QCD thermal phase transition, its scaling window and novel order parameter

A. Yu. Kotov

Phase transitions in particle physics, 2022

Symmetries of QCD with *n* quarks

Symmetries of QCD with *n* quarks

 $L = \sum_{\mu}^{n} \bar{q}_{a}(i\gamma_{\mu}D_{\mu} - m)q_{a} - L_{gauge}$ a=1

 $q_{L,R} = \frac{1}{2}(1 \pm \gamma_5)q$

Symmetries of QCD with *n* quarks

$$L = \sum_{a=1}^{n} \bar{q}_a (i\gamma_\mu D_\mu - m)q_a - L_a$$

 $q_{L,R} = \frac{1}{2}(1 \pm \gamma_5)q$

'gauge

L is invariant under (m = 0): $q_L \rightarrow U_L q_L$, $q_R \rightarrow U_R q_R$, $U_{L,R} \in U(n)$

Symmetries of QCD with *n* quarks $q_{L,R} = \frac{1}{2}(1 \pm \gamma_5)q$

$$L = \sum_{a=1}^{n} \bar{q}_a (i\gamma_\mu D_\mu - m)q_a - L_{gauge}$$

L is invariant under (m = 0): $q_L \rightarrow U_L q_L$, $q_R \rightarrow U_R q_R$, $U_{L,R} \in U(n)$

Global symmetry: $U_I(n) \times U_R(n) \cong SU_I(n) \times SU_R(n) \times U_R(1) \times U_A(1)$

Symmetries of QCD with n quarks $q_{L,R} = \frac{1}{2}(1 \pm \gamma_5)q$ gauge

$$L = \sum_{a=1}^{n} \bar{q}_a (i\gamma_\mu D_\mu - m)q_a - L_a$$

Global symmetry: $U_{I}(n) \times U_{R}(n)$ Spontaneo

L is invariant under (m = 0): $q_L \rightarrow U_L q_L$, $q_R \rightarrow U_R q_R$, $U_{L,R} \in U(n)$

$$\cong SU_L(n) \times SU_R(n) \times U_B(1) \times U_A(1)$$
Susly broken
$$\bigcup_{V \in V_V(n)} Baryon$$

$$\begin{array}{c} \text{Anomalously} \\ \text{Broken} \\ \text{Broken} \end{array}$$

Symmetries of QCD with *n* quarks $q_{L,R} = \frac{1}{2}(1 \pm \gamma_5)q$ gauge

$$L = \sum_{a=1}^{n} \bar{q}_a (i\gamma_\mu D_\mu - m)q_a - L_a$$

T

 T_c

Global symmetry: $U_I(n) \times U_R(n)$ Spontaneo

L is invariant under (m = 0): $q_L \rightarrow U_L q_L$, $q_R \rightarrow U_R q_R$, $U_{L,R} \in U(n)$

$$\begin{split} \cong & \underbrace{SU_L(n) \times SU_R(n)} \times U_B(1) \times U_A(1) \\ \text{ously broken} & \text{Baryon} \\ & SU_V(n) \\ \end{split}$$

 $T > T_c$ (m = 0): (which?) symmetry restoration \Leftrightarrow order (universality)

Symmetries of QCD with n quarks $q_{L,R} = \frac{1}{2}(1 \pm \gamma_5)q$ gauge

$$L = \sum_{a=1}^{n} \bar{q}_a (i\gamma_\mu D_\mu - m)q_a - L_a$$

Global symmetry: $U_L(n) \times U_R(n)$ Spontaneo

 $T_c m_s$

L is invariant under (m = 0): $q_L \rightarrow U_L q_L$, $q_R \rightarrow U_R q_R$, $U_{L,R} \in U(n)$

$$\begin{split} \cong & \underbrace{SU_L(n) \times SU_R(n)} \times U_B(1) \times U_A(1) \\ \text{ously broken} & \downarrow & Baryon \\ & SU_V(n) & Baryon \\ & Broken \\ \end{split}$$

- $T > T_c$ (m = 0): (which?) symmetry restoration \Leftrightarrow order (universality)
 - $m \neq 0$: explicit symmetry breaking

Columbia plot

[de Forcrand, D'Elia, 1702.00330]

Order of the phase transition at quark masses m_s, m_l [talks by O. Philipsen, A. Lahiri, S. Sharma]

Columbia plot

Order of the phase transition at quark masses m_s, m_l [talks by O. Philipsen, A. Lahiri, S. Sharma]

This talk: QCD phase transition at $m_s \neq m_l \rightarrow 0$

$m_l \neq 0$, possible scenarios

Scaling window: universal behaviour given by EoS

 $M = h^{1/\delta} f(t/h^{1/\beta\delta})$

$m_l \neq 0$, possible scenarios

Scaling window: universal behaviour given by EoS

 m_s

 $M = h^{1/\delta} f(t/h^{1/\beta\delta})$

$m_l \neq 0$, possible scenarios ********** Scaling window 12 m_l Mean field Scaling window O4 ∞ m_s^c 04 1st order m_s

Scaling window: universal behaviour given by EoS

 $M = h^{1/\delta} f(t/h^{1/\beta\delta})$

 m_{s}

Scaling window: universal behaviour given by EoS

 m_{s}

 $M = h^{1/\delta} f(t/h^{1/\beta\delta})$

Magnetic Equation of State

Magnetic Equation of State

 $M = h^{1/\delta} f(t/h^{1/\beta\delta}) + \text{reg. non-univ. terms}$

 $M \equiv \bar{\psi}\psi, h \equiv m_q, t \equiv T - T_0$

Magnetic Equation of State $M = h^{1/\delta} f(t/h^{1/\beta\delta}) + \text{reg. non-univ. terms}$ $M \equiv \bar{\psi}\psi, h$

- Suppress non-universal terms: M =
- Linear in h contributions are absent in $\langle \bar{\psi} \psi \rangle_3$

$$\equiv m_q, t \equiv T - T_0$$

$$= \langle \bar{\psi}\psi \rangle \rightarrow \langle \bar{\psi}\psi \rangle_3 = M - h \frac{\partial M}{\partial h}$$

Magnetic Equation of State $M = h^{1/\delta} f(t/h^{1/\beta\delta}) + \text{reg. non-univ. terms}$ $M \equiv \bar{\psi}\psi, h$

- Suppress non-universal terms: M =
- Linear in h contributions are absent in $\langle \bar{\psi} \psi \rangle_3$

$$\equiv m_q, \ t \equiv T - T_0$$

$$= \langle \bar{\psi}\psi \rangle \rightarrow \langle \bar{\psi}\psi \rangle_3 = M - h \frac{\partial M}{\partial h}$$

• Mainly: O(4) universality class, other possible scenarios: Z_2 scaling, mean field

Magnetic Equation of State $M = h^{1/\delta} f(t/h^{1/\beta\delta}) + \text{reg. non-univ. terms}$ $M \equiv \bar{\psi}\psi, h$

- Suppress non-universal terms: M =
- Linear in h contributions are absent in $\langle \bar{\psi} \psi \rangle_3$
- Byproduct: estimation of $T_0 = T_c(m)$

$$\equiv m_q, \ t \equiv T - T_0$$

$$= \langle \bar{\psi}\psi \rangle \rightarrow \langle \bar{\psi}\psi \rangle_3 = M - h \frac{\partial M}{\partial h}$$

• Mainly: O(4) universality class, other possible scenarios: Z_2 scaling, mean field

$$n_{\pi} \rightarrow 0)$$

Novel order parameter

Novel order parameter

- Chiral condensate $\langle \bar{\psi} \psi \rangle$
- Chiral susceptibility $\chi = \partial \langle \bar{\psi} \psi \rangle / \partial m$

Novel order parameter

- Chiral condensate $\langle \bar{\psi}\psi \rangle$
- Chiral susceptibility $\chi = \partial \langle \bar{\psi} \psi \rangle / \partial m$
- Novel order parameter: $\langle \bar{\psi} \psi \rangle_3 = \langle \bar{\psi} \psi \rangle m\chi$
 - ~m³ (symmetric phase)
 - $1/a^2$ divergences cancel
 - $\langle \bar{\psi}\psi \rangle_3 \sim t^{-\gamma-2\beta\delta}$ vs $\langle \bar{\psi}\psi \rangle \sim t^{-\gamma}$ as $t \to \infty$

Scaling of T_c with pion mass

A couple of words about parameters

• $N_f = 2 + 1 + 1$ twisted mass Wilson fermions at maximal twist

• Fixed scale approach: a = fixed, T

 Based on ETMC T=0 parameters [C. Alexar

	m _π [MeV]	a [fm]	
$\rightarrow N_t$	139.7(3)	0.0801(4)	
	225(5)	0.0619(18)	
ndrou et al., 2018]	383(11)	0.0619(18)	
	376(14)	0.0815(30)	

Critical temperature and the chiral limit

 $T_c = T_c(0) + k_s m_{\pi}^{2/\beta\delta}$

		$T(m_{\pi} = 139 \text{ MeV})$ [MeV]	$T(m_{\pi} = 0)$ [MeV]
	$\langle \bar{\psi}\psi \rangle$	157.8(12)	138(2)
	χ	153(3)	132(4)
500	$\langle \bar{\psi}\psi \rangle_3$	146(2)	132(3)

 $T_0 = 134^{+6}_{-4} \text{ MeV}$

11

Simple estimation of T₀ from EOS

Prediction of EoS: $\frac{\langle \bar{\psi}\psi \rangle_3}{m^{1/\delta}} \sim \frac{\langle \bar{\psi}\psi \rangle_3}{m_{\pi}^{2/\delta}} = \text{const}$

at

 $T = T_0(m_\pi = 0) = 138(2) \text{ MeV}$

O(4) vs mean field

Mild tension between data and MF for m_{π} =139 MeV

m_{π} [MeV]	T ₀ [MeV]
139	142(2)
225	159(3)
383	174(2)

Z₂ vs O(4) scaling

 $T_0 = T_c(m_\pi \to 0) = 134^{+6}_{-4} \text{ MeV}$

O(4) scaling:

Observable	T_0 [MeV]	$z_p/z_{\bar{\psi}\psi_3}$	$z_p/z_{\bar{\psi}\psi_3} O(4)$	$z_p O(4)$
X	132(4)	1.24(17)	2.45(4)	1.35(3)
$\langle \bar{\psi}\psi \rangle$	138(2)	1.15(24)	1.35(7)	0.74(4)
$\langle \bar{\psi}\psi \rangle_3$	132(3)	1	1	0.55(1)

Z₂ scaling:

 $m_{\pi}^{c} = 100 \text{ MeV}$ is still ok

 $m_{\pi}^{c} = 0$ MeV is indistinguishable from O(4)

Large temperature behaviour

- O(4): $\langle \bar{\psi}\psi \rangle_3 \sim t^{-\gamma 2\beta\delta}$
- Griffith analyticity: $\langle \bar{\psi}\psi \rangle_3 \sim m^3 \sim m_\pi^6$
- $T \sim 300 \,\mathrm{MeV}$

Thresholds in QGP $T \sim 300 \, \mathrm{MeV}$

- Onset of DIGA behaviour
- Monopole condensation [Cardinali, D'Elia, Pasqui, 2021]
- Spectrum of Dirac operator [Alexandru, Horvath, 2019]
- Chiral-spin symmetry [Glozman, 2020, ...]

Sketch of possible phase diagram

0

m

YM

FRG: Tiny scaling window ($m_{\pi} < 1 \text{MeV}$) ? [Talk by J. Pawlowski]

Conclusions

- $\langle \bar{\psi}\psi \rangle_3 = \langle \bar{\psi}\psi \rangle m\chi$ is useful to study scaling
- $T_0 = 134^{+6}_{-4}$ MeV in the chiral limit
- O(4) scaling for $m_\pi \lesssim 140$ MeV, $T \in [120,\ 300]$ MeV
- Z₂ scaling cannot be excluded
- $T \sim 300$ MeV: threshold(s) in QGP

