Taylor expansions and Pade approximations in finite density QCD

Frithjof Karsch Bielefeld University

Taylor expansion for the QCD equation of state at non-zero chemical potentials $\mu_S = \mu_Q = 0$ and $\mu_Q = 0$, $n_S = 0$

- susing Pade approximants to resum Taylor series in finite density QCD
- (constrain) the location of the critical point

based on:

D. Bollweg et al (HotQCD), arXiv:2202.09184

Phases of strong-interaction matter determination of T_c^0 puts an upper limit on T^{CEP}

the temperature range below T_{pc} is most important for getting information on a possible CEP

QCD thermodynamics at non-zero net baryon-density – Taylor expansion –

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

cumulants of net-charge fluctuations and correlations:

$$\chi^{BQS}_{ijk} = \left. rac{\partial^{i+j+k} P/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S}
ight|_{\mu_{B,Q,S}=0} \quad, \quad \hat{\mu}_X \equiv rac{\mu_X}{T}$$

QCD thermodynamics at non-zero net baryon-density – Taylor expansion –

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Consider isospin symmetric matter $\overleftrightarrow{} \mu_Q = 0 \ \Leftrightarrow \ n_Q/n_B = 0.5$

I)
$$\mu_S=0: ilde{\chi}_0^{B,n}=\chi_{n,00}^{BQS}\equiv\chi_n^B$$

II) $n_s=0:\hat{\mu}_S o \hat{\mu}_S(\hat{\mu}_B)=s_1\hat{\mu}_B+s_3\hat{\mu}_B^3+...$ such that $n_S=0$

differences between (II) and conditions met in HIC are small, e.g. $|\mu_Q/\mu_B|\simeq 0.025~{
m for}~T\simeq T_{pc}$

$$\frac{\Delta P(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \sum_{k=1}^{\infty} \frac{1}{(2k)!} \tilde{\chi}_0^{B,n}(T) \hat{\mu}_B^{2k}$$

QCD thermodynamics at non-zero net baryon-density – Taylor expansion –

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

$$\boxed{\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k}$$

Consider isospin symmetric matter $\Longleftrightarrow \mu_Q = 0 \ \Leftrightarrow \ n_Q/n_B = 0.5$

$$\begin{aligned} \frac{P(T,\mu_B)}{T^4} &= \frac{P(T,0)}{T^4} + \frac{\tilde{\chi}_0^{B,2}(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\tilde{\chi}_0^{B,4}(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \dots \\ \frac{n_B(T,\mu_B)}{T^3} &= \frac{\mathrm{d}P/T^4}{\mathrm{d}\hat{\mu}_B} = \tilde{\chi}_0^{B,2}(T) \left(\frac{\mu_B}{T}\right) + \frac{\tilde{\chi}_0^{B,4}(T)}{6} \left(\frac{\mu_B}{T}\right)^3 + \dots \end{aligned}$$

Taylor expansion to 8th order in μ_B/T

D. Bollweg et al (HotQCD), arXiv:2202.09184

HotQCD data collection for (2+1)-flavor QCD-EoS

EoS:2017: arXiv:1701.04325

ĺ	$N_{ au} = 6$					$N_{ au}=8$				$N_{ au} = 12$				
	$oldsymbol{eta}$	m_l	T[Me	eV] #conf	β	m_l	T[MeV]	# conf.	β	m_l	T[MeV]	#conf.		
	5.980	0.00435	135.	29 8120	0 6.245	0.00307	134.64	180320	6.640	0.00196	134.94	5834		
	6.010	0.00416	139.	71 12079	$0 \parallel 6.285$	0.00293	140.45	172110	6.680	0.00187	140.44	5833		
	6.045	0.00397	145.	05 12077	$0 \parallel 6.315$	0.00281	144.95	138150	6.712	0.00181	144.97	13846		
	6.080	0.00387	150.	59 7939	$0 \parallel 6.354$	0.00270	151.00	107510	6.754	0.00173	151.10	14200		
	6.120	0.00359	157.	17 6618) 6.390	0.00257	156.78	135730	6.794	0.00167	157.13	15476		
	6.150	0.00345	162.	28 7966	$0 \parallel 6.423$	0.00248	162.25	115850	6.825	0.00161	161.94	16772		
	6.170	0.00336	165.	98 4976	$0 \parallel 6.445$	0.00241	165.98	120270	6.850	0.00157	165.91	19542		
	6.200	0.00324	171.	15 12270	$0 \parallel 6.474$	0.00234	171.02	139980	6.880	0.00153	170.77	21220		
	6.225	0.00314	175.	76 12273	$0 \parallel 6.500$	0.00228	175.64	133070	6.910	0.00148	175.76	12303		
Eo ar	oS 20 Xiv:2	22: 202.09	9184		times confs.	new		times new confs.						ew
							11							
				$N_{ au}$	= 8			$N_{ au}$	= 12			$N_{ au}$	= 16	
		-	β	$rac{N_{ au}}{m_l}$	= 8 T[MeV]	#conf.	β	$rac{N_{ au}}{m_l}$	= 12 T[MeV]] #conf.	β	$rac{N_{ au}}{m_l}$	= 16 T[MeV]	#conf.
		-	β 6.175	$\frac{N_{\tau}}{m_l}$	= 8 T[MeV] 125.28	#conf. 1,471,861	β	$rac{N_{ au}}{m_l}$	= 12 T[MeV]] #conf.	β	$\frac{N_{\tau}}{m_l}$	= 16 $T[MeV]$	#conf.
		-	β 6.175 6.245	$rac{N_{ au}}{m_l}$ 0.003307 0.00307	= 8 T[MeV] 125.28 134.84	#conf. 1,471,861 1,275,380	β 6.640	$N_{ au}$ m_l 0.00196	= 12 T[MeV 135.24] #conf. 330,447	β 6.935	$\frac{N_{\tau}}{m_l}$ 0.00145	= 16 T[MeV] 135.80	#conf. 17671
			β 6.175 6.245 6.285	$rac{N_{ au}}{m_l}$ 0.003307 0.00307 0.00293	= 8 T[MeV] 125.28 134.84 140.62	#conf. 1,471,861 1,275,380 1,598,555	β 6.640 6.680	$N_{ au}$ m_l 0.00196 0.00187	= 12 T[MeV 135.24 140.80] #conf. 330,447 441,115	β 6.935 6.973	$rac{N_{ au}}{m_l}$ 0.00145 0.00139	= 16 T[MeV] 135.80 140.86	#conf. 17671 23855
		-	β 6.175 6.245 6.285 6.315	$\frac{N_7}{0.003307}$ 0.00307 0.00293 0.00281	= 8 T[MeV] 125.28 134.84 140.62 145.11	#conf. 1,471,861 1,275,380 1,598,555 1,559,003	β 6.640 6.680 6.712	$egin{array}{c} N_{m{ au}} \ m_l \ 0.00196 \ 0.00187 \ 0.00181 $	= 12 T[MeV 135.24 140.80 145.40] #conf. 330,447 441,115 416,703	β 6.935 6.973 7.010	$egin{array}{c} N_{ au} \ m_l \ 0.00145 \ 0.00139 \ 0.00132 \ 0.$	= 16 T[MeV] 135.80 140.86 145.95	#conf. 17671 23855 26122
		-	β 6.175 6.245 6.285 6.315 6.354	$\begin{array}{r} N_7 \\ \hline m_l \\ 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00270 \end{array}$	= 8 T[MeV] 125.28 134.84 140.62 145.11 151.14		β 6.640 6.680 6.712 6.754	$\frac{N_{\tau}}{m_l}$ 0.00196 0.00187 0.00181 0.00173	= 12 T[MeV 135.24 140.80 145.40 151.62] #conf. 330,447 441,115 416,703 323,738	β 6.935 6.973 7.010 7.054	$egin{array}{c} N_{ au} \ m_l \ 0.00145 \ 0.00139 \ 0.00132 \ 0.00129 \ 0.00129 \ 0.00124 \ 0.00129 \ 0.00124 \ 0.$	= 16 T[MeV] 135.80 140.86 145.95 152.19	#conf. 17671 23855 26122 26965
		-	β 6.175 6.245 6.285 6.315 6.354 6.390 6.455	$\begin{array}{c c} & N_{7} \\ \hline m_{l} \\ \hline 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00257 \\ 0.00257 \\ 0.00210 \end{array}$	= 8 T[MeV] 125.28 134.84 140.62 145.11 151.14 156.92	#conf. 1,471,861 1,275,380 1,598,555 1,559,003 1,286,603 1,602,684	β 6.640 6.680 6.712 6.754 6.794	$egin{array}{c} N_{ au} \ m_l \ 0.00196 \ 0.00187 \ 0.00181 \ 0.00173 \ 0.00167 \ 0.$	= 12 T[MeV 135.24 140.80 145.40 151.62 157.75	$ \begin{array}{c} \# \text{conf.} \\ 330,447 \\ 441,115 \\ 416,703 \\ 323,738 \\ 299,029 \\ 291,127 \end{array} $	β 6.935 6.973 7.010 7.054 7.095	$egin{array}{c} N_{ au} \ m_l \ 0.00145 \ 0.00139 \ 0.00132 \ 0.00129 \ 0.00124 \ 0.00124 \ 0.00112 \ 0.$	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21 140.50	#conf. 17671 23855 26122 26965 21656
		-	β 6.175 6.245 6.285 6.315 6.354 6.390 6.423	$\begin{array}{r} N_7 \\ \hline m_l \\ 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00257 \\ 0.00248 \\ 0.00248 \\ 0.00241 \end{array}$	= 8 T[MeV] 125.28 134.84 140.62 145.11 151.14 156.92 162.39		β 6.640 6.680 6.712 6.754 6.754 6.794 6.825	$\frac{N_{\tau}}{m_l}$ 0.00196 0.00187 0.00181 0.00173 0.00167 0.00161	= 12 T[MeV 135.24 140.80 145.40 151.62 157.75 162.65	$ \begin{array}{c} \# \text{conf.} \\ 330,447 \\ 441,115 \\ 416,703 \\ 323,738 \\ 299,029 \\ 214,671 \end{array} $	β 6.935 6.973 7.010 7.054 7.095 7.130	$egin{array}{c c c c c c c c c c c c c c c c c c c $	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21 163.50	#conf. 17671 23855 26122 26965 21656 18173
		-	β 6.175 6.245 6.285 6.315 6.354 6.390 6.423 6.445 6.445	$\begin{array}{r} N_7 \\ \hline m_l \\ 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00257 \\ 0.00248 \\ 0.00241 \\ 0.00224 \end{array}$	= 8 T[MeV] 125.28 134.84 140.62 145.11 151.14 156.92 162.39 166.14 151.14	#conf. 1,471,861 1,275,380 1,598,555 1,559,003 1,286,603 1,602,684 1,437,436 1,186,523	β 6.640 6.680 6.712 6.754 6.794 6.825 6.850 6.850	$\frac{N_{\tau}}{m_l}$ 0.00196 0.00187 0.00181 0.00173 0.00167 0.00161 0.00157	= 12 T[MeV 135.24 140.80 145.40 151.62 157.75 162.65 166.69	$ \begin{array}{c} \# \text{conf.} \\ 330,447 \\ 441,115 \\ 416,703 \\ 323,738 \\ 299,029 \\ 214,671 \\ 156,111 \\ 144,222 \end{array} $	β 6.935 6.973 7.010 7.054 7.095 7.130 7.156 7.156	$egin{array}{c} N_{ au} \ m_l \ 0.00145 \ 0.00139 \ 0.00132 \ 0.00129 \ 0.00124 \ 0.00119 \ 0.00116 \ 0.00116 \ 0.00116 \ 0.00116 \ 0.00110 \ 0.00116 \ 0.00110 \ 0.0010 \ 0.0010 \ 0.0000$	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21 163.50 167.53 152.22	#conf. 17671 23855 26122 26965 21656 18173 19926
			eta 6.175 6.245 6.285 6.315 6.354 6.390 6.423 6.445 6.474	$\begin{array}{r} N_7 \\ \hline m_l \\ \hline 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00257 \\ 0.00248 \\ 0.00241 \\ 0.00234 \\ 0.00234 \\ 0.00232 \end{array}$	= 8 T[MeV] 125.28 134.84 140.62 145.11 151.14 156.92 162.39 166.14 171.19 175.94	$ \begin{array}{r} \# \text{conf.} \\ 1,471,861 \\ 1,275,380 \\ 1,598,555 \\ 1,559,003 \\ 1,286,603 \\ 1,602,684 \\ 1,437,436 \\ 1,186,523 \\ 373,644 \\ 204,214 \end{array} $	β 6.640 6.680 6.712 6.754 6.754 6.794 6.825 6.850 6.880 6.880	$\frac{N_{\tau}}{m_l}\\ 0.00196\\ 0.00187\\ 0.00181\\ 0.00173\\ 0.00167\\ 0.00161\\ 0.00157\\ 0.00153\\ 0.00140$	= 12 T[MeV 135.24 140.80 145.40 151.62 157.75 162.65 166.69 171.65	$ \begin{array}{c} \# \text{conf.} \\ 330,447 \\ 441,115 \\ 416,703 \\ 323,738 \\ 299,029 \\ 214,671 \\ 156,111 \\ 144,633 \\ 191,240 \end{array} $	β 6.935 6.973 7.010 7.054 7.095 7.130 7.156 7.188 7.220	$\begin{array}{c} N_{\tau} \\ m_l \\ \hline 0.00145 \\ 0.00139 \\ 0.00132 \\ 0.00129 \\ 0.00124 \\ 0.00119 \\ 0.00116 \\ 0.00113 \\ 0.00113 \end{array}$	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21 163.50 167.53 172.60 177.60	#conf. 17671 23855 26122 26965 21656 18173 19926 17163 2000

also used in D. Bollweg et al (HotQCD), arXiv:2107.10011

Comparing expansion coefficients for series at

F. Karsch, GGI, Florence, March 2022

Convergence vs. reliability of Taylor series

- given that only a finite number of terms in the expansion is known -

some simple facts:
$$f(x) = \sum_{n} c_n \ x^n = c_1 x + c_2 x^2 + c_3 x^3 + ...$$

 $f'(x) = c_1 + 2c_2 x + 3c_3 x^2 + ...$
 $f''(x) = 2c_2 + 6c_3 x + ...$

radius of convergence:
$$r_c = \lim_{n \to \infty} r_{c,n} = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$$

 $r'_{c,n} = \left| \frac{nc_n}{(n+1)c_{n+1}} \right| = r_{c,n} \left(1 - \frac{1}{n} \right)$

- all Taylor series for derivatives of f(x) have the same radius of convergence as f(x)

- higher order expansion coefficients get increasing weight in higher order derivatives of $f(x) \implies$ slower convergence, truncated expansions are less reliable for given x

Corollary: higher order derivatives of finite order Taylor series are reliable only in a smaller range of x-values

Convergence vs. reliability of Taylor series $T = 165 \text{ MeV}: \mu_Q = 0, \mu_S = 0$

Taylor series for the pressure in the vicinity of T_{cp} $\chi_6^B < 0$, $\chi_8^B < 0 \implies P(T, \mu_B)$ has a maximum at μ_B^{max}

number density is forced to vanish at μ_B^{max}

range of reliability of the 8th order expansion of the number density is reduced relative to that of the pressure

Taylor series for net baryon-number fluctuations vanishes at the maximum of n_B/T^3

at high T, e.g. T>160 MeV, the 8th order Taylor series does provide reliable results for pressure and number density up to $\mu_B/T\simeq 3$

Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

- comparing up to 6th order only -

F. Karsch, GGI, Florence, March 2022

EoS 2022: Taylor series to 8th order

range of reliability of 8th order results in the transition region and below

(see later slides)

Resumming Taylor series with Pade approximants

– conformal mappings

- V. Skokov, K. Morita, B. Friman, arXiv:1008.4549
- M. Giordano et al., arXiv:2004.10800
- G. Basar, arXiv:2105.08080
- partial resummation
- Pade resummation
- S. Modal, S. Mukherjee, P. Hegde , arXiv:2106.03165
- R.V. Gavai and S. Gupta, arXiv:0806.2233
 F.K. et al., arXiv:1009.5211
 D. Bollweg et al (HotQCD), arXiv:2202.09184

At high density QCD is dominated by properties of a Fermi gas at low as well as at high temperature:

– Taylor series for a relativistic Fermi gas as function of chemical potential has a radius of convergence controlled by a complex pole at $\mu_c/T = i\pi \pm m/T$

– series expansions in real μ break down at $r_c=\sqrt{\pi^2+(m/T)^2}$

- diagonal Pades, P[n,n], have no problem avoiding the influence of such a singularity, which is far away from the real axis
- phase transitions are signaled by (stable) poles in Pade approximants on the real axis

QCD thermodynamics at non-zero net baryon-density – Taylor expansion and Pade resummation –

R.V. Gavai and S. Gupta, arXiv:0806.2233F.K. et al., arXiv:1009.5211D. Bollweg et al (HotQCD), arXiv:2202.09184

$$P[n,n] = rac{\sum_{k=1}^n a_{k,0} \hat{\mu}_B^k}{\sum_{k=1}^n b_{k,0} \hat{\mu}_B^k}$$

$$P[n-1,n] = rac{\sum_{k=1}^{n-1} a_{k,1} \hat{\mu}_B^k}{\sum_{k=1}^n b_{k,1} \hat{\mu}_B^k}$$

$$P[n-1,n]$$
 and $P'[n,n] = rac{\mathrm{d}P[n,n]}{\mathrm{d}\hat{\mu}_{\mathrm{B}}}$ reproduce Taylor series of $rac{n_B}{T^3}$

P[n,n] and P'[n,n] have identical pole structure

$$\Delta P/T^4$$
 and n_B/T^3 have identical radii of convergence

with $N_{B,2k-1} = (2k-1)P_{2k}$

 $\mu_Q=\mu_S=0$

 $\frac{\Delta P}{T^4} = \sum_{k=1}^n P_{2k} \hat{\mu}_B^{2k}$

for

 $rac{n_B}{T^3} = \sum_{k=1}^n N_{B,2k-1} \hat{\mu}_B^{2k-1}$

as well as $\mu_Q=n_S=0$

Comparing Taylor series and Pade resummation

Taylor: $\mathcal{O}(\mu_B^n) \;,\; n=4,6,8$

Taylor $\mathcal{O}(\mu_B^8)$ vs. [4,4] Pade

Comparing Taylor series and Pade resummation

agreement between Taylor series and Pade approximants in a larger μ_B range at higher temperature; qualitatively similar μ_B dependence

Analytic structure of the [n,n] Pade approximants

Pade resummation

HotQCD, arXiv:2202.09184

$$\Delta P(T,\mu_B)/T^4 = P_2(T)\hat{\mu}_B^2 + P_4(T)\hat{\mu}_B^4 + P_6(T)\hat{\mu}_B^6 + P_8(T)\hat{\mu}_B^8 + ...$$

 $P_n = \tilde{\chi}_0^{B,n}/n!$

Note: $P_2 > 0 \;,\; P_4 > 0 \; orall \; T \Longrightarrow$ suggests variable transformation

$$ar{x} = \sqrt{rac{P_4}{P_2}}\hat{\mu}_B = \sqrt{rac{ ilde{\chi}_0^{B,4}}{12 ilde{\chi}_0^{B,2}}}\,\hat{\mu}_B$$
 $\longrightarrow rac{\Delta P(T,\mu_B)}{T^4}rac{P_4}{P_2^2} = \sum_{k=1}^{\infty} c_{2k,2}ar{x}^{2k} = ar{x}^2 + ar{x}^4 + c_{6,2}ar{x}^6 + c_{8,2}ar{x}^8$

$$c_{2k,2} = \frac{P_{2k}}{P_2} \left(\frac{P_2}{P_4}\right)^{k-1} = \frac{1}{6} \frac{12^k}{(2k)!} \frac{\tilde{\chi}_0^{B,2k}}{\tilde{\chi}_0^{B,2}} \left(\frac{\tilde{\chi}_0^{B,2}}{\tilde{\chi}_0^{B,4}}\right)^{k-1}$$

Poles of [n,n] Pade approximants in QCD

 $\begin{array}{ll} -\operatorname{P}[2,2] \text{ poles on real axis at } \bar{x} = \pm 1 & \qquad \text{consequence of} \\ P[2,2] & = & \displaystyle \frac{\bar{x}^2}{1-\bar{x}^2} & \quad \tilde{\chi}_0^{B,2} > 0 \ , \ \tilde{\chi}_0^{B,4} > 0 \ \forall \ T \end{array}$

– poles of P[4,4] are controlled by $c_{6,2}$ and $c_{8,2}$ only

$$P[4,4] = \frac{(1-c_{6,2})\bar{x}^2 + (1-2c_{6,2}+c_{8,2})\bar{x}^4}{(1-c_{6,2}) + (c_{8,2}-c_{6,2})\bar{x}^2 + (c_{6,2}^2-c_{8,2})\bar{x}^4}$$

2 pairs of complex poles

1 pair of purely imaginary poles 1 pair of real poles imag. pole is closest to origin

in most of the parameter space the radius of convergence is controlled by a complex or even purely imaginary pole

Poles of [n,n] Pade approximants in QCD

 $\begin{array}{ll} -\operatorname{P}[2,2] \text{ poles on real axis at } \bar{x} = \pm 1 & \longleftarrow & \operatorname{consequence of} \\ P[2,2] & = & \displaystyle \frac{\bar{x}^2}{1-\bar{x}^2} & \quad \tilde{\chi}_0^{B,2} > 0 \ , \ \tilde{\chi}_0^{B,4} > 0 \ \forall \ T \end{array}$

– poles of P[4,4] are controlled by $c_{6,2}$ and $c_{8,2}$ only

Poles of [n,n] Pade approximants in QCD

complex poles move to real axis as temperature decreases

$$\hat{\mu}^{\pm}_{B,c}=\pm r_{c,4}e^{\pm i\Theta_{c,4}}$$

distance of complex poles from the origin is given by the Mercer-Roberts estimator for the radius of convergence

within current errors poles on the real axis (critical point) are possible only for

 $T \leq 135 {
m MeV} \;, \; \mu_B/T > 2.5$

higher statistics will sharpen the constraint

Conclusions

What we learned so far about the CEP in QCD from lattice QCD calculations:

I) the critical temperature is below $T_c = 132^{+3}_{-6}~{
m MeV}$

II) the corresponding critical chemical potential is likely to be above 400 MeV

- Taylor expansions need to be resummed in order to reach CEP
 - no CEP for $\mu_B/T \leq 2.5$
 - CEP not in the BES-II range
 - EoS (pressure & number density) well controlled for $\mu_B/T \leq 2.0 \; orall T > 135 \; {
 m MeV}$

(large range for higher T)

– reliable μ_B - range is smaller for higher order cumulants, given only an 8th order Taylor series for the pressure