The Phase Structure of Strong Interaction Matter from Lee-Yang Edge Singularities in Lattice QCD

Christian Schmidt

UNIVERSITÄT BIELEFELD

\square Faculty of Physics

Based on:

- P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, G. Nicotra, CS, S. Singh, K. Zambello, F. Ziesché, PRD 105 (2022) 3, 034513, arXiv:2110.15933
- D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, Swagato Mukherjee, P. Petreczky, CS, P. Scior arXiv:2202.09184
* Introduction and Motivation
* The multipoint Padé method
* Universal Scaling in the vicinity of the Roberge-Weiss transition
* Universal Scaling in the vicinity of the chiral transition
* The standard Padé resummation at $\mu_{B}=0$ [talk by Frithjof]
* Universal Scaling in the vicinity of the QCD critical point

What is a Lee-Yang edge singularity?

Consider a generic ferromagnetic Ising or $\mathbf{O}(\mathbf{N})$ model:

* One finds zeros of the partition function only at imaginary values of the symmetry breaking field [Lee, Yang 1952]
* In the thermodynamic limit the zeros become dense on the line $h^{\prime}=0$

* The density of Lee-Yang zeros $g\left(T, h^{\prime \prime}\right)$ behaves as $g\left(T, h^{\prime \prime}\right) \sim\left|h^{\prime \prime}-h_{Y L}(T)\right|^{\sigma_{L Y}}$ for $h^{\prime \prime} \rightarrow h_{L Y}(T)$ from above [Kortman, Griffiths 1971; Fischer 1978].
* Fischer connected the edge-singularity with a phase transition in an φ^{3}-theory with imaginary coupling [Fischer 1978]
* 5-Loop calculation of this theory yields $\sigma_{L Y} \sim 0.075$ ($\mathrm{d}=3$) [Borinsky et al., Phys. Rev. D 103, 116024 (2021)]

Why should we care about Lee-Yang edge singularities?

* The approach $h_{L Y} \rightarrow 0$ for $T \rightarrow T_{c}$ signals a 'physical' phase transition
\rightarrow helps to determine a phase transition point. Search for QCD critical point?
* They limit the radius of convergence of any power series
\rightarrow Taylor expansion method in QCD
* They provide important information on the singular part of the free energy, $f \sim\left|h^{\prime \prime}-h_{Y L}(T)\right|^{\sigma_{L Y}+1}$ but also as the starting point of a branch cut
\rightarrow improves analytic continuation, imaginary μ-method in QCD
* The position $h_{L Y}(T)$ together with universal scaling provides us with another procedure to determine nonuniversal constants
\rightarrow more precise determination of nonuniversal constants

What are the universal properties of Lee-Yang edge singularities?

* Scaling relies on the assumption that the singular part of the free energy is a generalised homogeneous function $f(t, h)=b^{-d} f\left(b^{y_{t}} t, b^{y_{h}} h\right)$ with $t=T-T_{c}$. We can get rid of one argument by introducing a scaling variable, e.g., $z=t / h^{1 / \beta \delta}$ which yields $f=h^{\frac{2-\alpha}{\beta \delta}} f_{f}(z)$.
* In terms of the scaling variable z, the position of the the Lee-Yang edge singularity is universal. We find $z_{L Y}=\left|z_{c}\right| e^{i \frac{\pi}{2 \beta \delta}}$. The modulus has been calculated recently by means of functional renormalization group methods
* The exponent $\sigma_{L Y}$ is also universal, and independent of the symmetry group (N)
* Eos: $M=h^{1 / \delta} f_{G}(z)$;

The universal scaling function $f_{G}(z)$ exhibits a branch cut starting at $z=z_{L Y}$
[Engels, Karsch, PRD 85 (2012) 094506]

Where can we apply our knowledge of Lee-Yang edge singularities in QCD?

* The ultimate goal is the location of the QCD critical point
* We can think of three distinct critical points/ scaling regions: Roberge Weiss transition, chiral transition, QCD critical point

The multipoint Padé method

Input data from Lattice QCD:

* We use (2+1)-flavor of highly improved staggered quarks (HISQ)
* Simulations at $\mu_{B}>0$ are not possible due to the infamous sign problem
* Instead we perform calculations at imaginary chemical potential $\mu_{B}=i \mu_{B}^{I}$ [De Frorcrand, Philipsen (2002); D’Elia, Lombardo (2003)]
* The temperature scale and line of constant physics is taken from previous HotQCD calculations [see e.g., Bollweg et al. PRD 104 (2021)]
* We measure cumulants of net baryon number in the interval $i \mu_{B}^{I} / T \in[0, \pi]$ [Allton et al. PRD 66 (2002)]
* The cumulants χ_{n}^{B} are odd and imaginary for n odd and even and and real for n even

Lattice size: $24^{3} \times 4$

$$
\begin{aligned}
& \chi_{n}^{B}\left(T, V, \mu_{B}\right)=\left(\frac{\partial}{\partial \hat{\mu}_{B}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}} \\
& =\left(\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{l}}+\frac{1}{3} \frac{\partial}{\partial \hat{\mu}_{s}}\right)^{n} \frac{\ln Z\left(T, V, \mu_{l}, \mu_{s}\right)}{V T^{3}}
\end{aligned}
$$

The multipoint Padé method

Standard Padé:

* Starting point is a power series

$$
f(x)=\sum_{i=0}^{L} c_{i} x^{i}+\mathcal{O}\left(x^{L+1}\right)
$$

* A Padé approximation is constructed such that the expansion of the Padé is identical to the Taylor series about $x=0$
* We denote the [m/n]-Padé as

$$
R_{n}^{m}(x)=\frac{P_{m}(x)}{\tilde{Q}_{n}(x)}=\frac{P_{m}(x)}{1+Q_{n}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}
$$

* One possibility to solve for the coefficients a_{i}, b_{j}, is by solving the tower of equations

$$
\begin{aligned}
P_{m}(0)-f(0) Q_{n}(0) & =f(0) \\
P_{m}^{\prime}(0)-f^{\prime}(0) Q_{n}(0)-f(0) Q_{n}^{\prime}(0) & =f^{\prime}(0)
\end{aligned}
$$

```
Linear system of size m+n+1,
need m+n derivatives of f(x)
Linear system of size \(m+n+1\),
need \(m+n\) derivatives of \(f(x)\)
```


Multipoint Padé:

* We have power series at several points x_{k}
* We demand that at all points x_{k} the expansion of the Padé is identical to the Taylor series about $x=x_{k}$
* One possibility (method I) to solve for the coefficients a_{i}, b_{j}, is by solving the tower of equations

$$
\begin{aligned}
P_{m}\left(x_{0}\right)-f\left(x_{0}\right) Q_{n}\left(x_{0}\right) & =f\left(x_{0}\right) \\
P_{m}^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) Q_{n}\left(x_{0}\right)-f\left(x_{0}\right) Q_{n}^{\prime}\left(x_{0}\right) & =f^{\prime}\left(x_{0}\right) \\
& \vdots \\
P_{m}\left(x_{1}\right)-f\left(x_{1}\right) Q_{n}\left(x_{1}\right) & =f\left(x_{1}\right) \\
P_{m}^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{1}\right) Q_{n}\left(x_{1}\right)-f\left(x_{1}\right) Q_{n}^{\prime}\left(x_{1}\right) & =f^{\prime}\left(x_{1}\right)
\end{aligned}
$$

again a linear system of size $m+n+1$,
need much less derivatives, we have

$$
m+n+1=\sum_{k}\left(L_{k}+1\right)
$$

* Here we use $f=\chi_{1}^{B}$ and $x=\mu_{B}$
* Solving the linear system in the μ_{B} / T plane with two different Ansatz functions
* The most general form (Ansatz NS)
$R_{n}^{m}(x)=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}$
* Taking into account the expected parity of the net baryon number density (Ansatz S)
$R_{n}^{m}(x)=\frac{\sum_{i=0}^{m^{\prime}} a_{2 i+1} x^{2 i+1}}{1+\sum_{j=1}^{n / 2} b_{2 j} x^{2 j}} \quad$ with
$m=2 m^{\prime}+1 ; a_{i}, b_{i} \in \mathbb{R} ; a_{1}=\chi_{2}^{B}(T, V, 0)$
This ensures the correct parity for all χ_{n}^{B}, and a real valued analytic continuation.
> find agreement in analytic continuation of both for $\mu_{B} / T \lesssim 2.5$

The multipoint Padé method - results singularity structure $\left(N_{\tau}=4\right)$

find almost perfect cancelation of many zeros and poles

$$
\begin{gathered}
\rightarrow \text { find signature for branch cut along } \\
\mu_{B} / T=\mu_{B}^{R} \pm i \pi \text { at } T=\{201,186\} \mathrm{MeV}
\end{gathered}
$$

* We can solve the linear system in the fugacity plane

$$
\begin{aligned}
& \rightarrow \text { find signature for branch cut along } \\
& z=-z^{R} \text { at } T=\{201,186\} \mathrm{MeV}
\end{aligned}
$$

* First steps toward using more complicated conformal mappings
[Skokov, Morita, Friman PRD 83 (2011); Basar Dunne 2112.14269]
* It has been argued that certain conformal mappings improve analytic continuation and sensitivity to the QCD critical point

Can we interpret the closest singularity as Lee-Yang edge singularity?

* At physical quark masses the Roberge-Weiss critical point is the $Z(2)$ symmetric end point of a line of first order transitions.
* Need to map QCD parameter to the scaling fields t, h. For the Roberge-Weiss Transition we make the following Ansatz
$t=t_{0}^{-1}\left(\frac{T_{R W}-T}{T_{R W}}\right) \quad$ and $\quad h=h_{0}^{-1}\left(\frac{\hat{\mu}_{B}-i \pi}{i \pi}\right)$
* For our lattice setup [(2+1)-flavor of HISQ, $\left.N_{\tau}=4\right]$ we know the position of the critical point $\left(T_{R W}, \mu_{B_{R W}}=(201 \mathrm{MeV}, i \pi)\right)$

Can we interpret the closest singularity as Lee-Yang edge singularity?

* We can look at the temperature dependence of our singularities. By solving $z=t / h^{1 / \beta \delta} \equiv z_{c}$ we find $\hat{\mu}_{L Y}^{R}= \pm \pi\left(\frac{z_{0}}{\left|z_{c}\right|}\right)^{\beta \delta}\left(\frac{T_{R W}-T}{T_{R W}}\right)^{\beta \delta}$ and $\hat{\mu}_{L Y}^{I}= \pm \pi$ with $z_{0}=h_{0}^{1 / \beta \delta} / t_{0}$ and $\hat{\mu}=\mu / T$.

find good agreement with RW-scaling

Method I: solving the linear system in the $\hat{\mu}_{B}$ plane

Method II: minimize a generalised $\tilde{\chi}^{2}$, (combined fit to all data)

$$
\tilde{\chi}^{2}=\sum_{j, k} \frac{\left|\frac{\partial^{i} R_{n}^{m}}{\partial \hat{\mu}_{B}^{\prime}}\left(\hat{\mu}_{B, k}\right)-\chi_{j+1}^{B}\left(\mu_{B, k}\right)\right|^{2}}{\left|\Delta \chi_{j+1}^{B}\left(\hat{\mu}_{B, k}\right)\right|^{2}}
$$

Method III: solving the linear system in the z plane, and mapping the result back to $\hat{\mu}_{B}$

Can we interpret the closest singularity as Lee-Yang edge singularity?

* We can look at the temperature dependence of our singularities. By solving $z=t / h^{1 / \beta \delta} \equiv z_{c}$ we find $\hat{\mu}_{L Y}^{R}= \pm \pi\left(\frac{z_{0}}{\left|z_{c}\right|}\right)^{\beta \delta}\left(\frac{T_{R W}-T}{T_{R W}}\right)^{\beta \delta}$ and $\hat{\mu}_{L Y}^{I}= \pm \pi$ with $z_{0}=h_{0}^{1 / \beta \delta} / t_{0}$ and $\hat{\mu}=\mu / T$.

find good agreement with RW-scaling

Method I: solving the linear system in the $\hat{\mu}_{B}$ plane

Method II: minimize a generalised $\tilde{\chi}^{2}$, (combined fit to all data)

$$
\tilde{\chi}^{2}=\sum_{j, k} \frac{\left|\frac{\partial^{i} R_{n}^{m}}{\partial \hat{\mu}_{B}^{\prime}}\left(\hat{\mu}_{B, k}\right)-\chi_{j+1}^{B}\left(\mu_{B, k}\right)\right|^{2}}{\left|\Delta \chi_{j+1}^{B}\left(\hat{\mu}_{B, k}\right)\right|^{2}}
$$

Method III: solving the linear system in the z plane, and mapping the result back to $\hat{\mu}_{B}$

* Calculations at $T=145 \mathrm{MeV}$ on $36^{3} \times 6$ lattices

* The chiral transition is very well studied by the HotQCD collaboration. Important nonuniversal constants are known.
* Ansatz for the scaling fields is give by

$$
\begin{aligned}
& t=\frac{1}{t_{0}}\left[\frac{T-T_{c}}{T_{c}}+\kappa_{2}^{B}\left(\frac{\mu_{B}}{T}\right)^{2}\right] \\
& h=\frac{1}{h_{0}} \frac{m_{l}}{m_{s}^{\text {phys }}}
\end{aligned}
$$

* We solve again for $\hat{\mu}_{L Y}$ by setting $z=z_{c}$ and obtain

$$
\hat{\mu}_{L Y}=\left[\frac{1}{\kappa_{2}^{B}}\left(\frac{z_{c}}{z_{0}}\left(\frac{m_{l}}{m_{s}^{\text {phys }}}\right)^{1 / \beta \delta}-\frac{T-T_{c}}{T_{c}}\right)\right]^{1 / 2}
$$

Required input: $T_{c}, \kappa_{2}^{B}, z_{0}, z_{c}$

Position of the LYE

The radius of convergence

[Mukherjee, Skokov, PRD 103 (2021) 071501]

* Comparison of the prediction with the actually found singularity of the multipoint Padé

* 68% and 95% confidence regions of the prediction are generated with the following $N_{\tau}=6$ specific values for the nonuniversal constants

$$
\left.\begin{array}{rl}
T_{c} & =(147 \pm 6) \mathrm{MeV}, \\
z_{0} & =2.35 \pm 0.2, \\
\kappa_{2}^{B} & =0.012 \pm 0.002,
\end{array}\right\} \text { [HotQCD], Gaussian error distribution assumed }
$$

* We will now consider the pressure series

$$
\frac{P}{T^{4}}=\frac{1}{V T^{3}} \ln \mathscr{Z}(T, V, \vec{\mu})=\sum_{i, j, k=0}^{\infty} \frac{\chi_{i j k}^{B Q S}}{i!j!k!} \hat{\mu}_{B}^{i} \hat{\mu}_{Q}^{j} \hat{\mu}_{S}^{k} \quad \rightarrow \quad f(x)=\sum_{n}^{\infty} c_{n} x^{n}
$$

* Very high statistics, over 1M configurations per temperature ($N_{\tau}=8$), generated by HotQCD over the past decade
* Consider two cases of a series in one variable:
* Fist two orders are strictly positive

* We will now consider the pressure series

$$
\frac{P}{T^{4}}=\frac{1}{V T^{3}} \ln \mathscr{Z}(T, V, \vec{\mu})=\sum_{i, j, k=0}^{\infty} \frac{\chi_{i j k}^{B Q S}}{i!j!k!} \hat{\mu}_{B}^{i} \hat{\mu}_{Q}^{j} \hat{\mu}_{S}^{k} \quad \rightarrow \quad f(x)=\sum_{n}^{\infty} c_{n} x^{n}
$$

* Very high statistics, over 1M configurations per temperature ($N_{\tau}=8$), generated by HotQCD over the past decade
* Consider two cases of a series in one variable
* Fist two orders are strictly positive

[Bollweg et al. [HotQCD] arXiv:2202.09184]
* We can estimate the radius of convergence $r_{c}=\lim _{n \rightarrow \infty} r_{c, n}$ by ratios of expansion coefficients

$$
\begin{array}{rll}
\text { Simple ratio estimator: } & r_{c, n}=\sqrt{\left|A_{n}\right|} & A_{n}=\frac{c_{n}}{c_{n+2}}, n \text { even } \\
\text { Mercer-Roberts estimator: } & r_{c, n}^{M R}=\left|A_{n}^{M R}\right|^{1 / 4} & A_{n}^{M R}=\frac{c_{n+2} c_{n-2}-c_{n}^{2}}{c_{n+4} c_{n}-c_{n+2}^{2}}, n \text { even }
\end{array}
$$

* The Estimators A_{n} and $A_{n}^{M R}$ are related to the poles of the [$\mathrm{n}, 2$] and [$\left.\mathrm{n}, 4\right]$ Padé, respectively.
* For the analysis of the Padé, we take advantage of the positivity of $\chi_{2}^{B}\left(\bar{\chi}_{2}^{B}\right)$ and $\chi_{4}^{B}\left(\bar{\chi}_{4}^{B}\right)$ and rescale the pressure series by a factor P_{4} / P_{2}^{2} and redefine the expansion parameter to $\bar{x}=\sqrt{P_{4} / P_{2}} \hat{\mu}_{B} \equiv \sqrt{\bar{\chi}_{4}^{B} /\left(12 \bar{\chi}_{2}^{B}\right)} \hat{\mu}_{B}$.

$$
\begin{aligned}
& \frac{\left(\Delta P\left(T, \mu_{B}\right) / T^{4}\right) P_{4}}{P_{2}^{2}}=\sum_{k=1}^{\infty} c_{2 k, 2} \bar{x}^{2 k}=\bar{x}^{2}+\bar{x}^{4}+c_{6,2} \bar{x}^{6}+c_{8,2} \bar{x}^{8}+\ldots \\
& \text { with } c_{6,2}=\frac{P_{6} P_{2}}{P_{4}^{2}}=\frac{2}{5} \frac{\bar{\chi}_{6}^{B} \bar{\chi}_{2}^{B}}{\left(\bar{\chi}_{4}^{B}\right)^{2}} \text { and } c_{8,2}=\frac{P_{8} P_{2}^{2}}{P_{4}^{3}}=\frac{3}{35} \frac{\bar{\chi}_{8}^{B}\left(\bar{\chi}_{2}^{B}\right)^{2}}{\left(\bar{\chi}_{4}^{B}\right)^{3}}
\end{aligned}
$$

* In term of the expansion parameter \bar{x}, the Padé is given as

$$
\begin{aligned}
& P[2,2]=\frac{\bar{x}^{2}}{1-\bar{x}^{2}} \longrightarrow \text { Poles on the real axis at } \\
& \bar{x}^{2}=1 \quad \Leftrightarrow \quad \hat{\mu}_{B, c}=\sqrt{12 \bar{\chi}_{2}^{B} / \bar{\chi}_{4}^{B}}
\end{aligned}
$$

$$
P[4,4]=\frac{\left(1-c_{6,2}\right) \bar{x}^{2}+\left(1-2 c_{6,2}+c_{8,2}\right) \bar{x}^{4}}{\left(1-c_{6,2}\right)+\left(c_{8,2}-c_{6,2}\right) \bar{x}^{2}+\left(c_{6,2}^{2}-c_{8,2}\right) \bar{x}^{4}}
$$

For $T>135 \mathrm{MeV}$ we find only complex poles

Poles approach the real axis with decreasing temperature
\rightarrow Temperature dependence is currently not in consistence with expected universal scaling

* Scaling fields are unknown, a frequently used ansatz is given by a linear mapping

$$
\begin{aligned}
t & =\alpha_{t}\left(T-T_{c e p}\right)+\beta_{t}\left(\mu_{B}-\mu_{c e p}\right) \\
h & =\alpha_{h}\left(T-T_{c e p}\right)+\beta_{h}\left(\mu_{B}-\mu_{c e p}\right)
\end{aligned}
$$

* For the Lee-Yang edge singularity we obtain

$$
\mu_{L Y}=\mu_{c e p}-c_{1}\left(T-T_{c e p}\right)+i c_{2}\left|z_{c}\right|^{-\beta \delta}\left(T-T_{c e p}\right)^{\beta \delta},
$$

Real part:
linear in T
The coefficient only
depends on the slope
of the crossover line

$$
c_{1}=\beta_{T} / \beta_{\mu}
$$

* To visualise the scaling we use some ad-hoc values

$$
\begin{aligned}
\mu_{c e p} & =500-630 \mathrm{MeV} \\
T_{c e p} & =T_{p c}\left(1-\kappa_{2}^{B} \hat{\mu}_{B}^{2}\right) \\
\kappa_{2}^{B} & =0.012 \\
T_{p c} & =156.5 \mathrm{MeV}
\end{aligned}
$$

$$
c_{1}=0.024
$$

$$
c_{2}=0.5
$$

Scaling in the vicinity of the QCD critical point (Gross-Never model)

* In the Gross-Neveu model, it has been demonstrated that a scaling analysis of the Lee-Yang edge singularities can be used to determine the critical point
* However, 8th order is not sufficient to extract the correct results.

Need more precise data from lattice QCD

[Basar, PRL 127 (2021) 171603]

New Method

* We [Bielefeld-Parma] have developed a multipoint Padé method to extract singularities of the net baryon number density in the $\hat{\mu}_{B}$ plane

Close to the RW transition

* Find evidence for a brunch cut along $\hat{\mu}_{B}=\hat{\mu}_{B}^{R} \pm i \pi$
* Find $Z(2)$ scaling of closest singularities
* Hence, our singularities can be identified with the Lee-Yang edge singularities

Close to the chiral transition

* Multipoint Padé: find one singularity which is in good agreement with expectation, need to verify the scaling in T and m_{l}

Close to the critical end-point

* Padé with high statistics $N_{\tau}=8$ data [HotQCD]: singularities also in the correct bulk part, they approach the real μ_{B} axis, but not in consistency with universal scaling
* Bound on the critical point: $\hat{\mu}_{\text {cep }}>2.5$ and $T_{\text {cep }}<135 \mathrm{MeV}$

