Chiral Phase Transition in 3-flavor QCD from Lattice QCD

Sipaz Sharma

in collaboration with

L.Dini, P.Hegde, F.Karsch, A.Lahiri, C.Schmidt

March 30, 2022

<ロト <四ト <注入 <注下 <注下 <

Outline

- Motivation : Pisarski and Wilczek remarks.
- Past Work.
- Universal properties near a critical point.
- Definitions of chiral observables and simulation details.
- Results for order parameter and its susceptibility.
- Finite size scaling analysis.
- Conclusions & Outlook.

Motivation

▶ $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$

► In the chiral limit the order of the QCD phase transition depends on the number of quark flavours that become massless. For N_f ≥ 3 massless quark flavors, this phase transition is first order.

[Pisarski & Wilczek, 1983]

Figure: Columbia Plot [A.Peikert, Ph.D. Thesis, 2000]

Past work

 For calculations performed with unimproved gauge and fermion actions, bounds on the critical parameters show a strong cut-off and discretization dependence.

[F.Karsch et al., 2001] [Philippe de Forcrand et al., 2016]

Past work

 For calculations performed with unimproved gauge and fermion actions, bounds on the critical parameters show a strong cut-off and discretization dependence.

[F.Karsch et al., 2001] [Philippe de Forcrand et al., 2016]

 Calculations were performed using HISQ action on N_τ = 6 lattices. No direct evidence of a first order region was found. An upper bound for the critical pion mass was estimated to be equal to 50 MeV. [A. Bazavov et al., 2017]

Past work

For calculations performed with unimproved gauge and fermion actions, bounds on the critical parameters show a strong cut-off and discretization dependence.

[F.Karsch et al., 2001] [Philippe de Forcrand et al., 2016]

- Calculations were performed using HISQ action on N_τ = 6 lattices. No direct evidence of a first order region was found. An upper bound for the critical pion mass was estimated to be equal to 50 MeV. [A. Bazavov et al., 2017]
- Wilson-Clover fermion action was used to put an upper bound on critical pion mass which was found to be equal to 110 MeV. T_E was quoted to be equal to 134(3) MeV.

[Y. Kuramashi et al., 2020]

イロト イポト イヨト イヨト

In the vicinity of a second order critical point, singular part of the free energy density dominates.

$$\begin{split} f_{s}(t,h,...) &= b^{-d} f_{s}(b^{y_{t}}t,b^{y_{h}}h,...) \\ & [J. \text{ Engels et al., 2000] [Ejiri, Karsch et al., 2009]} \end{split}$$

- 3

イロト イポト イヨト イヨト

In the vicinity of a second order critical point, singular part of the free energy density dominates.

$$f_{s}(t, h, ...) = b^{-d} f_{s}(b^{y_{t}}t, b^{y_{h}}h, ...)$$

[J. Engels et al., 2000] [Ejiri, Karsch et al., 2009]

► t and h are the reduced scaling variables : $t = \frac{1}{t_0} \frac{T - T_c}{T_c}$, $h = \frac{H}{h_0}$; t_0 , h_0 are non universal parameters.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the vicinity of a second order critical point, singular part of the free energy density dominates.

$$f_{s}(t,h,\ldots)=b^{-d}f_{s}(b^{y_{t}}t,b^{y_{h}}h,\ldots)$$

[J. Engels et al., 2000] [Ejiri, Karsch et al., 2009]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the vicinity of a second order critical point, singular part of the free energy density dominates.

$$f_{s}(t,h,...) = b^{-d}f_{s}(b^{y_{t}}t,b^{y_{h}}h,...)$$

[J. Engels et al., 2000] [Ejiri, Karsch et al., 2009]

- $\label{eq:tau} \begin{array}{l} \label{eq:tau} \mbox{t and } h \mbox{ are the reduced scaling variables :} \\ t = \frac{1}{t_0} \frac{T-T_c}{T_c}, \quad h = \frac{H}{h_0}; \quad t_0, \ h_0 \mbox{ are non universal parameters.} \end{array}$ $\label{eq:tau}$ $\mbox{b can be chosen such that } f_s \mbox{ becomes function of one argument :} \\ f_s(t,h) = h^{1+1/\delta} f_s(z,1), \quad z = t/h^{1/\beta\delta} \end{array}$
- O(2) & Z(2) will have different critical exponents.

In the vicinity of a second order critical point, singular part of the free energy density dominates.

$$f_s(t, h, ...) = b^{-d} f_s(b^{y_t}t, b^{y_h}h, ...)$$

[J. Engels et al., 2000] [Ejiri, Karsch et al., 2009]

- $\label{eq:tandham} \begin{array}{l} \blacktriangleright \ t \ \text{and} \ h \ \text{are the reduced scaling variables}: \\ t = \frac{1}{t_0} \frac{T T_c}{T_c}, \quad h = \frac{H}{h_0}; \quad t_0, \ h_0 \ \text{are non universal parameters.} \end{array}$ $\label{eq:tandbam} \begin{array}{l} \blacktriangleright \ b \ \text{can be chosen such that} \ f_s \ becomes \ function \ of \ one \ argument : \\ f_s(t,h) = h^{1+1/\delta} f_s(z,1), \quad z = t/h^{1/\beta\delta} \end{array}$
- O(2) & Z(2) will have different critical exponents.
- For Z(2), $H \rightarrow H H_c$.

In the vicinity of a second order critical point, singular part of the free energy density dominates.

$$f_{s}(t, h, ...) = b^{-d} f_{s}(b^{y_{t}}t, b^{y_{h}}h, ...)$$

[J. Engels et al., 2000] [Ejiri, Karsch et al., 2009]

- $\label{eq:tandham} \begin{array}{l} \label{eq:tandham} \mbox{t and } h \mbox{ are the reduced scaling variables :} \\ t = \frac{1}{t_0} \frac{T T_c}{T_c}, \quad h = \frac{H}{h_0}; \quad t_0, \ h_0 \mbox{ are non universal parameters.} \end{array} \\ \mbox{b can be chosen such that } f_s \mbox{ becomes function of one argument :} \\ f_s(t,h) = h^{1+1/\delta} f_s(z,1), \quad z = t/h^{1/\beta\delta} \end{array}$
- O(2) & Z(2) will have different critical exponents.
- For Z(2), $H \rightarrow H H_c$.
- ► No evidence of a first order region, therefore, only O(2) scaling functions have been used in the analysis.

イロト 不得 トイヨト イヨト 二日

• $f_{\chi}(z)$ peaks at z_p , which is a characteristic value for a given theory.

• $f_{\chi}(z)$ peaks at z_p , which is a characteristic value for a given theory. • f_{χ}/f_G has a unique crossing point at z = 0.

A B A A B A

- $f_{\chi}(z)$ peaks at z_p , which is a characteristic value for a given theory.
- f_{χ}/f_{G} has a unique crossing point at z = 0.
- $M H\chi_M$ does not receive regular contribution at $\mathcal{O}(H)$.

▶ Partition function of QCD with N_f degenerate quark flavors : $\mathcal{Z} = \int \mathcal{D}[U] \{ \det D(m_{\ell}) \}^{N_f/4} e^{-S_g}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

▶ Partition function of QCD with N_f degenerate quark flavors :

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}[\mathsf{U}] \{ \det \, \mathsf{D}(\mathsf{m}_{\ell}) \}^{\mathsf{N}_{f}/4} e^{-\mathsf{S}_{g}} \\ \frac{1}{\mathcal{Z}} \frac{\partial \mathcal{Z}}{\partial \mathsf{m}_{\ell}} &= \frac{\mathsf{N}_{f}}{4} \langle \mathsf{tr}(\mathsf{D}^{-1}) \rangle = \mathsf{N}_{\sigma}^{3} \mathsf{N}_{\tau} \langle \bar{\psi} \psi \rangle \to \mathsf{M} \\ \frac{\partial \langle \bar{\psi} \psi \rangle}{\partial \mathsf{m}_{\ell}} &= \underbrace{\frac{\mathsf{N}_{f}^{2}}{16\mathsf{N}_{\sigma}^{3}\mathsf{N}_{\tau}} \Big[\left\langle \left(\mathsf{tr}\mathsf{D}^{-1} \right)^{2} \right\rangle - \left\langle \mathsf{tr}\mathsf{D}^{-1} \right\rangle^{2} \Big]}_{\chi_{disc}} \\ &- \underbrace{\frac{\mathsf{N}_{f}}{4\mathsf{N}_{\sigma}^{3}\mathsf{N}_{\tau}} \left\langle \mathsf{tr}(\mathsf{D}^{-2}) \right\rangle}_{\gamma_{con}} = \chi_{tot} \to \chi_{\mathsf{M}} \end{split}$$

χcon

Sipaz Sharma

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partition function of QCD with N_f degenerate quark flavors : $\mathcal{Z} = \int \mathcal{D}[U] \{ \det D(m_{\ell}) \}^{N_f/4} e^{-S_g}$ $\frac{1}{\mathcal{Z}}\frac{\partial\mathcal{Z}}{\partial m_{e}} = \frac{\mathsf{N}_{\mathsf{f}}}{4}\langle \mathsf{tr}(\mathsf{D}^{-1})\rangle = \mathsf{N}_{\sigma}^{3}\mathsf{N}_{\tau}\langle\bar{\psi}\psi\rangle \to \mathsf{M}$ $\frac{\partial \langle \bar{\psi} \psi \rangle}{\partial m_{\ell}} = \frac{N_{f}^{2}}{16 N_{\pi}^{3} N_{\tau}} \left[\left\langle \left(tr D^{-1} \right)^{2} \right\rangle - \left\langle tr D^{-1} \right\rangle^{2} \right]$ Xdisc $-\frac{N_{f}}{4N_{\sigma}^{3}N_{\tau}}\Big\langle tr\big(D^{-2}\big)\Big\rangle = \chi_{tot} \rightarrow \chi_{M}$ χcon \blacktriangleright H \rightarrow m_{ℓ}/m_s, T \rightarrow T m_s is an external parameter used to set scale for m_ℓ .

Sipaz Sharma

Bielefeld University

March 30, 2022 8/20

 For the HISQ/tree action calculations, Bielefeld GPU code has been used.

- 2

・ロト ・四ト ・ヨト ・ヨト

- ▶ For the HISQ/tree action calculations, Bielefeld GPU code has been used.
- ► N_{τ} value was fixed to be equal to 8 and three different aspect ratios (N_{σ}/N_{τ}) : 5,4,3 were explored.

- 3

- ▶ For the HISQ/tree action calculations, Bielefeld GPU code has been used.
- ► N_{τ} value was fixed to be equal to 8 and three different aspect ratios (N_{σ}/N_{τ}) : 5,4,3 were explored.
- ▶ f_K scale setting from 2+1 flavor was used to fix the temperatures for various values of gauge couplings as well as quark masses (m_ℓ) , which are relative to the LCP for 2+1 flavor, which corresponds to physical strange quark mass (m_s) . [A.Bazavov et al., 2012]

- ▶ For the HISQ/tree action calculations, Bielefeld GPU code has been used.
- N_{τ} value was fixed to be equal to 8 and three different aspect ratios (N_{σ}/N_{τ}) : 5,4,3 were explored.
- ▶ f_K scale setting from 2+1 flavor was used to fix the temperatures for various values of gauge couplings as well as quark masses (m_ℓ) , which are relative to the LCP for 2+1 flavor, which corresponds to physical strange quark mass (m_s) . [A.Bazavov et al., 2012]
- Four quark masses were investigated, which in the continuum correspond to pion masses in the range 80 MeV to 140 MeV.

- ▶ For the HISQ/tree action calculations, Bielefeld GPU code has been used.
- ► N_{τ} value was fixed to be equal to 8 and three different aspect ratios (N_{σ}/N_{τ}) : 5,4,3 were explored.
- ▶ f_K scale setting from 2+1 flavor was used to fix the temperatures for various values of gauge couplings as well as quark masses (m_ℓ) , which are relative to the LCP for 2+1 flavor, which corresponds to physical strange quark mass (m_s) . [A.Bazavov et al., 2012]
- ► Four quark masses were investigated, which in the continuum correspond to pion masses in the range 80 MeV to 140 MeV.
- Every trajectory separated by 5 TU was saved. 100 random vectors were used for calculating fermionic observables.

- ▶ For the HISQ/tree action calculations, Bielefeld GPU code has been used.
- ► N_{τ} value was fixed to be equal to 8 and three different aspect ratios (N_{σ}/N_{τ}) : 5,4,3 were explored.
- ▶ f_K scale setting from 2+1 flavor was used to fix the temperatures for various values of gauge couplings as well as quark masses (m_ℓ) , which are relative to the LCP for 2+1 flavor, which corresponds to physical strange quark mass (m_s) . [A.Bazavov et al., 2012]
- ► Four quark masses were investigated, which in the continuum correspond to pion masses in the range 80 MeV to 140 MeV.
- Every trajectory separated by 5 TU was saved. 100 random vectors were used for calculating fermionic observables.
- Number of saved trajectories:

Sipaz Sharma

Chiral condensate in f_{K} normalization

March 30, 2022 10/20

э

Chiral condensate in f_{K} normalization

Order parameter varies rapidly, but smoothly with the temperature.

Similar to m_s , f_K is an external parameter used to set scale for T.

March 30, 2022 10 / 20

Chiral condensate in f_{K} normalization

- Order parameter varies rapidly, but smoothly with the temperature.
 - In the lower temperature region, as the quark mass decreases, finite size effects increase.

Similar to m_s , f_K is an external parameter used to set scale for T.

March 30, 2022 10/20

Order parameter at fixed T

$$\mathsf{M} = \mathsf{h}^{1/\delta}\mathsf{f}_{\mathsf{G}}(z) + \mathsf{H} \bigg\{ \mathsf{a}_0 + \mathsf{a}_1 \bigg(\frac{\mathsf{T} - \mathsf{T}_{\mathsf{c}}}{\mathsf{T}_{\mathsf{c}}} \bigg) + \mathsf{a}_2 \bigg(\frac{\mathsf{T} - \mathsf{T}_{\mathsf{c}}}{\mathsf{T}_{\mathsf{c}}} \bigg)^2 + \bigg\} + ...$$

▶ Fit ansatz, aH^b.

< □ > < □ > < □ > < □ > < □ >

March 30, 2022 11/20

æ

$$\mathsf{M} = \mathsf{h}^{1/\delta}\mathsf{f}_{\mathsf{G}}(z) + \mathsf{H}\left\{\mathsf{a}_{0} + \mathsf{a}_{1}\left(\frac{\mathsf{T} - \mathsf{T}_{\mathsf{c}}}{\mathsf{T}_{\mathsf{c}}}\right) + \mathsf{a}_{2}\left(\frac{\mathsf{T} - \mathsf{T}_{\mathsf{c}}}{\mathsf{T}_{\mathsf{c}}}\right)^{2} + \ldots\right\} + \ldots$$

▶ Fit ansatz, aH^b.

(日)

 At high temperatures, M is linear in H.

э

$$\mathsf{M} = \mathsf{h}^{1/\delta}\mathsf{f}_{\mathsf{G}}(z) + \mathsf{H}\left\{\mathsf{a}_{0} + \mathsf{a}_{1}\left(\frac{\mathsf{T} - \mathsf{T}_{\mathsf{c}}}{\mathsf{T}_{\mathsf{c}}}\right) + \mathsf{a}_{2}\left(\frac{\mathsf{T} - \mathsf{T}_{\mathsf{c}}}{\mathsf{T}_{\mathsf{c}}}\right)^{2} + \ldots\right\} + \ldots$$

▶ Fit ansatz, aH^b.

< □ > < □ > < □ > < □ > < □ > < □ >

- At high temperatures, M is linear in H.
- At the lowest T, b is slightly greater than the critical exponent of the 3-d O(2) universality class. We have bracketed the scaling window.

March 30, 2022 11/20

Total susceptibility in f_{K} normalization

• Consistent with
$$t_p(h) = z_p h^{1/\beta\delta}$$
.

Total susceptibility in f_{K} normalization

- Consistent with $t_p(h) = z_p h^{1/\beta\delta}$.
- Peak height for a fixed mass doesn't increase with the volume. No evidence of a first order transition.

Total susceptibility in f_{K} normalization

- Consistent with $t_p(h) = z_p h^{1/\beta\delta}$.
- Peak height for a fixed mass doesn't increase with the volume. No evidence of a first order transition.
- Peak gets less resolved for the lowest volume of the lowest quark mass. Finite-size effects need to be accounted for.

Finite size dependence of scaling functions

▶ One additional relevant scaling field $\ell = L_0/L$ can be added to the singular part of the free energy density :

$$f_{s}(t, h, \ell, ...) = b^{-d}f_{s}(b^{y_{t}}t, b^{y_{h}}h, b\ell...)$$

[Engels & Karsch, 2014]

Sinaz Sharma	Bielefeld University		March	30	2022	,	13 / 20
Sipaz Sharma	Dicicicia Oniversity		ivital cit	50,	2022		13/20

Finite size dependence of scaling functions

▶ One additional relevant scaling field $\ell = L_0/L$ can be added to the singular part of the free energy density :

$$f_{s}(t, h, \ell, ...) = b^{-d} f_{s}(b^{y_{t}}t, b^{y_{h}}h, b\ell...)$$

[Engels & Karsch, 2014]

▶ f_s can be brought to a form such that it depends upon two scaling variables, $z=t/h^{1/\beta\delta}$ and $z_L=\ell/h^{\nu/\beta\delta}$

$$\begin{split} \mathsf{M} &= -\frac{\partial f_s}{\partial \mathsf{H}} = \mathsf{h}^{1/\delta} \mathsf{f}_\mathsf{G}(\mathsf{z},\mathsf{z}_\mathsf{L}) + \mathsf{H} \times \mathsf{reg} \\ \\ \chi_\mathsf{M} &= \frac{\partial \mathsf{M}}{\partial \mathsf{H}} = \frac{1}{\mathsf{h}_0} \mathsf{h}^{1/\delta-1} \mathsf{f}_\chi(\mathsf{z},\mathsf{z}_\mathsf{L}) + \mathsf{reg} \\ \\ \mathsf{reg} &= \mathsf{a}_0 + \mathsf{a}_1(\mathsf{tt}_0) + \mathsf{a}_2(\mathsf{tt}_0)^2 \end{split}$$

Finite size dependence of scaling functions

▶ One additional relevant scaling field $\ell = L_0/L$ can be added to the singular part of the free energy density :

$$f_{s}(t, h, \ell, ...) = b^{-d} f_{s}(b^{y_{t}}t, b^{y_{h}}h, b\ell...)$$

[Engels & Karsch, 2014]

 \blacktriangleright fs can be brought to a form such that it depends upon two scaling variables, $z=t/h^{1/\beta\delta}$ and $z_L=\ell/h^{\nu/\beta\delta}$

$$\begin{split} \mathsf{M} &= -\frac{\partial f_{s}}{\partial \mathsf{H}} = \mathsf{h}^{1/\delta} \mathsf{f}_{\mathsf{G}}(\mathsf{z},\mathsf{z}_{\mathsf{L}}) + \mathsf{H} \times \mathsf{reg} \\ \\ \chi_{\mathsf{M}} &= \frac{\partial \mathsf{M}}{\partial \mathsf{H}} = \frac{1}{\mathsf{h}_{0}} \mathsf{h}^{1/\delta-1} \mathsf{f}_{\chi}(\mathsf{z},\mathsf{z}_{\mathsf{L}}) + \mathsf{reg} \end{split}$$

$$\mathsf{reg}=\mathsf{a}_0+\mathsf{a}_1(\mathsf{tt}_0)+\mathsf{a}_2(\mathsf{tt}_0)^2$$

► We used finite size scaling functions to fit data corresponding to quantities such as $H\chi_M/M$ and $M - H\chi_M$ for various available combinations of quark masses and volumes. T_c can be extracted as a fit parameter.

Sipaz Sharma

```
Joint fit to H\chi_M/M (Ratio)
```


- Grey region is not included in the fit.
- ► Ratio should have a unique crossing point in the thermodynamic limit, which in this case is below the temperature range explored and gets spoiled by the regular contribution (Linear in tt₀).

Sipaz Sharma

Bielefeld University

March 30, 2022

14 / 20

Joint fit to $M - H\chi_M$ (Difference)

Grey region is not included in the fit.

• This quantity scales as $\mathcal{O}(H)^3$ at high temperatures.

Sipaz Sharma

Bielefeld University

3

Comparison of the fits results

► The parameters of the singular part of the fits from both the quantities are in excellent agreement with each other.

3

イロト イポト イヨト イヨト

Comparison of the fits results

- ► The parameters of the singular part of the fits from both the quantities are in excellent agreement with each other.
- ► The parameters of the regular term seem to be quite sensitive to the upper bound (H_{max}) for the set of quark masses used in the fit. They are not well determined in the small temperature interval used for these fits.

► T_{pc} values correspond to the peak positions of various susceptibility curves. Peak position is a function of mass as well as volume.

イロト 不得 トイヨト イヨト 二日

- ► T_{pc} values correspond to the peak positions of various susceptibility curves. Peak position is a function of mass as well as volume.
- To extract T_{pc}(H, L) values, we constructed 100 bootstrap samples at the level of gauge configurations and performed quadratic fits in the peak range for each such sample.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ► T_{pc} values correspond to the peak positions of various susceptibility curves. Peak position is a function of mass as well as volume.
- To extract T_{pc}(H, L) values, we constructed 100 bootstrap samples at the level of gauge configurations and performed quadratic fits in the peak range for each such sample.
- T_{pc} can be fitted to the scaling expectation,

$$T_{pc}(H,L) = T_{c} \bigg(1 + \frac{z_{p}(z_{L})}{z_{0}} H^{1/\beta\delta} \bigg)$$

[H.-T. Ding et al., 2019]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sipaz Sharma

Bielefeld University

March 30, 2022 18/20

 M/χ_M as a function of H at T_{pc}

Hχ_M/M at T_{pc} is a constant given by the f_χ(z_p)/f_G(z_p), and it is almost volume independent. Regular terms are quadratic in tt₀.

■ ・ (重) ・ 重) = つ < ⊂ March 30, 2022 19/20 M/χ_M as a function of H at T_{pc}

► $H\chi_M/M$ at T_{pc} is a constant given by the $f_{\chi}(z_p)/f_G(z_p)$, and it is almost volume independent. Regular terms are quadratic in tt₀.

Non-vanishing critical pion mass can not describe the data. H_c = 1/320 corresponds to a pion mass of 40 MeV in the continuum.

Sipaz Sharma

Bielefeld University

Si

We varied the quark mass range as well as the regular contribution in the finite size scaling fits to take care of the systematics. Fit parameters obtained from all the fits are combined to get a final value for T_c in the chiral limit,

$$T_{c} = 98^{+3}_{-6}$$
 MeV.

< □ > < □ > < □ > < □ > < □ > < □ >

20 / 20

oaz Sharma	Bielefeld University	March 30, 2022

We varied the quark mass range as well as the regular contribution in the finite size scaling fits to take care of the systematics. Fit parameters obtained from all the fits are combined to get a final value for T_c in the chiral limit,

$$T_{c} = 98^{+3}_{-6}$$
 MeV.

In the explored pion mass range from 80 MeV to 140 MeV, no evidence of a first order phase transition was found.

We varied the quark mass range as well as the regular contribution in the finite size scaling fits to take care of the systematics. Fit parameters obtained from all the fits are combined to get a final value for T_c in the chiral limit,

$$T_{c} = 98^{+3}_{-6}$$
 MeV.

- In the explored pion mass range from 80 MeV to 140 MeV, no evidence of a first order phase transition was found.
- Chiral observables at a finite lattice spacing show universal finite size scaling behavior which is consistent with the 3-d O(2) universality class.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We varied the quark mass range as well as the regular contribution in the finite size scaling fits to take care of the systematics. Fit parameters obtained from all the fits are combined to get a final value for T_c in the chiral limit,

$$T_{c} = 98^{+3}_{-6}$$
 MeV.

- ► In the explored pion mass range from 80 MeV to 140 MeV, no evidence of a first order phase transition was found.
- Chiral observables at a finite lattice spacing show universal finite size scaling behavior which is consistent with the 3-d O(2) universality class.
- Next step would be to take the continuum limit. In doing so, careful consideration of the correct ordering of continuum limit and chiral limit is required. It is worthwhile to mention that in the (2+1)-flavor study, both these limits turned out to be interchangeable.

Sipaz Sharma

Bielefeld University

March 30, 2022

20 / 20