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2.2. The Hot Thermal Phase

Figure 2.1: Timeline of the hot thermal phase of the early universe illustrating (i) the

relation between the temperature of the thermal bath T and the cosmic time t (cf. Eq. (2.23)),

(ii) the chronology of several important, partly hypothetical nonequilibrium processes, (iii)

a representative selection of those forms of matter or energy that are respectively involved

in these processes, and (iv) several possibilities for the reheating temperature after inflation

(cf. Sec. 3.1).

2.2 The Hot Thermal Phase

The hot early universe represents the stage for a great variety of physical processes taking

place over an enormous range of energy scales (cf. Fig. 2.1 for an overview of the main events

in its thermal history). As a final preparation before turning to our own scenario, we shall

now discuss in more detail the decoupling of the CMB, primordial nucleosynthesis, the QCD

and the electroweak phase transition as well as electroweak sphalerons.

2.2.1 The Cosmic Microwave Background

Towards the end of the radiation-dominated phase, at temperatures of O(1) eV, protons,

i.e. hydrogen nuclei, are kept in thermal equilibrium via the steady interplay of radiative

recombination and photoionization processes. However, as the plasma cools in the course

of the expansion, photoionization becomes less efficient, the hydrogen nuclei begin to bind
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• Over the long thermal history,  
many phenomena enter and/or  
leave equilibrium

• DM candidates

• Mechanisms for baryogenesis

• Thermal relics

• ….

• governed by rates (production,  
equilibration, interaction, nucleation…) competing with the Hubble rate



• Thermodynamics: phase transitions, the Hubble rate itself,…

• Defining and computing (some of) these rates using modern Thermal 
Field Theory (TFT) techniques

• Slowly-varying modes over a fast background

• Massless states: the example of gravitational waves

• Massive states: the example of right-handed neutrinos and NLO 
corrections

In this talk
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energy scale event
100 GeV t non-relativistic

1 GeV b non-relativistic
500 MeV c, · non-relativistic
200 MeV QCD phase transition
30 MeV µ non-relativistic
2 MeV ‹ freeze-out

0.2 MeV e non-relativistic
1 eV matter-radiation equality

0.1 eV photon decoupling

Table 2: An overview over events happening at di�erent energy scales in the early universe.
These determine the e�ective number of degrees of freedom in the Standard Model at a certain
energy scale.

Figure 3: This figure shows the e�ective number of relativistic degrees of freedom ge� of a
Standard Model plasma as a function of temperature, taking into account interactions between
particles, with both perturbative and lattice methods [24].

The relation of the ci to the standard coupling constants of the Standard Model are given for
the most massive fields in Tab. 1. One can see that for these fields, the values of ci are all
O(1). For the other fields of the standard model, ci π 1.

The Higgs particle is a quantised fluctuation around the ground state, with mass

MH =
Ò

V
ÕÕ

0 (vEW) =
Ô

2⁄vEW.

The Higgs field is unique in that its mass does not in general depend linearly on „. At this
level of treatment, we will not need to know that in the Standard Model, the Higgs field is
a two-component vector of complex scalar fields �, but for completeness we mention that
„

2 = �†�/2.
The free energy density f of a gas of Standard Model particles is given by the zero

temperature result (3.2), plus terms that arise due to the interaction with the Higgs according

9

• The Hubble rate is proportional to  
the energy density 

• Many “transitions” in the SM

• How to compute them? And  
why are they so interesting?

• A short tale of phase transitions  
and gravitational waves 
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• Need to satisfy Sakharov’s conditions

• B violation

• C and CP violation

• Deviations from thermal equilibrium

Baryogenesis
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• Need to satisfy Sakharov’s conditions

• B violation

• C and CP violation

• Deviations from thermal equilibrium

• Feynman rules always conserve B, but sphaleron 
processes violate B (and conserve B-L) 
Non-perturbative solutions, in equilibrium at T>TEW, 
exponentially suppressed below. Decouple at T~130 
GeV D’Onofrio Rummukainen Tranberg PRL113 (2014)
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FIG. 2: The Higgs expectation value as a function of tem-
perature, compared with the perturbative result [2].

sphaleron barrier (∼ sphaleron energy), and special real-
time runs are performed to calculate the dynamical pref-
actors of the tunneling process. The physical rate is then
obtained by reweighting the measurements. For details
of this intricate technique, we refer to [12, 27]. As we will
observe, in the temperature range where both methods
work, these overlap smoothly.
Simulation results: We perform the simulations using lat-
tice spacing a = 4/(9g23) (i.e. βG = 4/(g23a) = 9 in
conventional lattice units), and volume V = 323a3. In
ref. [12] we observed that the rate measured with this
lattice spacing in the symmetric phase is in practice in-
distinguishable from the continuum rate, and deep in the
broken phase it is within a factor of two of our estimate
for the continuum value, well within our accuracy goals.
In fact, algorithmic inefficiencies in multicanonical simu-
lations become severe at significantly smaller lattice spac-
ing, making simulations there very costly in the broken
phase. The simulation volume is large enough for the
finite-volume effects to be negligible [12].
The expectation value of the square of the Higgs field,

v2/T 2 = 2〈φ†φ〉/T (here φ is in 3d units), measures the
“turning on” of the Higgs mechanism, see Fig. 2. As
mentioned above, there is no proper phase transition and
v2(T ) behaves smoothly as a function of the tempera-
ture. Nevertheless, the cross-over is rather sharp, and
the pseudocritical temperature can be estimated to be
Tc = 159± 1GeV. If the temperature is below Tc, v2(T )
is approximately linear in T , and at T > Tc, it is close to
zero. The observable 〈φ†φ〉 is ultraviolet divergent and
is additively renormalized; because of additive renormal-
ization, v2(T ) can become negative.
We also show the two-loop RG-improved perturbative
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FIG. 3: The measured sphaleron rate and the fit to the broken
phase rate, Eq. (7), shown with a shaded error band. The
perturbative result is from Burnier et al. [11] with the non-
perturbative correction used there removed; see main text.
Pure gauge refers to the rate in hot SU(2) gauge theory [19].
The freeze-out temperature T∗ is solved from the crossing of
Γ and the appropriately scaled Hubble rate, shown with the
almost horizontal line.

result [2] for v2(T ) in the broken phase. Perturbation
theory reproduces Tc perfectly, and v2 is slightly larger
than the lattice measurement. In the continuum limit we
expect this difference to decrease for this observable; in
ref. [12] we extrapolated v2(T ) to the continuum at a few
temperature values and with Higgs mass 115GeV. The
continuum limit in the broken phase was observed to be
about 6% larger than the result at βG = 9. Thus, for
v2(T ) perturbation theory and lattice results match very
well.
Finally, in Fig. 3 we show the sphaleron rate as a func-

tion of temperature. The straightforward Langevin re-
sults cover the high-temperature phase, where the rate
is not too strongly suppressed by the sphaleron barrier.
In fact, we were able to extend the range of the method
through the cross-over and into the broken phase, down
to relative suppression of 10−3.
Using the multicanonical simulation methods we are

able to compute the rate 4 orders of magnitude further
down into the broken low-temperature phase. The results
nicely interpolate with the canonical simulations in the
range where both exist. In the interval 140<∼T<∼155GeV
the broken phase rate is very close to a pure exponential,
and can be parametrized as

log
ΓBroken

T 4
= (0.83± 0.01)

T

GeV
− (147.7± 1.9). (7)

The error in the second constant is completely dominated

Electroweak baryogenesis



• Need to satisfy Sakharov’s conditions

• B violation

• C and CP violation

• Deviations from thermal equilibrium

• The CKM phase violates CP

• A strong first order phase transition is needed. Sphaleron rate suppressed in bubbles 
of the broken phase nucleating within the symmetric phase 

• Bubble dynamics would also create a gravitational wave signature, potentially 
observable by LISA

Electroweak baryogenesis
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Figure 4: The figure shows the thermal e�ective Higgs potential VT („) at di�erent temper-
atures. For large temperatures T ∫ Tc (red) the potential has a minimum at „ = 0 and the
ground state is symmetric. Below the temperature T1 > Tc (dark green) a second, but higher
lying minimum develops. At the critical temperature Tc (green) both minima are degener-
ate. Below the critical temperature, the new minimum at non-zero field value is the global
minimum representing the true (stable) ground state.

with g
2 an arbitrary dimensionless coupling constant. We leave the mass of this scalar field

free. Weak coupling means that g
2

π 1.
We can then try to compute the partition function

Z = Tr
Ë
e

≠—(Ĥ0+ĤI)
È

, (3.15)

by expanding in powers of the coupling constant. This is a non-trivial exercise, but it turns
out that we are in fact expanding in the parameter

Á = g
2
f(k̨) (3.16)

with f the phase space density. For a boson,

f(k̨) = 1
e

—Ê
k̨ ≠ 1

(3.17)

which approaches T/Ê
k̨

for frequencies low compared with the temperature, Ê
k̨

π T . In this
limit, the expansion parameter reads

Á = g
2
T

Ê
k̨

(3.18)

which is greater than unity for k . g
2
T . The expansion parameter diverges as |̨k| æ 0 (in the

“infrared”) for massless bosons, cf. Eq. (2.13). We therefore learn that in the case of massless
bosons at zero chemical potential a perturbative expansion in powers of g breaks down in a
thermal state, at any temperature [32], for momenta k . g

2
T .

However, thermal corrections contribute to the mass of a thermal state which have to
be taken into account. One can apply the above argument to the W , Z and gluons of the
Standard Model, which have an interaction term of a similar form.2

2
Indeed, this infrared problem was first pointed out for gauge bosons [32].
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• Need to satisfy Sakharov’s conditions

• B violation

• C and CP violation

• Deviations from thermal equilibrium

• Not enough CP violation in the SM

• No phase transition in the SM for MH>72 GeV, but crossover  
Gurtler Hilgenfritz Schiller, Laine Rummukainen, Csidor Fodor Heitger (1997-99)

• Both issues can be addressed in many BSM models

Electroweak baryogenesis



• Need to satisfy Sakharov’s conditions

• B violation

• C and CP violation

• Deviations from thermal equilibrium

• Review on phase transitions and GWs: Hindmarsh Lüben Lumma Pauly 2008.09136

Electroweak baryogenesis



Basic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵s = g2/4⇡

• The soft fields can be treated classically since their occupation number is large

nB(!) =
1

e!/T � 1
' T

!
⇠ 1

g

Figure by D. Teaney

Hard particles, P~T

Soft 
field 

modes 
P~gT

• Hard (quasi)-particles carry most of the stress-energy tensor. (Parametrically) 
largest contribution to thermodynamics

A weakly coupled plasma



Basic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵s = g2/4⇡
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Figure by D. Teaney

Hard particles, P~T

Soft 
field 

modes 
P~gT

• The bosonic soft fields have large occupation numbers ⇒ they can be treated 
classically

A weakly coupled plasma
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Basic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵s = g2/4⇡

• The soft fields can be treated classically since their occupation number is large

nB(!) =
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' T
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Figure by D. Teaney

Hard particles, P~T

Soft 
field 

modes 
P~gT

• Their loop expansion is g2T/ω (g the gauge couplings, top Yukawa and √λ)

• It breaks down for bosons with m≲g2T. These are the magnetic modes of the gauge bosons 
and the Higgs when gv≲g2T. 

• Need non-perturbative input for the phase transition!

A weakly coupled plasma



• In the Matsubara formalism, frequencies are discrete. 2πnT for bosons, π(2n+1)T for 
fermions.

• Non-zero Matsubara modes are hard modes, q~T, can be integrated out perturbatively. 
Dimensional reduction to 3D theory (EQCD for QCD)

• Electric modes of gauge bosons are soft modes, q~gT, can also be integrated out 
(perturbatively or not)

• Remains: zero modes of scalars and spatial gauge bosons (MQCD for QCD) 
No problems on the lattice (no chiral fermions) 
 
 
 
Laine Kajantie Rummukainen Shaposhnikov (1995-97) Braaten Nieto (1995-97)

An EFT approach

2

As discussed above, measuring the Higgs condensate is
essential for obtaining non-perturbative contributions to
thermodynamic quantities. Thus, we pay special atten-
tion to precise measurement of the gauge invariant expec-
tation value 〈φ†φ〉 and its susceptibility. The maximum
of the susceptibility allows us to determine the pseud-
ocritical temperature accurately, at Tc = 159.6 ± 0.1 ±
1.5GeV. The first error is due to the precision of the lat-
tice simulations and the second is a conservative estimate
of the uncertainty of the effective theory description [16].
The pseudocritical temperature is completely consistent
with the result in ref. [20].
We use the condensate and the susceptibility to obtain

several thermodynamic quantities across the cross-over:
energy density, pressure, heat capacity, speed of sound,
and equation of state parameter. For most quantities
the magnitude of the effects of the cross-over are small,
only at a percent level, but nevertheless clearly visible.
We also determine the Higgs and W 3 screening masses
and the γ − Z mixing. The emerging picture is fully
consistent with a smooth and regular cross-over. The
cross-over region, where observables deviate significantly
from low- or high-temperature behaviour, is remarkably
narrow, between 157 and 162 GeV.
This paper is organized as follows. In section II we

describe the effective theory and in section III its imple-
mentation on the lattice. The Higgs condensate and its
susceptibility are discussed in section IV, fundamental
thermodynamic observables in section V and the screen-
ing masses in section VI. We conclude in section VII.

II. EFFECTIVE THREE-DIMENSIONAL
DESCRIPTION

At temperatures of order 100GeV the gauge couplings
in the Standard Model are small, and the Euclidean path
integral contains a parametric hierarchy of energy scales:
πT , gT and g2T . While the harder scales can be reliably
treated with perturbation theory, at k ∼ g2T we have
to face the non-perturbative infrared physics [8]. The
non-perturbative physics can be captured into an effec-
tive theory for the soft k ∼ g2T scales, obtained by inte-
grating over the harder scales using well-defined pertur-
bative methods. This effective theory is purely bosonic
and three-dimensional. The detailed description of the
derivation of the theory can be found in refs. [15, 16].
The Lagrangian of the effective theory is the 3-

dimensional SU(2)×U(1) gauge theory with a Higgs field

L =
1

4
F a
ijF

a
ij +

1

4
BijBij

+ (Diφ)
†Diφ+m2

3φ
†φ+ λ3(φ

†φ)2, (1)

where

Fij = ∂iAj − ∂jAi − g3[Ai, Aj ], Ai =
1
2σaA

a
i

Bij = ∂iBj − ∂jBi (2)

Di = ∂i + ig3Ai + ig′3Bi/2.

Here Ai and Bi are the 3-dimensional SU(2) and U(1)
gauge fields, g23 and g′3

2 the dimensionful SU(2) and U(1)
couplings, and φ a complex doublet. The SU(2)×U(1)
local gauge transformation is

φ(x) → eiα(x)G(x)φ(x). (3)

The parameters appearing in the effective theory are di-
mensionful. If we take one of the parameters, say g23 , to
set the scale, the dynamics then depends on the three
dimensionless parameters x, y and z, defined as

x ≡
λ3

g23
, y ≡

m2
3

g43
, z ≡

g′23
g23

. (4)

The four parameters g23 , g
′2
3 , λ3 and m2

3 are definite per-
turbatively computable functions of the Standard Model
parameters (αS(MW ), GF , MHiggs, MW , MZ , Mtop), and
the temperature T . These have been computed through
a set of 1- and 2-loop matching relations [16], and are
shown in figure 1 as functions of the temperature. The
accuracy of the effective theory can be estimated to be
at ∼ 1% level, as discussed in refs. [16, 32].
From figure 1 we see that only y has large temperature

dependence. Indeed, from the effective theory point of
view it is natural to choose y as the temperature variable,
although we present our results in terms of the physical
temperature. The transition is expected to happen near
y = 0, which occurs at T = 162.1GeV.

III. LATTICE ACTION AND SIMULATIONS

For the lattice implementation it is convenient to in-
troduce a matrix parametrisation of the Higgs field by
writing

Φ =
1

g23

(

(φ̃)(φ)

)

≡
1

g23

(

φ∗
2 φ1

−φ∗
1 φ2

)

. (5)

Under an SU(2)×U(1) gauge transformation Φ trans-
forms according to

Φ(x) → G(x)Φe−iθ(x)σ3 . (6)

The lattice action corresponding to the continuum theory
(1) is

S = βG

∑

x

∑

i<j

[1− 1
2TrPij ] +

βG

z

∑

x

∑

i<j

1
2α

2
ij

− βH

∑

x

∑

i

1
2TrΦ

†(x)Ui(x)Φ(x + i)e−iαi(x)σ3 (7)

+ β2

∑

x

1
2TrΦ

†(x)Φ(x) + β4

∑

x

[

1
2TrΦ

†(x)Φ(x)
]2
.

Here the SU(2) and the (non-compact) U(1) plaquettes
are

Pij(x) = Ui(x)Uj(x+ î)U †
i (x+ ĵ)U †

j (x), (8)

αij(x) = αi(x) + αj(x+ î)− αi(x+ ĵ)− αj(x). (9)



An EFT approach

4

0 0.05 0.1 0.15 0.2
1/βG = ag3

2/4

0

0.1

0.2

0.3

0.4

0.5

0.6

<φ
+ φ

>/
T

T=140

T=150

T=156

T=160
T=170

FIG. 2: The continuum limit of 〈φ†φ〉 at a few selected tem-
perature values. The statistical errors are too small to be
visible at this scale.
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FIG. 3: The continuum result of 〈φ†φ〉, compared with the
perturbative broken and symmetric phase results. The shaded
bands are estimations of unknown higher order corrections to
perturbative results. The solid continuous line is an interpo-
lation to the data.

expansion converges quickly.2 There is only a narrow
window of a few GeV around the cross-over temperature
(corresponding to y ≈ 0) where the perturbative expan-
sions do not converge.
The apparent good convergence in the symmetric

2 Figure 3 can be compared with figure 2 in ref. [26], where the
agreement between the lattice and the perturbative results is
much weaker, due to the missing continuum limit of the lattice
results.
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FIG. 4: Above: susceptibility χφ†φ shown at βG = 6, 9 and
16, together with the interpolating functions. The continuum
limit is shown with a heavy line. Below: As above, zoomed-in
to the shaded band near the cross-over region.

phase may be surprising, because in this phase the non-
abelian gauge bosons are perturbatively massless, mak-
ing the physics at soft momentum scales k ∼ g2T non-
perturbative [8]. The excellent match between the lattice
and the perturbation theory means that for the Higgs
condensate their effect remains small. This can be con-
trasted with e.g. the sphaleron rate, which is in essence
completely determined by the soft physics.
We define the pseudocritical temperature by the max-

imum location of the dimensionless susceptibility

χφ†φ = V T
〈

[(φ†φ)V − 〈(φ†φ)V 〉]2
〉

, (15)

where (φ†φ)V = 1/V
∫

dV φ†φ is the volume average of
φ†φ. This is shown in figure 4, for the largest simulation
volumes at each lattice spacing. The use of the largest
volumes is justified below. There is a well-defined peak
near the cross-over temperature, however, the location
of the peak has a clear lattice spacing dependence. Be-
cause of the narrowness of the peak, the continuum limit
extrapolation becomes delicate: at a fixed temperature,
the values of χφ†φ at different lattice spacings have large
and non-uniform variation, which can be clearly seen in
the zoomed-in subplot in figure 4. Now a linear or a lin-
ear + quadratic in a continuum extrapolation at fixed
temperature does not give a reasonable result using the
available lattice spacings.
We obtain a much better controlled continuum limit if

• State of the art for the SM at MH=125 GeV. Lattice D’Onofrio Rummukainen (2015), pert 
thy Laine Meyer (2015)
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FIG. 7: The interaction measure ∆ = (e − 3p)/T 4 (top left); energy density e and pressure p (top right); heat capacity
CV = de/dT (bottom left); speed of sound squared c2s and the equation of state parameter w = p/e (bottom right). The error
bands are a combination of the statistical errors and renormalizaton scale variation µ̄ = (0.5 . . . 2)πT . The energy density and
the pressure are affected by a systematic uncertainty of order 1%, indicated with a vertical arrow.

V. THERMODYNAMICS OF THE
CROSS-OVER

Recently, Laine and Meyer [26] showed how one can
combine perturbative calculations and effective theory
simulation to obtain the Standard Model pressure, en-
ergy density and other thermodynamic quantities derived
from these. As an input they used the simulation results
from ref. [20]. Because these results use only a single lat-
tice spacing and ignore the hypercharge U(1), we revisit
the calculation using our improved data.
The fundamental thermodynamic quantitity is the in-

teraction measure (“trace anomaly”)

∆ ≡
e(T )− 3p(T )

T 4
= T

d

dT

p(T )

T 4
. (17)

In ref. [26] the interaction measure is split into three
parts: ∆ = ∆1+∆2+∆3, where ∆1 includes effects from
breaking of scale invariance by quantum corrections, ∆2

effects from the Higgs condensate, and ∆3 comes from
vacuum subtraction. For our purposes it is convenient to
express it as

∆(T, µ̄) = A(T ; µ̄) +B(T ; µ̄)
〈φ†φ〉(T )

T
(18)

where µ̄ is the MS renormalization scale and the functions
A and B can be computed following ref. [26], giving ∆ up

to parametric order g5. However, here we use the O(g4)
expression for the function A, because it has been argued
that the O(g5) contribution, which is mostly due to QCD
contributions, leads to an underestimate of the pressure
and the energy density [26]. The resulting ∆ is shown in
figure 7.
From figure 3 we can see that the direct perturba-

tive computation of 〈φ†φ〉(T ) fails to converge near the
cross-over temperature. On the other hand, the func-
tions A(T ; µ̄) and B(T ; µ̄) do not suffer from this prob-
lem. Therefore, by measuring the Higgs condensate non-
perturbatively on the lattice, we obtain well-defined ex-
pressions for thermodynamic quantities across the cross-
over.
The pressure is obtained from ∆ by integration:

p(T )

T 4
−

p(T0)

T 4
0

=

∫ T

T0

dT ′∆(T ′; µ̄)

T ′
. (19)

In order to evaluate this we need to fix the pressure
at a reference temperature T0. We use the results in
refs. [26, 37] at the lowest temperature in our temper-
ature range, T0 = 140GeV: p(T0)/T 4

0 = 11.173. The
estimated uncertainty in this value is of order 1%; we
discuss this together with other systematic errors at the
end of this section.
From ∆(T ) and p(T ) we can obtain other thermody-

• Narrow non-perturbative window for the SM. 
Thermodynamics at the 1% level. Below the ideal 
gas result e=106.75 π2/30 T4≈35.1 T4
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Figure 26: Pressure and trace anomaly at µB = 0. In both panels we compare the perturbative
results with lattice data from the Wuppertal-Budapest (WB) collaboration [138].

even turn out to reside extremely close to the datapoints for a wide temperature
range, but this may well be a fortuitous coincidence.

6.2. Probing nonzero densities

Next, we move on to quantities that probe the finite-density part of the QCD
phase diagram, yet are measurable on the Euclidean lattice without problems,
i.e. various susceptibilities. These quantities are defined as the derivatives of the
pressure with respect to chemical potentials corresponding to di↵erent conserved
quantities. A commonly studied subclass are the diagonal and o↵-diagonal quark
number susceptibilities (QNSs)

�ijk (T ) ⌘ @
i+j+k

p (T, µu, µd, µs)

@µi
u
@µ

j

d
@µk

s

����
µ=0

, (218)

where the indices u, d, s refer to the three lightest quark flavors. In addition,
we shall consider derivatives with respect to the baryon chemical potential µB ,
dubbed baryon number susceptibilities. These are related to the QNSs through
linear relations easily derivable from the identities

µu =
1

3
µB +

2

3
µQ, (219)

µd =
1

3
µB � 1

3
µQ, (220)

µs =
1

3
µB � 1

3
µQ � µS , (221)

where µQ and µS are the chemical potentials related to electric charge and
strangeness.

Susceptibilities have been considered within the HTLpt framework up to the
full two- and three-loop orders in [110, 111], respectively, and up to O(g6 ln g)
using the DR resummation [142, 143] (see also refs. [144, 145] for related work).
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Review: JG Kurkela Strickland Vuorinen Phys. Rep. 880 (2020)
Lattice: Budapest-Wuppertal, Borsanyi et al JHEP1011 (2010)

• Very different from QCD transition: here all but a handful of dofs are weakly-coupled
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FIG. 2: The continuum limit of 〈φ†φ〉 at a few selected tem-
perature values. The statistical errors are too small to be
visible at this scale.
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FIG. 3: The continuum result of 〈φ†φ〉, compared with the
perturbative broken and symmetric phase results. The shaded
bands are estimations of unknown higher order corrections to
perturbative results. The solid continuous line is an interpo-
lation to the data.

expansion converges quickly.2 There is only a narrow
window of a few GeV around the cross-over temperature
(corresponding to y ≈ 0) where the perturbative expan-
sions do not converge.
The apparent good convergence in the symmetric

2 Figure 3 can be compared with figure 2 in ref. [26], where the
agreement between the lattice and the perturbative results is
much weaker, due to the missing continuum limit of the lattice
results.
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FIG. 4: Above: susceptibility χφ†φ shown at βG = 6, 9 and
16, together with the interpolating functions. The continuum
limit is shown with a heavy line. Below: As above, zoomed-in
to the shaded band near the cross-over region.

phase may be surprising, because in this phase the non-
abelian gauge bosons are perturbatively massless, mak-
ing the physics at soft momentum scales k ∼ g2T non-
perturbative [8]. The excellent match between the lattice
and the perturbation theory means that for the Higgs
condensate their effect remains small. This can be con-
trasted with e.g. the sphaleron rate, which is in essence
completely determined by the soft physics.
We define the pseudocritical temperature by the max-

imum location of the dimensionless susceptibility

χφ†φ = V T
〈

[(φ†φ)V − 〈(φ†φ)V 〉]2
〉

, (15)

where (φ†φ)V = 1/V
∫

dV φ†φ is the volume average of
φ†φ. This is shown in figure 4, for the largest simulation
volumes at each lattice spacing. The use of the largest
volumes is justified below. There is a well-defined peak
near the cross-over temperature, however, the location
of the peak has a clear lattice spacing dependence. Be-
cause of the narrowness of the peak, the continuum limit
extrapolation becomes delicate: at a fixed temperature,
the values of χφ†φ at different lattice spacings have large
and non-uniform variation, which can be clearly seen in
the zoomed-in subplot in figure 4. Now a linear or a lin-
ear + quadratic in a continuum extrapolation at fixed
temperature does not give a reasonable result using the
available lattice spacings.
We obtain a much better controlled continuum limit if

• State of the art for the SM at MH=125 GeV. Lattice D’Onofrio Rummukainen (2015), pert 
thy Laine Meyer (2015)
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FIG. 7: The interaction measure ∆ = (e − 3p)/T 4 (top left); energy density e and pressure p (top right); heat capacity
CV = de/dT (bottom left); speed of sound squared c2s and the equation of state parameter w = p/e (bottom right). The error
bands are a combination of the statistical errors and renormalizaton scale variation µ̄ = (0.5 . . . 2)πT . The energy density and
the pressure are affected by a systematic uncertainty of order 1%, indicated with a vertical arrow.

V. THERMODYNAMICS OF THE
CROSS-OVER

Recently, Laine and Meyer [26] showed how one can
combine perturbative calculations and effective theory
simulation to obtain the Standard Model pressure, en-
ergy density and other thermodynamic quantities derived
from these. As an input they used the simulation results
from ref. [20]. Because these results use only a single lat-
tice spacing and ignore the hypercharge U(1), we revisit
the calculation using our improved data.
The fundamental thermodynamic quantitity is the in-

teraction measure (“trace anomaly”)

∆ ≡
e(T )− 3p(T )

T 4
= T

d

dT

p(T )

T 4
. (17)

In ref. [26] the interaction measure is split into three
parts: ∆ = ∆1+∆2+∆3, where ∆1 includes effects from
breaking of scale invariance by quantum corrections, ∆2

effects from the Higgs condensate, and ∆3 comes from
vacuum subtraction. For our purposes it is convenient to
express it as

∆(T, µ̄) = A(T ; µ̄) +B(T ; µ̄)
〈φ†φ〉(T )

T
(18)

where µ̄ is the MS renormalization scale and the functions
A and B can be computed following ref. [26], giving ∆ up

to parametric order g5. However, here we use the O(g4)
expression for the function A, because it has been argued
that the O(g5) contribution, which is mostly due to QCD
contributions, leads to an underestimate of the pressure
and the energy density [26]. The resulting ∆ is shown in
figure 7.
From figure 3 we can see that the direct perturba-

tive computation of 〈φ†φ〉(T ) fails to converge near the
cross-over temperature. On the other hand, the func-
tions A(T ; µ̄) and B(T ; µ̄) do not suffer from this prob-
lem. Therefore, by measuring the Higgs condensate non-
perturbatively on the lattice, we obtain well-defined ex-
pressions for thermodynamic quantities across the cross-
over.
The pressure is obtained from ∆ by integration:

p(T )

T 4
−

p(T0)

T 4
0

=

∫ T

T0

dT ′∆(T ′; µ̄)

T ′
. (19)

In order to evaluate this we need to fix the pressure
at a reference temperature T0. We use the results in
refs. [26, 37] at the lowest temperature in our temper-
ature range, T0 = 140GeV: p(T0)/T 4

0 = 11.173. The
estimated uncertainty in this value is of order 1%; we
discuss this together with other systematic errors at the
end of this section.
From ∆(T ) and p(T ) we can obtain other thermody-

• Very active research in adapting existing lattice 
measurements or performing new ones for BSM 
scenarios who promise phase transitions and GW 
signatures
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• Factor the system into “fast” and “slow” modes, and integrate out the 
former to obtain evolution eqs. for the latter

• For instance

•  for 130 GeV≲T≲105 GeV, all SM interactions are in thermal 
equilibrium

• O(GeV) RHNs have ~10-7 Yukawas: non-eq. ensemble

• Lepton (and baryon) densities also evolve slowly

General approach
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• A particle φ is weakly coupled (coupling h) to an equilibrated bath with its 
internal couplings g 
J built of bath fields, one can prove to first order in h and all orders in g 
 
 
 

• Single-particle phase-space distribution: f(t,k), sensible only for sufficiently 
weakly interacting particles

• For conserved charges, equations for the density n can similarly be defined 
with no quasiparticle assumptions Bödeker Laine (2014)

L = L� + h�⇤J + h⇤J⇤�+ LbathL = L� + h�⇤J + h⇤J⇤�+ LbathL = L� + h�⇤J + h⇤J⇤�+ Lbath

Bödeker Sangel Wörmann PRD93 (2016)
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• The derivation is based (and relies) on a separation of timescales between 
production/equilibration and the plasma dynamics

• All-order proof of the equivalence of production and equilibration rates, 
Γprod=Γ(k) feq(k0). Goes beyond previous statements based on detailed balance 
in a leading-order Boltzmann approach.

• When doing perturbative expansions, Boltzmann expressions are recovered 
where applicable (LO). Higher orders are possible and natural in this form

• Easier to include non-perturbative input in this framework if needed. See P. 
Schicho’s talk on Wednesday for QCD and heavy ions
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Production and equilibration

• Applications of this TFT result to heavy ions (e.g. photon production, 
thermalisation) and cosmology. Not in this talk:

• Non-equilibrium Kadanoff-Baym equations yield similar results Drewes 
(2010) Drewes Mendizabal Weniger (2013) Garny Hohenegger Kartavtsev (2010-13)

• Cases where f(t,k)≫1 (e.g. bosonic fields during reheating) and 
classical non-perturbative methods are used  
COSMOLATTICE Figueroa Florio Torrenti Valkenburg (2020)



• If scale separation is present and g≪1, perturbative expansion of Γ(k≳T) can 
reproduce standard Boltzmann. But quasiparticle picture is not necessary!

• When using these equations in cosmology, the l.h.s is modified to include 
Hubble expansion 
 
and often (number, energy) densities are the quantity of interest, e.g. 
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Massless particles: gravitational waves

JG Laine JCAP1507 (2015) JG Jackson Laine Zhu JHEP2007 (2020)  
Ringwald Schütte-Engel Tamarit JCAP2103 (2021)



Many potential sources of GWs

• Inflation 

• Reheating 

• Phase transitions 

• … 

 
All model-dependent and/or speculative to a degree 
Review: Caprini Figueroa Class. Quant. Grav. 35 (2018)

2.2. The Hot Thermal Phase

Figure 2.1: Timeline of the hot thermal phase of the early universe illustrating (i) the

relation between the temperature of the thermal bath T and the cosmic time t (cf. Eq. (2.23)),

(ii) the chronology of several important, partly hypothetical nonequilibrium processes, (iii)

a representative selection of those forms of matter or energy that are respectively involved

in these processes, and (iv) several possibilities for the reheating temperature after inflation

(cf. Sec. 3.1).

2.2 The Hot Thermal Phase

The hot early universe represents the stage for a great variety of physical processes taking

place over an enormous range of energy scales (cf. Fig. 2.1 for an overview of the main events

in its thermal history). As a final preparation before turning to our own scenario, we shall

now discuss in more detail the decoupling of the CMB, primordial nucleosynthesis, the QCD

and the electroweak phase transition as well as electroweak sphalerons.

2.2.1 The Cosmic Microwave Background

Towards the end of the radiation-dominated phase, at temperatures of O(1) eV, protons,

i.e. hydrogen nuclei, are kept in thermal equilibrium via the steady interplay of radiative

recombination and photoionization processes. However, as the plasma cools in the course

of the expansion, photoionization becomes less efficient, the hydrogen nuclei begin to bind

21
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Gravitational waves in the early universe



• GWs can be produced from eq. too. Weinberg

• Now J∝Tμν/mPl, so as long as Tmax<mPl  the GW-plasma coupling is indeed 
weak: freeze-in production over the history of the early universe?

• By the previous arguments: 
 

• Γ(k) also determines the absorption rate of previously emitted GWs from 
other sources 
Baym Patil Pethick PRD96 (2017) Flauger Weinberg PRD99 (2019)

However, all of these rely on yet-to-be-established models, unlike the Standard Model back-

ground that we are interested in.

Restricting for a moment to locally Minkowskian spacetime, the rate of change of the

polarization-averaged phase space distribution of gravitons (fGW) has the form [5]

ḟGW(t,k) = Γ(k)
[
nB(k)− fGW(t,k)

]
+O

(
1

m4
Pl

)
, (1.1)

where k ≡ |k| and nB(k) ≡ 1/(ek/T − 1) is the Bose distribution. The differential energy

density is given by deGW = 2k fGW
d3k
(2π)3 . Adopting a logarithmic scale, the production rate

of gravitational energy density can thus be expressed as

deGW

dt d ln k
=

k4ḟGW

π2
. (1.2)

In the following we are interested in estimating the rate Γ(k) defined by eq. (1.1) in the

frequency range in which deGW peaks. This range is given by the typical thermal scale

k ∼ πT [2], corresponding after red shift to the same microwave range at which most CMB

photons lie. In this frequency range, the gravitational wave abundance is expected to be

much below equilibrium, fGW $ nB(k), so that the right-hand side of eq. (1.1) evaluates to

Γ(k)nB(k). However, the same coefficient Γ(k) also governs other phenomena, for instance

the damping of a gravitational wave as it passes through a thermal plasma, if produced by

some astrophysical source before (cf., e.g., refs. [6, 7] for recent works).

We start by describing in some detail the technical steps of the computation, which we

have implemented in two complementary ways, viz. by taking the cut of a retarded 2-point

correlator of the energy-momentum tensor (secs. 2.1–2.3), and by considering Boltzmann

equations for graviton production (sec. 2.4). After phase space integration (sec. 2.5) and

thermal resummation (sec. 2.6), the result is evaluated numerically (sec. 3) and embedded in

a cosmological environment (sec. 4). Conclusions and an outlook are offered in sec. 5. Two

appendices explain why two classes of contributions, frequently considered in the literature,

are of subleading order for the present observable.

2. Steps of the computation

2.1. Setup

Assuming that a system is spatially homogeneous and stationary on the time scales observed,

and aligning the z-axis with the momentum (k = k ez), the production rate of the energy

density carried by gravitational waves can be related to the Wightman correlator

G<
12;12 ≡

∫

X
eik(t−z)

〈
T12(0)T12(X )

〉
, X ≡ (t,x) . (2.1)

2

JG Laine JCAP1507 (2015)
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• Work from this def, compute all two-loop graphs in the SM for the TT correlator and 
take the cuts

• Powerful method to 
get thermal spectral 
functions at thermal  
frequencies and nonzero  
virtualities too 
Laine Zhu Jackson et al  
(2010-20)

Φs : Φf : Φg :

Φs(s) :

Φg(g) :

Φs(f) : Φf(s) : Φs|f :

Φs(g) :

Φg(s) : Φs|g :

Φf(g) :

Φg(f) : Φf |g :

Figure 1: The 1 and 2-loop graphs contributing to eq. (2.8). Each subset is gauge independent.

Dashed lines denote scalars; solid lines fermions; wiggly lines gauge fields; dotted lines ghosts; blobs

the operator Tµν . Graphs obtained by symmetrizations have been omitted.

ifghabcde ≡
[ T

p]
f [ T

q]
g[ T

q−p]
h[K2]y

[P 2]a[Q2]b[(Q− P )2]c[(K − P )2]d[(K −Q)2]e
, (2.10)

where {P} denotes a fermionic Matsubara four-momentum. The indices x ≡ a + b − c and

y ≡ a + b + c + d + e − f − g − h − 2 guarantee the overall dimensionality GeV4. In the

fermionic cases the representation is not unique; for the class of masters discussed in sec. 2.3,

which have a cut corresponding to a 2↔ 2 scattering, we have ordered the indices such that

a, c, e are non-negative.

The reduction of the energy-momentum tensor correlator to the basis of eqs. (2.9) and

(2.10) has been carried out with a self-designed algorithm implemented in FORM [10]. After

the use of symmetries related to substitutions of integration variables, and noting that terms

with odd numbers of γ5-matrices do not contribute at this order, the results read

Φs = 4(D − 3)J2
11 , (2.11)
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• Work from this def, compute all two-loop graphs in the SM for the TT correlator and 
take the cut

• Cutting the two-loop diagrams  
gives rise to the squares of these  
diagrammatic structures  
(crossings not shown)

Φg(g) ⇔

Φs(f) + Φf(s) + Φs|f ⇔

Φs(g) + Φg(s) + Φs|g ⇔

Φf(g) + Φg(f) + Φf |g ⇔

Figure 2: t-channel 2↔ 2 scatterings contributing to gravitational wave production (further processes

are obtained with u and s-channel reflections). The notation is as in fig. 1, with the double line

indicating a graviton. Up to numerical prefactors, the amplitudes squared originating from these

processes, after summing over the physical polarization states of the gravitons and Standard Model

particles, correspond to the cuts shown in eqs. (2.36)–(2.38) (cf. sec. 2.4).

where the breaking of Lorentz invariance through the medium manifests itself only through

the distribution functions Nτ1;σ1σ2
:

CΦg(g) = 4C
[
Φs(g) + Φg(s) + Φs|g

]
= 2N+;++

{
−2

(
s2 + u2

t
+

t2

s

)}
, (2.36)

C
[
Φs(f) + Φf(s) + Φs|f

]
= 2N−;−+

{
2t
}
+ 2N+;−−

{
s
}
, (2.37)

C
[
Φf(g) + Φg(f) + Φf |g

]
= 4N−;−+

{
s2 + u2

t

}
+ 4N+;−−

{
t2

s

}
. (2.38)

We note that eq. (2.36) could be written in a more symmetric form, but for later conve-

nience we prefer to use the same structures as in eq. (2.38). Eqs. (2.36)–(2.38) correspond to

amplitudes squared for processes illustrated in fig. 2 (cf. sec. 2.4).

The drastic simplification that we have observed when going on the light-cone has a known

precedent: it also takes place for photon production from a thermal medium. Furthermore, in

that case it is well understood. The transverse correlator to which physical photons couple,

ImGR
T, can be replaced by the full vector correlator, ImGR

V = ImGR
T + ImGR

L , because a

Ward identity guarantees the vanishing of ImGR
L for zero virtuality. We are not aware of a

similar operator relation between the tensor channel correlator in eq. (2.3) and one without

any T’s, even if intriguing relations between photon and graviton production amplitudes

are known to exist (cf. sec. 2.4).
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• Hence, at LO for k~T, equivalence with kinetic theory 
 

• The phase space integration runs over log-IR divergent soft gauge boson exchanges 
 

 

• Sensitivity to collectivity: screening, plasma oscillations and Landau damping. 
Treated by Hard Thermal Loop resummation: based on recent developments in TFT 
we implement a well-behaved subtraction and replacement with the HTL 
resummed evaluation JG Laine (2015-16)

2.4. Connection to Boltzmann equations

The 2↔ 2 cuts of sec. 2.3 can also be obtained from kinetic theory and Boltzmann equations.

As a starting point, we may, for k ∼ πT , write the leading-order contribution to eq. (1.1) as

ḟGW(t,k) = Γ(k)nB(k) =
1

8k

∫
dΩ2→2

∑

abc

∣∣∣Mab
cG(p1,p2;k1,k)

∣∣∣
2
fa(p1) fb(p2) [1± fc(k1)] ,

(2.39)

where we have neglected fGW(t,k) on the right-hand side. The sum runs over all abc ∈ SM

(Standard Model) particle and antiparticle degrees of freedom and thus over all ab → cG

processes, with G denoting the graviton. |Mab
cG(p1,p2;k1,k)|2 is the corresponding matrix

element squared, summed over all degeneracies of each species. For the SM in the symmetric

phase, these are spin, polarization, colour, weak isospin and generation. For k ∼ πT the

contribution of thermal masses is suppressed, so the external states can be considered massless

(thermal masses are only needed for the IR-divergent part of the squared amplitudes, cf.

sec. 2.6). The prefactor 1/8k is a combination of 1/2k from the phase space measure, 1/2

for the graviton polarization degeneracy, and 1/2 for the symmetry factor for identical initial

state particles; in the cases where a %= b this factor is compensated for by their being counted

twice in the sum over abc. The thermal distributions fi correspond to nB and nF for bosons

and fermions, respectively, with [1 ± fc(k1)] implying [1 + nB(k1)] in the former case and

[1− nF(k1)] in the latter.

The main challenge is the determination of the matrix elements squared, which requires

the derivation of Feynman rules for all graviton-SM couplings and the computation of the

tree-level amplitudes. Given the large number of vertices and processes, and the associated

opportunities for error, we have adopted automated techniques, originally developed for col-

lider physics. We first used FeynRules [11], which can derive Feynman rules from a given

Lagrangian. We applied it to the Lagrangian describing the symmetric-phase SM coupled to

gravitons, i.e.

LSM+G = LSM −
√
32π

2mPl

hµνT
µν
SM , (2.40)

where the SM energy-momentum tensor T µν
SM contains also the trace part. The kinetic term

for gravitons can be omitted, as they are external states in our computation.

Using the appropriate interface [12], FeynRules can generate a model file for Feyn-

Arts [15] (unfortunately, sometimes manual fixes of the generation and SU(2) index assig-

ments were needed).4 This package and its companion FormCalc [16] were then used to

generate, evaluate and square all amplitudes, summing over the relevant degeneracies. The

handling of spin, vector boson polarization and colour is available in FormCalc, whereas

4We have also looked into other packages, notably CalcHEP [13] and MadGraph [14], however have not

identified a procedure that would be simpler than the one described here.
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d⌦2!2

k ∼ 3T

p ∼ 3T

Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥

∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η #
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η # 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full

7
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Figure 3: Left: examples of the interaction rate Γ(k) from eq. (2.2) at a few representative tempera-

tures, normalized to T 3/m2
Pl. The interaction rate decreases in these units with temperature, because

the most important running couplings become smaller. Right: the combination m2
Pl k

3 Γ(k)nB(k)/T
6

that plays a role for the production rate of the energy density carried by gravitational radiation.

3. Numerical results

Inserting the integrals from eqs. (2.60) and (2.71), with coefficients from eqs. (2.72)–(2.75),

into eq. (2.8), and adding the resummation from eq. (2.97), we can determine the interaction

rate Γ(k) from eq. (2.2). For the running couplings and Debye masses appearing in these

expressions, we use values specified in sec. 4 of ref. [30].

In fig. 3, Γ(k) is plotted both as m2
Pl Γ(k)/T

3 and in the combination appearing in the

energy density production rate, m2
Pl k

3 Γ(k)nB(k)/T
6, at T ≈ 103, 109, 1015 GeV. In the units

chosen, the rates decrease slowly with the temperature, due to the running of g22 , g
2
3 and h2t .

We remark that Γ(k) has a (barely visible) negative dip for k/T → 0. In this region

many of our approximations, taken under the assumption k ∼ πT , fail. Most importantly,

HTL resummation with one hard and one soft gauge boson in Φg, as described in sec. 2.6,

only works correctly for k $ mE.
9 This is neither new nor specific to graviton production:

previous calculations of gravitino [31–33], axion [34, 35] and axino [36] production saw the

same issue. In fact, the negative dips were typically much larger (cf., e.g., fig. 3 of ref. [36]).

9For k ! mE, we could actually replace the argument of the logarithm in eq. (2.96) with just 4k2/m2
E, as

the difference between these is parametrically of O(g4). For k " mE/2, however, ln(1+ 4k2/m2
E) is small and

positive, whereas ln(4k2/m2
E) is large and negative. That said, our result is formally incomplete for k <∼mE,

as is practically any available thermal production rate as of today, including that of photons from QCD.
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Figure 3: Left: examples of the interaction rate Γ(k) from eq. (2.2) at a few representative tempera-

tures, normalized to T 3/m2
Pl. The interaction rate decreases in these units with temperature, because

the most important running couplings become smaller. Right: the combination m2
Pl k

3 Γ(k)nB(k)/T
6

that plays a role for the production rate of the energy density carried by gravitational radiation.

3. Numerical results

Inserting the integrals from eqs. (2.60) and (2.71), with coefficients from eqs. (2.72)–(2.75),

into eq. (2.8), and adding the resummation from eq. (2.97), we can determine the interaction

rate Γ(k) from eq. (2.2). For the running couplings and Debye masses appearing in these

expressions, we use values specified in sec. 4 of ref. [30].

In fig. 3, Γ(k) is plotted both as m2
Pl Γ(k)/T

3 and in the combination appearing in the

energy density production rate, m2
Pl k

3 Γ(k)nB(k)/T
6, at T ≈ 103, 109, 1015 GeV. In the units

chosen, the rates decrease slowly with the temperature, due to the running of g22 , g
2
3 and h2t .

We remark that Γ(k) has a (barely visible) negative dip for k/T → 0. In this region

many of our approximations, taken under the assumption k ∼ πT , fail. Most importantly,

HTL resummation with one hard and one soft gauge boson in Φg, as described in sec. 2.6,

only works correctly for k $ mE.
9 This is neither new nor specific to graviton production:

previous calculations of gravitino [31–33], axion [34, 35] and axino [36] production saw the

same issue. In fact, the negative dips were typically much larger (cf., e.g., fig. 3 of ref. [36]).

9For k ! mE, we could actually replace the argument of the logarithm in eq. (2.96) with just 4k2/m2
E, as

the difference between these is parametrically of O(g4). For k " mE/2, however, ln(1+ 4k2/m2
E) is small and

positive, whereas ln(4k2/m2
E) is large and negative. That said, our result is formally incomplete for k <∼mE,

as is practically any available thermal production rate as of today, including that of photons from QCD.

21

• The rate is valid for k≳T. At smaller k our rate is not LO correct, but extrapolates to 
k=0 better than what was happening in similar calculations for gravitino and axion 
production 
(e.g. Pradler Steffen PRD75 (2007), Rychkov Strumia PRD75 (2007))

JG Jackson Laine Zhu JHEP2007 (2020)



• Well-defined vacuum-like particle external states, at 
most HTL internally 

• Longer-lived intermediate states, collinear and soft 
kinematics. Changes to simple particle picture 

• Duration of order mean free time: scattering picture 
completely breaks down, GW does not resolve the 
microscopic scale

• Nothing here specific to GW
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• TFT formalism shows that the IR rate is proportional to the shear viscosity of the 
plasma

Production from hydrodynamic fluctuations
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Going to the IR
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• For the SM at T>160 GeV η is dominated by the slowest processes in eq., those 
involving right-handed leptons only 
 
 
 
g1 hypercharge coupling with screening mass 
Only a leading-log estimate, no complete LO for T>160 GeV 
Arnold Moore Yaffe (2000-2003)

• TFT formalism shows that the IR rate is proportional to the shear viscosity of the 
plasma
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p ∼ 3T

Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥
∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η #
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η # 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full
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Going to the IR



• Peak: frequency at k≈4T. Redshifts at decoupling to kdec≈4Tdec(3.9/106.75)1/3~Tdec. 
Today f≈100 GHz. Amplitude determined by Tmax. 

SM

Figure 1: Function (k/T )3 ⌘̂SM(T, k/T ) determining the background of stochastic gravitational
waves produced in the thermal SM plasma, showing the hydrodynamic contributions (straighter
solid lines for smallish k/T ), the microscopic contributions at full leading order (curved solid lines
for higher k/T ), and their leading-log approximations (dashed lines). The lines are colored for the
scales in which the calculations can be trusted, i.e. k < ↵2

1
T for the hydrodynamic contributions,

and k > m3(T ) for the microscopic ones. From top to bottom, the temperatures correspond to
T = 103 GeV (black), T = 108 GeV (red), T = 1013 GeV (green) and T = MP (violet). The
gauge and Yukawa couplings were evaluated at the renormalization µ̄ = 2⇡T using the respective
two-loop renormalization group equations.

2.3 CGMB in the SM

In the SM we assign n = 1, 2, 3 to the gauge groups U(1)Y , SU(2)L, SU(3). With the SM matter
content one has

Nspecies,SM =
11

2
, Nleptons,SM =

3

2
,

m̂2

1,SM(T ) =
11

6
g1(T )

2, m̂2

2,SM(T ) =
11

6
g2(T )

2, m̂2

3,SM(T ) = 2g3(T )
2.

(2.47)

With this one can fix ⌘̄ as well as the ⌘̂HTL contribution of Eqs. (2.5) and (2.8). Computing as
well the coe�cients of the loop functions in terms of the representations and couplings in the SM
leads to:

⌘̂SM

✓
T,

k

T
⌘ k̂

◆
'

8
>>>>>>>><

>>>>>>>>:

15.51

g4
1
ln(5/m̂1,SM)

, k̂ . ↵2

1
,

⌘̂HTL,SM(T, k̂) + (3g22 + 12g23)⌘gg(k̂)

+ (g21 + 3g22)⌘sg(k̂) + (5g21 + 9g22 + 24g23)⌘fg(k̂) k̂ & max {m̂n}.
+ (3|yt|2 + 3|yb|2 + |y⌧ |2) ⌘sf (k̂),

(2.48)

In the previous equations we omitted for simplicity the logarithmic T -dependence of the couplings
gi, yi and the rescaled Debye masses m̂i. We have also ignored the Yukawa couplings of the lightest
fermions.
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Cosmological implications



• Direct detection challenging in the medium term

• Thermal production stores energy in GWs. BBN and CMB observations constrain 
the energy density stored in radiation at those epochs: GW contribution to Neff 
Smith Pierpaoli Kamionkowski PRL97 (2006) Henrot-Versille et al Class. Quant. Grav. 32 
(2015) Caprini Figueroa Class. Quant. Grav. 35 (2018)

• The SM predictions have 10-3 uncertainty, the experimental accuracy 10-1, expected 
to increase with next-generation detectors CMB-S4

• Requiring ∆Neff =10-3 yields Tmax < 2 1017 GeV for a SM universe, 2x more than that 
for a MSSM scenario (the extra GW production from the larger number of thermal 
d.o.f.s is more than compensated by the extra dilution)

Cosmological implications

JG Jackson Laine Zhu JCHEP2007 (2020) Ringwald Schütte-Engel Tamarit JCAP2107 (2021)



Massive particles



• n sterile (SM gauge singlet), Majorana neutrinos coupling to the three active lepton 
flavours and the (conjugate) Higgs field 
 

• Can address active neutrino masses (seesaw) and baryon  
asymmetry (leptogenesis) over a wide range of parameters  
Fukugita Yanagida PLB174 (1986)

• A specific realisation (νMSM) can also provide a keV-scale  
DM right-handed neutrino  
Asaka Blanchet Shaposhnikov PLB620, PLB631 (2005)

• Asymmetry generation and RHN production require  
rates from T≫MI to T≪MI

Massive particles: right-handed neutrinos

L = LSM +
1
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10-6 10-3 100 103 106 109 1012

M / GeV

10-3

100

103

106

109

1012

T 
/ G

eV

νMSM  1st

Dark Matter

Leptogenesis & ∆m
ν
α

Classic

TeV-scale
Leptogenesis

Leptogenesis

νMSM  2nd and 3rd

In this talk: M,πT ! 100 GeV.

10
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Massive particles: right-handed neutrinos
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Decays

• Production, equilibration,  
freeze-out and decay rates from  
the formalism over many decades

JG Laine (2016-20)



• Symmetric phase

• T≪MI  Salvio Lodone Strumia (2011), Laine Schröder (2012), Biondini Brambilla Escobedo Vairo (2012)

• T~MI Laine (2013), Laine Jackson (2021)

• T≫MI Anisimov Besak Bödeker (2010-12), Ghisoiu Laine (2014), JG Laine (2021)

• Broken phase

• MI~GeV JG Laine (2016-20), Jackson Laine (2019)

• MI~keV Asaka Laine Shaposhnikov (2006), JG Laine (2015-20) Bödeker Klaus (2020)

• These calculations provide a pattern for models with many regimes to be followed. 
Review Laine 2203.05772

Massive particles: right-handed neutrinos
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Massive particles: the ultrarelativistic regime
<latexit sha1_base64="ctigQ2eoTMAt9MrLc5MdZOMVcnE="></latexit>

�(k) =
X

a

|hIa|2

2k0

Z
d4XeiK·Xh[�̃†aLl(X), l̄aR�̃(0)]iT≫MI

(a) (b)

Figure 1: (a) Examples of 1+n ↔ 2+n processes for the direct generation of right-handed neutrinos

from a Yukawa interaction. (b) Examples of 1 + n ↔ 2 + n processes for the generation of left-

handed neutrinos which subsequently oscillate into right-handed ones. Arrowed, dashed, and wiggly

lines correspond to Standard Model fermions, scalars, and gauge bosons, respectively, whereas right-

handed neutrinos are denoted by a double line. The closed blob denotes a Higgs expectation value.

(a) (b)

Figure 2: (a) Examples of 2 → 2 processes for the direct generation of right-handed neutrinos from

a Yukawa interaction. (b) Examples of 2 → 2 processes for the generation of left-handed neutrinos

which subsequently oscillate into right-handed ones. The notation is as in fig. 1. The complete set for

case (a) is shown in fig. 1 of ref. [29] and for case (b) in fig. 7 below.

At lower temperatures, Higgs and gauge bosons become non-relativistic and need to be de-

coupled from the computation (the top quark becomes non-relativistic already at a somewhat

higher temperature).

In the regime of eq. (2.10), there are two types of contributions to ImΠR. First, the Higgs

field φ̃ in eq. (2.2) can represent a propagating mode (Goldstone or Higgs). This leads to the

same processes as have previously been considered in the symmetric phase [27,28]; examples

of 1 + n ↔ 2 + n processes are shown in fig. 1(a) and of 2 ↔ 2 processes in fig. 2(a). Second,

the Higgs field could be replaced by its expectation value, φ̃ # (v 0)T /
√
2. Then we are left to

consider processes experienced by an active (left-handed) neutrino. Examples of amplitudes

are illustrated in figs. 1(b) and 2(b). We refer to first type as a “direct” contribution and to

the second as an “indirect” one.

When amplitudes such as those in figs. 1 and 2 are squared, there are no interference terms

between the direct and indirect sets, provided that we adopt a class of gauges (such as the

Rξ gauge) in which scalar and gauge fields do not transform to each other. Then the rate

can be written as

ImΠR = ImΠR|direct + ImΠR|indirect , (2.11)

where the “direct” processes are like in sets (a) of figs. 1 and 2. Like in the symmetric

phase [27, 28], the direct term has the parametric magnitude ImΠR|direct ∼ g2T 2 (recalling

5

• In a first approximation mass seems negligible

• Just 2↔2 processes (with fermion HTL included)?

Anisimov Besak Bödeker (2010-12) Ghisoiu Laine (2014)
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• Effective 1↔2 processes 
 
 

• Landau-Pomeranchuk-Migdal (LPM) interference of  
multiple soft scatterings, requires ladder resummation 

• Borrow techniques from hot QCD to deal with LPM resummation 
Baier Dokshitzer Mueller Peigné Schiff (1995-97) Zakharov (1996-97) Arnold Moore Yaffe (2001-2003) 

(a) (b) (c) (d) (e)

Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
+ ρT

Ĩh

−
πM2

(4π)4k

∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄2

k2M2
+

11

2

]}

+
g21 + 3g22

2

{

2
[

ρT
Ib
− ρT

Ĩb
+ ρT

Îd
− ρT

Id
+ ρT

Ig
+ ρT

Îh’
+ ρT

Ij

]

− 4
[

ρT
Ih

+ ρT

Îh

]

+
3πM2

(4π)4k

∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄2

k2M2
+

41

6

]}

. (3.4)

The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can

5

!

N N

Figure 3: Example for a self-energy diagram that needs to be taken into account in a
consistent leading order calculation of the production rate via Eq. (7).

corresponding coupling constants. Also, the thermal mass of the Majorana neutrinos

can be neglected.

The relevance of thermal masses for these processes was first realized in Ref. [14].

There, however, the thermal mass for soft fermionic excitations was used, by which

the rate is overestimated. In [15] it was argued that the lepton and/or the Higgs

momenta are soft, and that it is therefore necessary to do a Hard Thermal Loop

resummation for the Higgs and charged lepton lines. This is correct at the edge of the

threshold where the decay becomes kinematically allowed. Since the Hard Thermal

Loop gives the correct asymptotic mass even when the external momentum is hard,

the result of Ref. [15] contains the correct decay contribution to the rate also away from

the thresholds. However, the dominant contribution with this collinear kinematics is

obtained by adding interactions with other hard particles in the plasma, mediated by

the exchange of soft electroweak gauge bosons as shown in Fig. 1(b) [16]. In a complete

leading order calculation an arbitrary number of such interactions has to be taken into

account. We summarize the results that were already obtained in [16], to which we

refer the reader for the derivation.

3.2 Computing the rate

As shown in [16], the kinematics described above necessitates the inclusion of multiple

soft scattering already at leading order. Examples for processes that must be taken

into account are shown in Fig. 1(b). In order to find the production rate due to this

infinite set of processes, it is most convenient to use (7) with the self-energy given by

diagrams of the form shown in Fig. 3 with an arbitrary number of soft gauge boson

ladder rungs or self-energy insertions. The self-energy to be inserted in (7) is obtained

by resumming all diagrams which respect the topology as given in Fig. 3: No crossed
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Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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• Effective 1↔2 processes 
 
 

• Absent from GW production calculation at LO (suppression in derivative coupling) 
and similar production calculations (gravitino, axion, etc…)

• Thermalisation during reheating (number-nonconserving and efficient energy 
equilibration) Davidson Sarkar (2001) Harigaya Mukaida (2014) Mukaida Yamada (2015) 
Large body of literature on QCD thermalisation, review in Berges Heller Mazeliauskas 
Venugopalan (2020) 
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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Ĩb
+ ρT

Îd
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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• Effective 1↔2 processes 
 
 

• Very important beyond sterile neutrinos

• Thermalisation during reheating (number-nonconserving and efficient energy 
equilibration) Davidson Sarkar (2001) Harigaya Mukaida (2014) Mukaida Yamada (2015) 
Drees Najjari (2021) Large body of literature on QCD thermalisation, review in Berges 
Heller Mazeliauskas Venugopalan (2020) 
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can

5

Massive particles: the ultrarelativistic regime

Anisimov Besak Bödeker (2010-12) Ghisoiu Laine (2014) JG Laine (2021)



• Effective 1↔2 processes 
 
 

• Very important beyond sterile neutrinos

• Equilibration of the Yukawa interactions of right-handed electrons  
Bödeker Schröder (2019)

<latexit sha1_base64="ctigQ2eoTMAt9MrLc5MdZOMVcnE="></latexit>

�(k) =
X

a

|hIa|2

2k0

Z
d4XeiK·Xh[�̃†aLl(X), l̄aR�̃(0)]iT≫MI

(a) (b) (c) (d) (e)

Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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• Effective 1↔2 processes 
 
 

• Large enhancement in the high-T regime
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k
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The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Figure 3: Example for a self-energy diagram that needs to be taken into account in a
consistent leading order calculation of the production rate via Eq. (7).

corresponding coupling constants. Also, the thermal mass of the Majorana neutrinos

can be neglected.

The relevance of thermal masses for these processes was first realized in Ref. [14].

There, however, the thermal mass for soft fermionic excitations was used, by which

the rate is overestimated. In [15] it was argued that the lepton and/or the Higgs

momenta are soft, and that it is therefore necessary to do a Hard Thermal Loop

resummation for the Higgs and charged lepton lines. This is correct at the edge of the

threshold where the decay becomes kinematically allowed. Since the Hard Thermal

Loop gives the correct asymptotic mass even when the external momentum is hard,

the result of Ref. [15] contains the correct decay contribution to the rate also away from

the thresholds. However, the dominant contribution with this collinear kinematics is

obtained by adding interactions with other hard particles in the plasma, mediated by

the exchange of soft electroweak gauge bosons as shown in Fig. 1(b) [16]. In a complete

leading order calculation an arbitrary number of such interactions has to be taken into

account. We summarize the results that were already obtained in [16], to which we

refer the reader for the derivation.

3.2 Computing the rate

As shown in [16], the kinematics described above necessitates the inclusion of multiple

soft scattering already at leading order. Examples for processes that must be taken

into account are shown in Fig. 1(b). In order to find the production rate due to this

infinite set of processes, it is most convenient to use (7) with the self-energy given by

diagrams of the form shown in Fig. 3 with an arbitrary number of soft gauge boson

ladder rungs or self-energy insertions. The self-energy to be inserted in (7) is obtained

by resumming all diagrams which respect the topology as given in Fig. 3: No crossed
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0−ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k
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. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k
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. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Figure 6: Number of produced Majorana neutrinos per unit time and unit volume
as a function of z ≡ MN/T . The dotted curve is the result without any soft gauge
interactions. The full line includes an arbitrary number of soft gauge interactions.

gauge interactions is very smooth in the regions where the decay of the Higgs boson

becomes kinematically forbidden.

One can see that the full rate is larger than the tree-level rate by about a factor 3 at

small z. It decreases only mildly when the tree-level processes are forbidden. When the

inverse decay process sets in, the difference between tree-level rate and the complete

rate goes to zero. This is expected, since the collinear enhancement is a relativistic

effect and it disappears when the Majorana neutrinos become non-relativistic. One

should emphasize that the strong enhancement caused by the soft gauge interactions

does not signal a breakdown of perturbation theory, because all contributions discussed

above are leading order.

It is also interesting to consider the contribution due to helicity changing and helicity

conserving processes separately (cf. the discussion at the end of Sec. 3.7). The rate of

helicity changing processes does not vanish in the limit MN → 0, and should therefore

be dominant at small z. The results are shown in Fig. 7. We clearly see that the

helicity changing process dominates at high temperatures and the helicity conserving
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0−ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can

5

(a) (b) (c) (d) (e)

Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0−ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
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Îh’
+ ρT

Ij

]

− 4
[

ρT
Ih

+ ρT

Îh
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Figure 1: The processes, up to O(g2), through which right-handed neutrinos can be generated.

Arrowed, dashed, and wiggly lines correspond to Standard Model fermions, scalars, and gauge fields,

respectively, whereas right-handed neutrinos are denoted by a double line. The closed “virtual” loops

include both vacuum and thermal corrections.

3. NLO result in the relativistic regime

We start by discussing the production rate in the “naive” language of Feynman diagrams

and the loop expansion. The relevant amplitudes are shown in fig. 1. If the right-handed

neutrino is massive and all other particles are assumed massless, the LO process is the 2→ 1

coalescence depicted up left. The NLO level includes virtual corrections to the 2→ 1 reaction,

as well as real 3 → 1 and 2 → 2 processes. In a massless theory, the real and virtual NLO

processes are IR divergent; their sum is finite for any M > 0 [16, 9]. All the NLO processes

have been evaluated numerically in ref. [9].

It was pointed out in ref. [9], however, that for M ∼ g1/2T the loop expansion breaks down,

and a thermal mass resummation is needed for the Higgs field. The (“asymptotic”) thermal

masses associated with the Higgs field (mφ) and with left-handed leptons (m") are

m2
φ = −

m2
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+
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4
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where mH is the vacuum Higgs mass, and corrections of O(g2m2
H , g3T 2) have been omit-

ted [17]. In ref. [9] such a mass resummation was implemented not only for the Higgs field,

for which a resummation is unambiguous, but also for leptons, for which it amounts to a

higher-order effect when M ∼ g1/2T . It turns out that once proceeding to M <∼ gT , where

thermal mass resummation becomes necessary even for leptons, the correct procedure differs

from the naive implementation of ref. [9] (the correct procedure for leptons is part of the

LPM resummation as discussed in sec. 4). Hence, in order to be able to combine the NLO

result with the LPM result in a systematic way, we need to re-express the NLO result of

ref. [9] without a thermal mass resummation for leptons.

Keeping a thermal mass for the Higgs only, the leading-order result with a general four-

momentum K in the time-like domain M2 ≡ K2 > 0 can be expressed as

ImΠLO
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Massive particles: the relativistic regime

6. Next-to-leading order analysis

Including now also contributions from the top quark and from gauge bosons, we turn to

our full NLO expressions. In order to obtain a “universal” representation, we make use of

completions of squares and substitutions of integration variables in order to express the results

in terms of a minimal number of independent “master” sum-integrals, listed in appendix A.

We specify graph-by-graph results in NDR in terms of these masters.4 Gauge parameter

independence (with respect to both gauge groups) has been checked separately, so here only

the Feynman gauge results are shown. They read

= 12|hνB|2λB

(
−Ib + Ic + Id

)
, (6.1)

= 2|hνB|2|htB|2Nc

(
2 Ĩb − 2 Ĩc − 2 Ĩd + Ĩe − Ĩf + Ĩh

)
, (6.2)

= |hνB|2(g21B + 3g22B)
[D
2

(
−Ib + Ic + Id

)]
, (6.3)

= |hνB|2(g21B + 3g22B)
[1
2

(
Ib − Ic − Id

)
− Ie + If − Ih

]
, (6.4)

= |hνB|2(g21B + 3g22B)
[D − 2

2

(
Ib − Ĩb + Ic − Îc + Îd − Id + Îh’

)]
, (6.5)

= |hνB|2(g21B + 3g22B)
(
Ĩe − If + Ig − Ih − 2 Îh + Ij

)
, (6.6)

with dashed, solid, doubled, and wiggly lines representing scalars, leptons, quarks, and gauge

bosons, respectively.

Inserting the cuts, or spectral functions, from appendix B; setting D = 4− 2ε; and renor-

malizing according to

|hνB|2 = |hν(µ̄)|2µ2εZν , with (6.7)

Zν ≡ 1 +
1

(4π)2ε

[
|ht|2Nc −

3

4
(g21 + 3g22)

]
+O(g4) , (6.8)

4We have checked that the same results are obtained, for every diagram, with the recipe described below

eq. (3.6), whereas in the strict ’t Hooft - Veltman scheme there are additional terms; cf. appendix D.
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)]
, (6.5)

= |hνB|2(g21B + 3g22B)
(
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
+ ρT

Ĩh

−
πM2

(4π)4k

∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄2

k2M2
+

11

2

]}

+
g21 + 3g22

2

{

2
[

ρT
Ib
− ρT

Ĩb
+ ρT

Îd
− ρT

Id
+ ρT

Ig
+ ρT
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Ij

]

− 4
[
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Îh

]
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3πM2

(4π)4k
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dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄2

k2M2
+

41

6

]}

. (3.4)

The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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• A leading-order 2→1 process receiving  
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Massive particles: the relativistic regime
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Figure 5: Left: Total right-handed neutrino production rate from eq. (2.5), for M = 107 GeV. Shown

are results from eq. (7.2) (“LPM + ∆(2→ 2)”); eq. (4.9) (“LPM”); with naive thermal masses as

given e.g. in eq. (3.9) of ref. [9] (“TREE”); and from ref. [6] (“NON-REL”). Right: Similar results for

the function defined in eq. (2.6). The solid lines constitute our final results.

a factor ∼ 1.7 at M # T (for M = 107 GeV).

8. Conclusions and outlook

We have provided numerical results for the imaginary part of the right-handed neutrino

self-energy, entering gauge-invariant physical observables as dictated by eqs. (2.5) and (2.6),

as a function of the right-handed neutrino mass M and momentum k, for a wide range of

temperatures T ≥ 160 GeV.3 Previous results for M # T [13] cannot be extrapolated to

M >∼T because the 2→ 2 contributions were evaluated by assuming M/T = 0, whereas NLO

results obtained for M >∼πT [9] cannot be extrapolated to M # πT because of a powerlike

breakdown of the loop expansion. Our results smoothly interpolate between the two regimes,

although for the moment this comes with the price of a phenomenological treatment in a

particular intermediate range (cf. sec. 6). In order to avoid this compromise in the future,

the NLO computation of ref. [9] should be repeated with mφ > 0. From a practical point of

view, though, it appears that only a narrow mass range is affected, so that even the present

results should suffice for many applications (cf. the grey bands in figs. 3(right) and 4(left),

the latter being practically invisible).

3Tabulated results can be downloaded from www.laine.itp.unibe.ch/production-highT/.
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Figure 6: Number of produced Majorana neutrinos per unit time and unit volume
as a function of z ≡ MN/T . The dotted curve is the result without any soft gauge
interactions. The full line includes an arbitrary number of soft gauge interactions.

gauge interactions is very smooth in the regions where the decay of the Higgs boson

becomes kinematically forbidden.

One can see that the full rate is larger than the tree-level rate by about a factor 3 at

small z. It decreases only mildly when the tree-level processes are forbidden. When the

inverse decay process sets in, the difference between tree-level rate and the complete

rate goes to zero. This is expected, since the collinear enhancement is a relativistic

effect and it disappears when the Majorana neutrinos become non-relativistic. One

should emphasize that the strong enhancement caused by the soft gauge interactions

does not signal a breakdown of perturbation theory, because all contributions discussed

above are leading order.

It is also interesting to consider the contribution due to helicity changing and helicity

conserving processes separately (cf. the discussion at the end of Sec. 3.7). The rate of

helicity changing processes does not vanish in the limit MN → 0, and should therefore

be dominant at small z. The results are shown in Fig. 7. We clearly see that the

helicity changing process dominates at high temperatures and the helicity conserving
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• TFT formalism for thermodynamics and phase transitions:

• Well-tested for the SM

• Being applied to BSM models with an outlook on first-order phase transitions and 
gravitational wave production

Conclusions



• TFT formalism for thermal rates

• Does not require quasi-particles, though it reproduces quasi-particle Boltzmann 
results where they apply

• Relies on timescale separation

• Thermal production of gravitational waves: guaranteed to be there, contributes to 
Neff. No stringent bounds for SM-like universes. Methods applicable to light/
massless states non-renomalizeably coupled to plasma

• Thermal production of massive particles: the case of heavy neutral leptons/sterile 
neutrinos. Many regimes to be examined, great progress with interdisciplinary 
connections to hot QCD and NLO available in some regimes

Conclusions


