Massive states: the example of right-handed neutrinos and NLO corrections

Thermodynamics and phase transitions

Thermodynamics

- The Hubble rate is proportional to the energy density

$$
H=\sqrt{\frac{8 \pi e}{3 m_{\mathrm{Pl}}^{2}}} \sim \frac{T^{2}}{m_{\mathrm{Pl}}}
$$

- Many "transitions" in the SM
- How to compute them? And why are they so interesting?
- A short tale of phase transitions and gravitational waves

Hindmarsh 2008.09136
Laine Meyer (2015)

Baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium

Electroweak baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium

Electroweak baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium
- Feynman rules always conserve B, but sphaleron processes violate B (and conserve B-L) Non-perturbative solutions, in equilibrium at $T>T_{\mathrm{EW}}$, exponentially suppressed below. Decouple at $T \sim 130$ GeV D'Onofrio Rummukainen Tranberg PRL113 (2014)

Electroweak baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium
- The CKM phase violates CP

Electroweak baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium
- The CKM phase violates CP

- A strong first order phase transition is needed. Sphaleron rate suppressed in bubbles of the broken phase nucleating within the symmetric phase
- Bubble dynamics would also create a gravitational wave signature, potentially observable by LISA

Electroweak baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium
- Not enough CP violation in the SM
- No phase transition in the SM for $M_{H}>72 \mathrm{GeV}$, but crossover Gurtler Hilgenfritz Schiller, Laine Rummukainen, Csidor Fodor Heitger (1997-99)
- Both issues can be addressed in many BSM models

Electroweak baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium
- Review on phase transitions and GWs: Hindmarsh Lüben Lumma Pauly 2008.09136

A weakly coupled plasma

- Hard (quasi)-particles carry most of the stress-energy tensor. (Parametrically) largest contribution to thermodynamics

A weakly coupled plasma

- The bosonic soft fields have large occupation numbers \Rightarrow they can be treated classically

$$
\frac{1}{e^{\omega / T}-1} \stackrel{\omega \lll}{\approx} \frac{T}{\omega} \gg 1
$$

A weakly coupled plasma

- Their loop expansion is $g^{2} T / \omega$ (g the gauge couplings, top Yukawa and $\sqrt{ } \lambda$)
- It breaks down for bosons with $m \leq g^{2} T$. These are the magnetic modes of the gauge bosons and the Higgs when $g v \leqslant g^{2} T$.
- Need non-perturbative input for the phase transition!

An EFT approach

- In the Matsubara formalism, frequencies are discrete. $2 \pi n T$ for bosons, $\pi(2 n+1) T$ for fermions.
- Non-zero Matsubara modes are hard modes, $q \sim T$, can be integrated out perturbatively. Dimensional reduction to 3D theory (EQCD for QCD)
- Electric modes of gauge bosons are soft modes, $q \sim g T$, can also be integrated out (perturbatively or not)
- Remains: zero modes of scalars and spatial gauge bosons (MQCD for QCD) No problems on the lattice (no chiral fermions)

$$
\begin{aligned}
L= & \frac{1}{4} F_{i j}^{a} F_{i j}^{a}+\frac{1}{4} B_{i j} B_{i j} \\
& +\left(D_{i} \phi\right)^{\dagger} D_{i} \phi+m_{3}^{2} \phi^{\dagger} \phi+\lambda_{3}\left(\phi^{\dagger} \phi\right)^{2}
\end{aligned}
$$

Laine Kajantie Rummukainen Shaposhnikov (1995-97) Braaten Nieto (1995-97)

An EFT approach

- State of the art for the SM at $M_{H}=125 \mathrm{GeV}$. Lattice D'Onofrio Rummukainen (2015), pert thy Laine Meyer (2015)

- Narrow non-perturbative window for the SM. Thermodynamics at the 1% level. Below the ideal gas result $e=106.75 \pi^{2} / 30 T^{4} \approx 35.1 T^{4}$

An EFT approach

Review: JG Kurkela Strickland Vuorinen Phys. Rep. 880 (2020)
Lattice: Budapest-Wuppertal, Borsanyi et al JHEP1011 (2010)

- Very different from QCD transition: here all but a handful of dofs are weakly-coupled

An EFT approach

- State of the art for the SM at $M_{H}=125 \mathrm{GeV}$. Lattice D'Onofrio Rummukainen (2015), pert thy Laine Meyer (2015)

- Very active research in adapting existing lattice measurements or performing new ones for BSM scenarios who promise phase transitions and GW signatures

Production and interaction rates

General approach

- Factor the system into "fast" and "slow" modes, and integrate out the former to obtain evolution eqs. for the latter

Production and equilibration

- A particle ϕ is weakly coupled (coupling h) to an equilibrated bath with its internal couplings $g \quad \mathcal{L}=\mathcal{L}_{\phi}+h \phi J+\mathcal{L}_{\text {bath }}$ J built of bath fields, one can prove to first order in h and all orders in g

$$
\begin{aligned}
\dot{f}_{\phi}(t, \mathbf{k}) & =\Gamma(k)\left[f_{\text {eq }}\left(k^{0}\right)-f_{\phi}(t, \mathbf{k})\right]+\mathcal{O}\left(h^{4}\right) \\
\Gamma(k) & =\frac{h^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\langle[J(X), J(0)]\rangle
\end{aligned}
$$

Bödeker Sangel Wörmann PRD93 (2016)

- Single-particle phase-space distribution: $f(t, \mathbf{k})$, sensible only for sufficiently weakly interacting particles
- For conserved charges, equations for the density n can similarly be defined with no quasiparticle assumptions Bödeker Laine (2014)

Production and equilibration

$$
\dot{f}_{\phi}(t, \mathbf{k})=\Gamma(k)\left[f_{\mathrm{eq}}\left(k^{0}\right)-f_{\phi}(t, \mathbf{k})\right]+\mathcal{O}\left(h^{4}\right) \quad \Gamma(k)=\frac{h^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\langle[J(X), J(0)]\rangle
$$

- The derivation is based (and relies) on a separation of timescales between production/equilibration and the plasma dynamics
- All-order proof of the equivalence of production and equilibration rates, $\Gamma_{\text {prod }}=\Gamma(k) f_{\text {eq }}\left(k^{0}\right)$. Goes beyond previous statements based on detailed balance in a leading-order Boltzmann approach.
- When doing perturbative expansions, Boltzmann expressions are recovered where applicable (LO). Higher orders are possible and natural in this form
- Easier to include non-perturbative input in this framework if needed. See P. Schicho's talk on Wednesday for QCD and heavy ions

Production and equilibration

$$
\dot{f}_{\phi}(t, \mathbf{k})=\Gamma(k)\left[f_{\mathrm{eq}}\left(k^{0}\right)-f_{\phi}(t, \mathbf{k})\right]+\mathcal{O}\left(h^{4}\right) \quad \Gamma(k)=\frac{h^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\langle[J(X), J(0)]\rangle
$$

- Applications of this TFT result to heavy ions (e.g. photon production, thermalisation) and cosmology. Not in this talk:
- Non-equilibrium Kadanoff-Baym equations yield similar results Drewes (2010) Drewes Mendizabal Weniger (2013) Garny Hohenegger Kartavtsev (2010-13)
- Cases where $f(t, \mathbf{k}) \gg 1$ (e.g. bosonic fields during reheating) and classical non-perturbative methods are used COSMOLATTICE Figueroa Florio Torrenti Valkenburg (2020)

Production and equilibration

$$
\dot{f}_{\phi}(t, \mathbf{k})=\Gamma(k)\left[f_{\mathrm{eq}}\left(k^{0}\right)-f_{\phi}(t, \mathbf{k})\right]+\mathcal{O}\left(h^{4}\right) \quad \Gamma(k)=\frac{h^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\langle[J(X), J(0)]\rangle
$$

- When using these equations in cosmology, the l.h.s is modified to include Hubble expansion

$$
\dot{f}_{\phi}(t, \mathbf{k}) \rightarrow\left(\partial_{t}-H \mathbf{k} \cdot \nabla_{\mathbf{k}}\right) f_{\phi}(t, \mathbf{k})
$$

and often (number, energy) densities are the quantity of interest, e.g. $n_{\phi}=\int_{\mathbf{k}} f_{\phi}$

$$
\dot{n}_{\phi}+3 H n_{\phi}=\int_{\mathbf{k}} \Gamma(k)\left[f_{\mathrm{eq}}\left(k^{0}\right)-f_{\phi}(t, k)\right]
$$

- If scale separation is present and $g \ll 1$, perturbative expansion of $\Gamma(k \gtrless T)$ can reproduce standard Boltzmann. But quasiparticle picture is not necessary!

Massless particles: gravitational waves

JG Laine JCAP1507 (2015) JG Jackson Laine Zhu JHEP2007 (2020) Ringwald Schütte-Engel Tamarit JCAP2103 (2021)

Gravitational waves in the early universe

Many potential sources of GWs

- Inflation
- Reheating
- Phase transitions

All model-dependent and / or speculative to a degree
Review: Caprini Figueroa Class. Quant. Grav. 35 (2018)

Gravitational waves from equilibrium

- GWs can be produced from eq. too. Weinberg
- Now $J \propto T^{\mu \nu} / m_{\mathrm{Pl}}$, so as long as $T_{\text {max }}<m_{\mathrm{Pl}}$ the GW-plasma coupling is indeed weak: freeze-in production over the history of the early universe?
- By the previous arguments: $\quad \dot{f}_{\mathrm{Gw}}(t, \mathbf{k})=\Gamma(k)\left[n_{\mathbf{B}}(k)-f_{\mathrm{Gw}}(t, \mathbf{k})\right]+\mathcal{O}\left(\frac{1}{m_{\mathrm{Pl}}^{4}}\right)$

$$
\Gamma(k)=\frac{8 \pi}{k m_{\mathrm{Pl}}^{2}} \int d^{4} X e^{i k(t-z)}\left\langle\left[T_{12}(X), T_{12}(0)\right]\right\rangle
$$

- $\Gamma(k)$ also determines the absorption rate of previously emitted GWs from other sources
Baym Patil Pethick PRD96 (2017) Flauger Weinberg PRD99 (2019)
JG Laine JCAP1507 (2015)

Leading order for $k \sim T$

$$
\Gamma(k)=\frac{8 \pi}{k m_{\mathrm{Pl}}^{2}} \int d^{4} X e^{i k(t-z)}\left\langle\left[T_{12}(X), T_{12}(0)\right]\right\rangle
$$

- What it means: cut two-point function with thermal propagators. A naive example: at LO T_{12} is bilinear in the fields of the QFT, so

thermal distribution functions \mathbf{x} matrix element x on-shell kinematics
- Kinematically forbidden: need extra scatterings
- A complete LO calculation for $k \sim T$ requires all $2 \leftrightarrow 2$ scatterings between SM particles yielding a graviton

Leading order for k~T

$$
\Gamma(k)=\frac{8 \pi}{k m_{\mathrm{Pl}}^{2}} \int d^{4} X e^{i k(t-z)}\left\langle\left[T_{12}(X), T_{12}(0)\right]\right\rangle
$$

- Work from this def, compute all two-loop graphs in the SM for the TT correlator and take the cuts
- Powerful method to get thermal spectral functions at thermal frequencies and nonzero virtualities too
Laine Zhu Jackson et al (2010-20)

Leading order for $k \sim T$

$$
\Gamma(k)=\frac{8 \pi}{k m_{\mathrm{Pl}}^{2}} \int d^{4} X e^{i k(t-z)}\left\langle\left[T_{12}(X), T_{12}(0)\right]\right\rangle
$$

- Work from this def, compute all two-loop graphs in the SM for the TT correlator and take the cut
- Cutting the two-loop diagrams gives rise to the squares of these diagrammatic structures (crossings not shown)

Leading order for $k \sim T$

- Hence, at LO for $k \sim T$, equivalence with kinetic theory

$$
\dot{f}_{\mathrm{GW}}(t, \mathbf{k})=\Gamma(k) n_{\mathrm{B}}(k)=\frac{1}{8 k} \int d \Omega_{2 \rightarrow 2} \sum_{a b c}\left|\mathcal{M}_{c G}^{a b}\left(\mathbf{p}_{1}, \mathbf{p}_{2} ; \mathbf{k}_{1}, \mathbf{k}\right)\right|^{2} f_{a}\left(p_{1}\right) f_{b}\left(p_{2}\right)\left[1 \pm f_{c}\left(k_{1}\right)\right]
$$

- The phase space integration runs over log-IR divergent soft gauge boson exchanges

- Sensitivity to collectivity: screening, plasma oscillations and Landau damping. Treated by Hard Thermal Loop resummation: based on recent developments in TFT we implement a well-behaved subtraction and replacement with the HTL resummed evaluation JG Laine (2015-16)

Leading order for $k \sim T$

$$
\frac{\mathrm{d} \rho_{\mathrm{GW}}}{\mathrm{~d} t \mathrm{~d} k}=\frac{k^{3} \Gamma(k) n_{\mathrm{B}}(k)}{\pi^{2}}=\frac{k^{3} T n_{B}(k)}{\pi^{2} m_{\mathrm{Pl}}^{2}}\left\{\sum_{i=1}^{3} d_{i} m_{\mathrm{D} i}^{2} \ln \left(1+\frac{4 k^{2}}{m_{\mathrm{D} i}^{2}}\right)+g^{2} T^{2} \chi\left(\frac{k}{T}\right)\right\}
$$

JG Jackson Laine Zhu JHEP2007 (2020)

- The rate is valid for $k \geqslant T$. At smaller k our rate is not LO correct, but extrapolates to $k=0$ better than what was happening in similar calculations for gravitino and axion production (e.g. Pradler Steffen PRD75 (2007), Rychkov Strumia PRD75 (2007))

Going to the IR

(e) Well-defined vacuum-like particle external states, at most HTL internally

Going to the IR

(8) Well-defined vacuum-like particle external states, at most HTL internally

(:3 Longer-lived intermediate states, collinear and soft kinematics. Changes to simple particle picture

Going to the IR

Well-defined vacuum-like particle external states, at most HTL internally

(3) Longer-lived intermediate states, collinear and soft kinematics. Changes to simple particle picture

(2.) Duration of order mean free time: scattering picture completely breaks down, GW does not resolve the microscopic scale

Going to the IR

Well-defined vacuum-like particle external states, at most HTL internally

(3) Longer-lived intermediate states, collinear and soft kinematics. Changes to simple particle picture

(2.) Duration of order mean free time: scattering picture completely breaks down, GW does not resolve the microscopic scale

- Nothing here specific to GW

Going to the IR

Production from hydrodynamic fluctuations

- TFT formalism shows that the IR rate is proportional to the shear viscosity of the plasma

$$
\Gamma(k)=\frac{8 \pi}{k m_{\mathrm{Pl}}^{2}} \int d^{4} X e^{i k(t-z)}\left\langle\left[T_{12}(X), T_{12}(0)\right]\right\rangle \quad n_{\mathrm{B}}(k) \Gamma(k) \stackrel{g^{4} T}{=} \frac{16 \pi T \eta}{k m_{\mathrm{Pl}}^{2}}
$$

JG Laine JCAP1507 (2015)

Going to the IR

- TFT formalism shows that the IR rate is proportional to the shear viscosity of the plasma

$$
\Gamma(k)=\frac{8 \pi}{k m_{\mathrm{Pl}}^{2}} \int d^{4} X e^{i k(t-z)}\left\langle\left[T_{12}(X), T_{12}(0)\right]\right\rangle \quad n_{\mathrm{B}}(k) \Gamma(k)=\frac{k \lesssim g^{4} T}{16 \pi T \eta} \frac{k m_{\mathrm{Pl}}^{2}}{}
$$

- For the SM at $T>160 \mathrm{GeV} \eta$ is dominated by the slowest processes in eq., those involving right-handed leptons only

$$
\eta \simeq \frac{16 T^{3}}{g_{1}^{4} \ln \left(5 T / m_{\mathrm{D} 1}\right)} \quad \rightarrow \quad \eta \simeq 400 T^{3}
$$

g_{1} hypercharge coupling with screening mass $m_{\mathrm{D1}}=\sqrt{11 / 6} g_{1} T$
Only a leading-log estimate, no complete LO for $T>160 \mathrm{GeV}$
Arnold Moore Yaffe (2000-2003)
JG Laine JCAP1507 (2015)

Cosmological implications

$$
\frac{k^{4} m_{\mathrm{Pl}}^{2} n_{\mathrm{B}}(k)}{16 \pi T^{7}} \Gamma(k)
$$

- Peak: frequency at $k \approx 4 T$. Redshifts at decoupling to $k_{\text {dec }} \approx 4 T_{\text {dec }}(3.9 / 106.75)^{1 / 3} \sim T_{\text {dec }}$. Today $\mathrm{f} \approx 100 \mathrm{GHz}$. Amplitude determined by $T_{\text {max }}$.

JG Laine JCAP1507 (2015) Ringwald Schütte-Engel Tamarit JCAP2103 (2021)

Cosmological implications

- Direct detection challenging in the medium term
- Thermal production stores energy in GWs. BBN and CMB observations constrain the energy density stored in radiation at those epochs: GW contribution to $N_{\text {eff }}$ Smith Pierpaoli Kamionkowski PRL97 (2006) Henrot-Versille et al Class. Quant. Grav. 32 (2015) Caprini Figueroa Class. Quant. Grav. 35 (2018)
- The SM predictions have 10^{-3} uncertainty, the experimental accuracy 10^{-1}, expected to increase with next-generation detectors CMB-S4
- Requiring $\Delta N_{\text {eff }}=10^{-3}$ yields $T_{\max }<210^{17} \mathrm{GeV}$ for a SM universe, 2 x more than that for a MSSM scenario (the extra GW production from the larger number of thermal d.o.f.s is more than compensated by the extra dilution)

JG Jackson Laine Zhu JCHEP2007 (2020) Ringwald Schütte-Engel Tamarit JCAP2107 (2021)

Massive particles

Massive particles: right-handed neutrinos

- n sterile (SM gauge singlet), Majorana neutrinos coupling to the three active lepton flavours and the (conjugate) Higgs field

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2} \sum_{I} \bar{N}_{I}\left(i \gamma^{\mu} \partial_{\mu}-M_{I}\right) N_{I}-\sum_{I, a}\left(\bar{N}_{I} h_{I a} \tilde{\phi}^{\dagger} a_{L} l_{a}+\bar{l}_{a} a_{R} \tilde{\phi} h_{I a}^{*} N_{I}\right)
$$

- Can address active neutrino masses (seesaw) and baryon asymmetry (leptogenesis) over a wide range of parameters Fukugita Yanagida PLB174 (1986)
- A specific realisation (vMSM) can also provide a keV-scale DM right-handed neutrino
Asaka Blanchet Shaposhnikov PLB620, PLB631 (2005)
- Asymmetry generation and RHN production require rates from $T \gg M_{I}$ to $T \ll M_{I}$

Plot by Mikko Laine

Massive particles: right-handed neutrinos

$\left(\partial_{t}-H \mathbf{k} \cdot \nabla_{\mathbf{k}}\right) f_{N}(t, \mathbf{k})=\Gamma(k)\left[n_{\mathrm{F}}\left(k^{0}\right)-f_{N}(t, \mathbf{k})\right] \quad \Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle$

- Production, equilibration, freeze-out and decay rates from the formalism over many decades

Massive particles: right-handed neutrinos

- Symmetric phase

$$
\Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle
$$

- $T \ll M_{I}$ Salvio Lodone Strumia (2011), Laine Schröder (2012), Biondini Brambilla Escobedo Vairo (2012)
- $\quad T \sim M_{I}$ Laine (2013), Laine Jackson (2021)
- $T \gg M_{I}$ Anisimov Besak Bödeker (2010-12), Ghisoiu Laine (2014), JG Laine (2021)
- Broken phase
- $M_{I} \sim \mathrm{GeV}$ JG Laine (2016-20), Jackson Laine (2019)
- $M_{I} \sim \mathrm{keV}$ Asaka Laine Shaposhnikov (2006), JG Laine (2015-20) Bödeker Klaus (2020)
- These calculations provide a pattern for models with many regimes to be followed. Review Laine 2203.05772

Massive particles: the ulirarelativistic regime

$T \gg M_{I}$

$$
\Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle
$$

- In a first approximation mass seems negligible
- Just $2 \leftrightarrow 2$ processes (with fermion HTL included)?

Massive particles: the ultrarelativistic regime

$T \gg M_{I}$

- Effective $1 \leftrightarrow 2$ processes

- Landau-Pomeranchuk-Migdal (LPM) interference of multiple soft scatterings, requires ladder resummation
- Borrow techniques from hot QCD to deal with LPM resummation Baier Dokshitzer Mueller Peigné Schiff (1995-97) Zakharov (1996-97) Arnold Moore Yaffe (2001-2003)

Massive particles: the ultrarelativistic regime

$T \gg M_{I}$

$$
\Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle
$$

- Effective $1 \leftrightarrow 2$ processes

- Absent from GW production calculation at LO (suppression in derivative coupling) and similar production calculations (gravitino, axion, etc...) Salvio Strumia Xue (2013)

Massive particles: the ultrarelativistic regime

$T \gg M_{I}$

- Effective $1 \leftrightarrow 2$ processes

- Very important beyond sterile neutrinos
- Thermalisation during reheating (number-nonconserving and efficient energy equilibration) Davidson Sarkar (2001) Harigaya Mukaida (2014) Mukaida Yamada (2015)
Drees Najjari (2021) Large body of literature on QCD thermalisation, review in Berges Heller Mazeliauskas Venugopalan (2020)

Massive particles: the ultrarelativistic regime

$T \gg M_{I}$

$$
\Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle
$$

- Effective $1 \leftrightarrow 2$ processes

- Very important beyond sterile neutrinos
- Equilibration of the Yukawa interactions of right-handed electrons Bödeker Schröder (2019)

Massive particles: the ultrarelativistic regime

$T \gg M_{I}$

$$
\Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle
$$

- Effective $1 \leftrightarrow 2$ processes

- Large enhancement in the high-T regime

Anisimov Besak Bödeker (2010-12) Ghisoiu Laine (2014) JG Laine (2021)

Massive particles: the relativistic regime

$T \sim M_{I}$

$$
\Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle
$$

- A leading-order $2 \rightarrow 1$ process receiving real $(2 \rightarrow 2,3 \rightarrow 1)$ and virtual $(2 \rightarrow 1)$ NLO corrections that have been computed and merged with the $T \gg M_{I}$ range

- Real and virtual corrections are individually IR divergent, only sum is physical

Laine JHEP1305 JHEP1308 (2013) Ghisoiu Laine JCAP1412 (2014) Jackson Laine JHEP09 (2021)

Massive particles: the relativistic regime

$T \sim M_{I}$

$$
\Gamma(k)=\sum_{a} \frac{\left|h_{I a}\right|^{2}}{2 k^{0}} \int d^{4} X e^{i K \cdot X}\left\langle\left[\tilde{\phi}^{\dagger} a_{L} l(X), \bar{l} a_{R} \tilde{\phi}(0)\right]\right\rangle
$$

- A leading-order $2 \rightarrow 1$ process receiving real $(2 \rightarrow 2,3 \rightarrow 1)$ and virtual $(2 \rightarrow 1)$ NLO corrections that have been computed and merged with the $T \gg M_{I}$ range
- Agreement with OPE/EFT based calculations in the non-relativistic regime Salvio Lodone Strumia JHEP1108 (2011) Laine Schröder JHEP1202 (2012) Biondini Brambilla Escobedo Vairo JHEP1312 (2013)

Laine JHEP1305 JHEP1308 (2013) Ghisoiu Laine JCAP1412 (2014) Jackson Laine JHEP09 (2021)

Conclusions

- TFT formalism for thermodynamics and phase transitions:
- Well-tested for the SM
- Being applied to BSM models with an outlook on first-order phase transitions and gravitational wave production

Conclusions

- TFT formalism for thermal rates
- Does not require quasi-particles, though it reproduces quasi-particle Boltzmann results where they apply
- Relies on timescale separation
- Thermal production of gravitational waves: guaranteed to be there, contributes to $N_{\text {eff. }}$ No stringent bounds for SM-like universes. Methods applicable to light/ massless states non-renomalizeably coupled to plasma
- Thermal production of massive particles: the case of heavy neutral leptons/sterile neutrinos. Many regimes to be examined, great progress with interdisciplinary connections to hot QCD and NLO available in some regimes

