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Introduction and Motivation

What is a Lee-Yang edge singularity?

h′ 

h′ ′ 

Consider a generic ferromagnetic Ising or O(N) model: 
One finds zeros of the partition function only at imaginary values of the symmetry breaking field [Lee, Yang 1952]

In the thermodynamic limit the zeros become dense on the line h′ = 0

h′ 

h′ ′ 

+hYL(T )

 finite,  V T > Tc ,  V → ∞ T > Tc

Z(V, T, h) ≡ 0, h = h′ + ih′ ′ 

−hYL(T )

The density of Lee-Yang zeros  behaves as  for  from above 
[Kortman, Griffiths 1971; Fischer 1978].

Fischer connected the edge-singularity with a phase transition in an -theory with imaginary coupling [Fischer 1978]

5-Loop calculation of this theory yields  (d=3) [Borinsky et al., Phys. Rev. D 103, 116024 (2021)]

g(T, h′ ′ ) g(T, h′ ′ ) ∼ |h′ ′ − hYL(T ) |σLY h′ ′ → hLY(T )

φ3

σLY ∼ 0.075
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h′ 

h′ ′ 

hYL(Tc) = 0

,  V → ∞ T → Tc



Introduction and Motivation

Why should we care about Lee-Yang edge singularities?

The approach  for  signals a ‘physical’ phase transition 

 helps to determine a phase transition point. Search for QCD critical point?


They limit the radius of convergence of any power series  

 Taylor expansion method in QCD


They provide important information on the singular part of the free energy, 
but also as the starting point of a branch cut 


 improves analytic continuation, imaginary -method in QCD


The position  together with universal scaling provides us with another 
procedure to determine nonuniversal constants


 more precise determination of nonuniversal constants

hLY → 0 T → Tc

→

→

f ∼ |h′ ′ − hYL(T ) |σLY+1

→ μ

hLY(T )

→

4



Introduction and Motivation

What are the universal properties of Lee-Yang edge singularities?

Scaling relies on the assumption that the singular part of the free energy 
is a generalised homogeneous function   with 

 . We can get rid of one argument by introducing a scaling 

variable, e.g.,  which yields .


In terms of the scaling variable , the position of the the Lee-Yang edge 
singularity is universal. We find . The modulus has been 
calculated recently by means of functional renormalization group 
methods 


f(t, h) = b−df(bytt, byhh)
t = T − Tc

z = t/h1/βδ f = h
2 − α

βδ ff (z)

z
zLY = |zc |ei π

2βδ

Functional renormalization group approach to YL edge singularity III
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Figure 4: Left part: The infinite-volume scaling functions fG(z), −f ′
G(z) and fχ(z)

for z > 0, T > Tc from data (circles) for M,χt and χL on an L = 120 lattice.
The lines are from the parametrization of the scaling functions in Appendix A.
Right part: The scaling function ff(z) and its first three derivatives from the new
parametrization.

a polynomial ansatz for fG(z, zL),

fG(z, zL) = fG(z, 0) +
4

∑

n=0

7
∑

m=3

anmz
nzmL . (29)

anm n

0 1 2 3 4

3 0.0421332 -0.0782771 0.0546495 -0.0251385 0.0017542

4 0.0576183 0.3302893 -0.2642637 0.0617961 0.0049618

m 5 -0.6352819 -0.3461722 0.4678005 -0.0453606 -0.0309722

6 0.5355251 0.1770113 -0.3118316 0.0061252 0.0295072

7 -0.1247180 -0.0369583 0.0696270 0.0021488 -0.0078913

Table 1: Expansion coefficients
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The exponent  is also 
universal, and independent 
of the symmetry group 

σLY

(N )

[Engels, Karsch, PRD 85 (2012) 094506]

[Connelly et al. PRL 125 (2020) 19]
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Eos: ;          
The universal scaling function 

 exhibits a branch cut 
starting at 

M = h1/δfG(z)

fG(z)
z = zLY



Introduction and Motivation

Where can we apply our knowledge of Lee-Yang edge singularities in QCD?

T

µB

mu,
d
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0

The ultimate goal is the location of the QCD 
critical point 


We can think of three distinct critical points/
scaling regions: Roberge Weiss transition, 
chiral transition, QCD critical point 
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2nd order O(4)
tri-critical
2nd order Z(2)
1st order
crossover



The multipoint Padé method

We use (2+1)-flavor of highly improved 
staggered quarks (HISQ)


Simulations at  are not possible due to 
the infamous sign problem 


Instead we perform calculations at imaginary 
chemical potential 

[De Frorcrand, Philipsen (2002); D’Elia, 
Lombardo (2003) ]


The temperature scale and line of constant 
physics is taken from previous HotQCD 
calculations 

[see e.g., Bollweg et al. PRD 104 (2021) ]


We measure cumulants of net baryon number 
in the interval 

[Allton et al. PRD 66 (2002) ]


The cumulants  are odd and imaginary for  
odd and even and and real for  even

μB > 0

μB = iμI
B

iμI
B /T ∈ [0,π]

χB
n n

n


χB
n (T, V, μB) = ( ∂

∂ ̂μB )
n ln Z(T, V, μl, μs)

VT3

= ( 1
3

∂
∂ ̂μl

+
1
3

∂
∂ ̂μs )

n
ln Z(T, V, μl, μs)

VT3

T = 176.6 MeV

T = 186.3 MeV

T = 201.4 MeV

Lattice size:  243 × 4Input data from Lattice QCD:
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The multipoint Padé method

A Padé approximation is constructed such 
that the expansion of the Padé is identical to 
the Taylor series about  x = 0

Standard Padé:

Starting point is a power series 

f(x) =
L

∑
i=0

ci xi + 𝒪(xL+1) .

We denote the [m/n]-Padé as 

Rm
n (x) =

Pm(x)
Q̃n(x)

=
Pm(x)

1 + Qn(x)
=

m
∑
i=0

ai xi

1 +
n

∑
j=1

bj x j

One possibility to solve for the coefficients 
, is by solving the tower of equations ai, bj

Pm(0) − f (0)Qn(0) = f (0)

⋮

Multipoint Padé:

We have power series at several points xk

We demand that at all points  the expansion 
of the Padé is identical to the Taylor series 
about 

xk

x = xk

One possibility (method I) to solve for the 
coefficients , is by solving the tower of 

equations 

ai, bj

 Linear system of size , 
need  derivatives of 

→ m + n + 1
m + n f(x)

P′ m(0) − f′ (0)Qn(0) − f(0)Q′ n(0) = f′ (0)

P′ m(x0) − f′ (x0)Qn(x0) − f(x0)Q′ n(x0) = f′ (x0)

Pm(x0) − f (x0)Qn(x0) = f (x0)

P′ m(x1) − f′ (x1)Qn(x1) − f(x1)Q′ n(x1) = f′ (x1)

Pm(x1) − f (x1)Qn(x1) = f (x1)
⋮

⋮

 again a linear system of size , 
need much less derivatives, we have 

→ m + n + 1

m + n + 1 = ∑
k

(Lk + 1)
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The multipoint Padé method - results analytic continuation ( )Nτ = 4

Solving the linear system in the  plane 
with two different Ansatz functions

μB /T

The most general form (Ansatz NS)

Rm
n (x) =

m
∑
i=0

ai xi

1 +
n

∑
j=1

bj x j

Taking into account the expected parity of the 
net baryon number density (Ansatz S)

       with 

  

This ensures the correct parity for all , and a 
real valued analytic continuation. 

Rm
n (x) =

m′ 
∑
i=0

a2i+1 x2i+1

1 +
n/2
∑
j=1

b2j x2j

m = 2m′ + 1; ai, bi ∈ ℝ; a1 = χB
2 (T, V,0)

χB
n

Here we use  and f = χB
1 x = μB

 find agreement in analytic 
continuation of both for 

→
μB /T ≲ 2.5
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The multipoint Padé method - results singularity structure ( )Nτ = 4

 (NS)

 (S)

 T = 201 MeV = TRW  T = 186 MeV  T = 167 MeV

 find signature for branch cut along 
 at 

→
μB /T = μR

B ± iπ T = {201,186} MeV
 find almost perfect cancelation of 

many zeros and poles 
→
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The multipoint Padé method - results singularity structure ( )Nτ = 4

We can solve the linear system in the fugacity plane 

 find signature for branch cut along 
 at 

→
z = − zR T = {201,186} MeV

First steps toward using more complicated 
conformal mappings

[Skokov, Morita, Friman PRD 83 (2011); Basar 
Dunne 2112.14269]
It has been argued that certain conformal mappings 
improve analytic continuation and sensitivity to the 
QCD critical point

11

https://arxiv.org/abs/2112.14269
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Scaling in the vicinity of the Roberge-Weiss transition

Need to map QCD parameter to the scaling fields . For 
the Roberge-Weiss Transition we make the following Ansatz 

t, h

Can we interpret the closest singularity as Lee-Yang edge singularity?

  Re[L]

  Im[L]At physical quark masses the Roberge-Weiss critical point is 
the Z(2) symmetric end point of a line of first order transitions. 

 ( μB

T )
2 −π2

 Tpc

 T

Z(3) symmetry in 
the Polyakov loop 

    and    t = t−1
0 ( TRW − T

TRW ) h = h−1
0 ( ̂μB − iπ

iπ )
For our lattice setup [(2+1)-flavor of HISQ, ] we know 
the position of the critical point 

Nτ = 4
(TRW, μBRW

= (201 MeV, iπ))

ml = ms/27

M

T [MeV]

N
σ
 = 32

24

16
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[J. Goswami, Lattice 2021]
[Bielefeld-Frankfurt, in preparation]
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Scaling in the vicinity of the Roberge-Weiss transition

Can we interpret the closest singularity as Lee-Yang edge singularity?

We can look at the temperature dependence of our 
singularities. By solving  we find 

 and   

with  and .

z = t/h1/βδ ≡ zc

̂μR
LY = ± π ( z0

|zc | )
βδ

( TRW − T
TRW )

βδ

̂μI
LY = ± π

z0 = h1/βδ
0 /t0 ̂μ = μ /T

µ̂R
LY : Method I

µ̂R
LY : Method II

µ̂R
LY : Method III

Fit I

Fit II

Fit III

Method I: solving the linear system in the  planêμB

Method II: minimize a generalised ,  
(combined fit to all data)


χ̃2

χ̃2 = ∑
j,k

|
∂ jRm

n

∂ ̂μ j
B

( ̂μB,k) − χB
j+1(μB,k) |2

|ΔχB
j+1( ̂μB,k) |2

Method III: solving the linear system in the  plane, and 
mapping the result back to 

z
̂μB

0 1 2 3 4 5
Re[µB/T]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Im
[µ

B
/T

]

µ̂LY

RW scaling

chiral scaling

CEP scaling

T

χ2 ∼ 0.8

z0 ≈ 9.3(3)

find good agreement with RW-scaling→
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Fit II, Nø = 4

Fit II, Nø = 6

µ̂R
LY : Method II, Nø = 4

µ̂R
LY : Method II, Nø = 6

Scaling in the vicinity of the Roberge-Weiss transition

Can we interpret the closest singularity as Lee-Yang edge singularity?

We can look at the temperature dependence of our 
singularities. By solving  we find 

 and   

with  and .

z = t/h1/βδ ≡ zc

̂μR
LY = ± π ( z0

|zc | )
βδ

( TRW − T
TRW )

βδ

̂μI
LY = ± π

z0 = h1/βδ
0 /t0 ̂μ = μ /T

Method I: solving the linear system in the  planêμB

Method II: minimize a generalised ,  
(combined fit to all data)


χ̃2

χ̃2 = ∑
j,k

|
∂ jRm

n

∂ ̂μ j
B

( ̂μB,k) − χB
j+1(μB,k) |2

|ΔχB
j+1( ̂μB,k) |2

Method III: solving the linear system in the  plane, and 
mapping the result back to 

z
̂μB

0 1 2 3 4 5
Re[µB/T]

0.0

0.5

1.0

1.5

2.0
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Im
[µ

B
/T

]

µ̂LY

RW scaling

chiral scaling

CEP scaling

T

z0 ≈ 9.3(3)

find good agreement with RW-scaling→

14

TRW(Nτ = 4) = 201.4 MeV
TRW(Nτ = 6) = 208.7 MeV



The multipoint Padé method - results analytic continuation ( )Nτ = 6

Calculations at  on  lattices T = 145 MeV 363 × 6

find dependence on the probed interval, but not on the method→
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The multipoint Padé method - results singularity structure ( )Nτ = 6

 [0,π]

 [0,2π]

find dependence on the probed interval, but not on the method→
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Scaling in the vicinity of the chiral transition 

The chiral transition is very well studied by the HotQCD 
collaboration. Important nonuniversal constants are known.

Ansatz for the scaling fields is give by 

t =
1
t0 [ T − Tc

Tc
+ κB

2 ( μB

T )
2

]
h =

1
h0

ml

mphys
s

̂μLY =
1
κB

2

zc

z0 ( ml

mphys
s )

1/βδ

−
T − Tc

Tc

1/2

We solve again for  by setting  and obtain ̂μLY z = zc

T = 155 MeV

T = 145 MeV

m=1/27

m=1/80

4

0 200 400 600 800
µB [MeV]

120

130

140

150

160

T
[M
eV
]

mphysl

mphysl / 4

mphysl / 16
ml = 0

ǻ7

FIG. 2. Radius of convergence µB for di↵erent values of T
and for di↵erent values of the light up/down quark masses.
The minimum of the curves shifts to higher temperatures by

the amount �T
T0
c

= Rezc
z0

⇣
ml

mphys
s

⌘ 1
��

. See text for details.

µB and the analytic continuations in complex-µB plane
of the QCD free energy is determined by the value of |zc|.
2+1-flavor lattice QCD calculations show that the chiral
condensate, M , for the physical value of light up/down
quark mass, m

phys
l = m

phys
s /27, are well-described by

the 3-dimensional O(4) scaling function fG, with in-
clusion of small corrections from the analytic function
Freg [15, 17, 18, 21]. Obviously, Freg unavoidably af-
fects the values of the low-order Taylor coe�cients; how-
ever, any analytic contribution does not change the ra-
dius of convergence. Base on these arguments, we ex-
pect that, for QCD, the singularity nearest to µB = 0
in the complex-µB plane is defined by zc. If zc is known
then Eq. (2) can be used to translate this singularity to
the complex-µB plane and, thereby, determine the cor-
responding radius of convergence. The rest of the uni-
versal and non-universal parameters entering Eq. (2) are
known— (i) The critical exponents of the O(4) universal-
ity class � = 0.380, � = 4.824 [28]. (ii) Both m

phys
l and

T are purely real. (iii) T
0
c = 132+3

�6 MeV [15]. (iv) The
curvature of the pseudo-critical temperature Tpc(µB),

B
2 = 0.012(2) [1]. (v) The scale factor z0 can be deter-

mined by fitting the ml-dependence of the lattice QCD-
calculated Tpc(ml) [3]; based on the lattice QCD results
of Ref. [15] on Tpc(ml) the scale factor is estimated to
be z0 ' 1 � 2 [29]. Currently the best estimate for |zc|
is available from the Functional Renormalization Group
studies [13]; they show that |zc| ⇡ 1.665 for O(4). This
value is accidentally close to the one obtained in the large
N limit ⇡ 1.649. In our analysis we use |zc| = 1.665.
We note that the Functional Renormalization Group ap-
proach is well suited for extracting the location of the
edge singularity, as it does not rely on the Monte-Carlo
importance sampling and thus does not su↵er from the
sign problem which hinders lattice simulation at complex
(imaginary) values of z (h). Moreover, critical behav-

FIG. 3. Radius of convergence in µB for physical quark
masses. The orange band is for z0 = 2 and incorporates a
5% uncertainty on the value of |zc|. The blue band depicts
variation of z0 = 1� 2.

ior is dominated by the long-range physics of the slow
critical modes. This justifies the derivative expansion of
the e↵ective action; in the non-perturbative Functional
Renormalization Group approach, this expansion is know
to rapidly converge [30]. To account for a possible sys-
tematic uncertainty of the truncation scheme used in the
Functional Renormalization Group calculation we gener-
ously vary |zc| by 5%. The large-N value of |zc| falls into
this uncertainty band.
In Figure 2 we show the radius of convergence in µB in

the T � µB plane for di↵erent values of ml in the range
0 � m

phys
l , using z0 = 2, O(4) critical exponents, and

other lattice QCD-determined non-universal parameters
described above. Note that, in the chiral limit, QCD free
energy is singular at T = T

0
c , µB = 0 and, therefore,

the radius of convergence at this point is zero, see also
Refs. [9, 10].
Figure 3 provides a more realistic estimate for the ra-

dius of convergence in µB in the T � µB plane for mphys
l

by varying |zc| around its FRG value and z0 = 1 � 2.
While the value of |zc| was recently determined to rather
high precision and leads to a limited uncertainty of the
radius of convergence, more precise lattice QCD result
for z0 is needed to improve this estimate.

CONCLUSIONS

Relying only on the universal behavior of QCD in the
chiral crossover region we investigated the analytic be-
havior of the free energy. We argued that if the chi-
ral behavior of QCD is well-described by the universal
scaling, as borne out in recent the lattice QCD calcula-
tions, then the analytic structure of the free energy will
be completely governed by the corresponding universal
scaling function. We estimated the relevant singularity
of the scaling function based on the two extreme limits

[Mukherjee, Skokov, PRD 103 (2021) 071501]

The radius of convergence

Position of the LYE

Required input: , , , Tc κB
2 z0 zc

T
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Scaling in the vicinity of the chiral transition 

0 1 2 3 4 5
Re[µB/T]
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T95

68

µ̂LY

Comparison of the prediction with the actually found singularity of the multipoint Padé

68% and 95% confidence regions of the prediction are generated with the following  specific values for 
the nonuniversal constants

Nτ = 6

find good agreement. Coincidence? Need more data.→

Tc = (147 ± 6) MeV ,
z0 = 2.35 ± 0.2 ,

κB
2 = 0.012 ± 0.002 ,

 (O(2)) value |zc | = 2.032 [Connelly et al. PRL 125 (2020) 19]

[HotQCD], Gaussian error distribution assumed 

<latexit sha1_base64="JIdBHV4Nym9sQ3JB612Gpady9rg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1UvVrVu7+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB6CEjW0=</latexit>

}
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Padé resummation of the Taylor series about    μB = 0 (Nτ = 8)

We will now consider the pressure series 

P
T4

=
1

VT3
ln 𝒵(T, V, ⃗μ ) =

∞

∑
i, j,k=0

χBQS
ijk

i!j! k!
̂μi
B ̂μj

Q ̂μk
S → f(x) =

∞

∑
n

cnxn
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Fist two orders are 
strictly positive

Consider two cases of a 
series in one variable:

[Bollweg et al. [HotQCD] arXiv:2202.09184]

 μQ = 0, μS = 0  μQ = 0, nS = 0

Very high statistics, over 
1M configurations per 
temperature ( ), 
generated by HotQCD 
over the past decade

Nτ = 8
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Padé resummation of the Taylor series about    μB = 0 (Nτ = 8)

We will now consider the pressure series 

P
T4

=
1

VT3
ln 𝒵(T, V, ⃗μ ) =

∞

∑
i, j,k=0

χBQS
ijk

i!j! k!
̂μi
B ̂μj

Q ̂μk
S → f(x) =

∞

∑
n

cnxn

Very high statistics, over 
1M configurations per 
temperature ( ), 
generated by HotQCD 
over the past decade

Nτ = 8

Fist two orders are 
strictly positive

Consider two cases of a 
series in one variable

[Bollweg et al. [HotQCD] arXiv:2202.09184]
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Padé resummation of the Taylor series about    μB = 0 (Nτ = 8)

We can estimate the radius of convergence  by ratios of expansion coefficients rc = lim
n→∞

rc,n

An =
cn

cn+2
, n evenrc,n = |An |Simple ratio estimator: 

AMR
n =

cn+2 cn−2 − c2
n

cn+4 cn − c2
n+2

, n evenrMR
c,n = |AMR

n |1/4Mercer-Roberts estimator: 

The Estimators  and  are related to the poles of the [n,2] and [n,4] Padé, respectively. An AMR
n

For the analysis of the Padé, we take advantage of the positivity of  and  and rescale the pressure 

series by a factor  and redefine the expansion parameter to  

χB
2 ( χ̄B

2) χB
4 ( χ̄B

4)

P4/P2
2 x̄ = P4/P2 ̂μB ≡ χ̄B

4 /(12χ̄B
2) ̂μB .

(ΔP(T, μB)/T4)P4

P2
2

=
∞

∑
k=1

c2k,2x̄2k = x̄2 + x̄4 + c6,2x̄6 + c8,2x̄8 + . . .

The singular structure of the 8th order expansion depends only on two coefficients→

with     and   c6,2 =
P6P2

P2
4

=
2
5

χ̄B
6 χ̄B

2

( χ̄B
4)2

c8,2 =
P8P2

2

P3
4

=
3
35

χ̄B
8( χ̄B

2)2

( χ̄B
4)3
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Padé resummation of the Taylor series about    μB = 0 (Nτ = 8)

In term of the expansion parameter , the Padé is given as x̄

P[2,2] =
x̄2

1 − x̄2

P[4,4] =
(1 − c6,2)x̄2 + (1 − 2c6,2 + c8,2) x̄4

(1 − c6,2) + (c8,2 − c6,2)x̄2 + (c2
6,2 − c8,2)x̄4

-4
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c
8
,2

c6,2

cc

ii
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rr

Poles on the real axis at   

x̄2 = 1 ⇔ ̂μB,c = 12χ̄B
2 /χ̄B

4

4 poles 

(two pairs)
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 For  we find only complex poles  → T > 135 MeV

 μQ = 0, μS = 0     μQ = 0, nS = 0
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Padé resummation of the Taylor series about    μB = 0 (Nτ = 8)
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 Poles approach the real axis with decreasing temperature →
Temperature dependence is currently not in consistence with expected universal scaling→

T T
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Scaling in the vicinity of the QCD critical point   

0 1 2 3 4 5
Re[µB/T]

0.0

0.5

1.0

1.5
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Im
[µ

B
/T

]

µ̂LY

RW scaling

chiral scaling

CEP scaling

Scaling fields are unknown, a frequently used ansatz is given by a linear mapping 

 t

 h T

 μB μcep

 Tcep

t = αt(T − Tcep) + βt(μB − μcep)

h = αh(T − Tcep) + βh(μB − μcep)

For the Lee-Yang edge singularity we obtain  

μLY = μcep − c1(T − Tcep) + ic2 |zc |−βδ (T − Tcep)βδ ,

Real part: 
linear in T

Imaginary part: 
power law

The coefficient only 
depends on the slope 
of the crossover line

c1 = βT /βμ

 T

To visualise the scaling we use some ad-hoc values 

μcep = 500 − 630 MeV
Tcep = Tpc(1 − κB

2 ̂μ2
B)

κB
2 = 0.012

Tpc = 156.5 MeV
c1 = 0.024
c2 = 0.5
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Scaling in the vicinity of the QCD critical point (Gross-Never model)  

4

a truncated series expansion of the equation of state
and compare these results with the exact solution
obtained by numerically solving Eq. (5).

RESULTS

We computed the equation of state perturbatively
in µ

2 by first solving @�⌦(�) = 0 order-by-order for
a range of temperatures with � = 0.1. By plugging
this solution into Eq. (4) and expanding in µ

2 we
obtained the Taylor series expansion for the pressure
p(T, µ) ⇡

PN
n=0 p2n(T )µ

2n. To illustrate the numer-
ical evaluation of the equation of state we focus on
the susceptibility,

�(T, µ) =
@
2
p

@µ2
⇡

N�1X

n=0

(2n+ 2)(2n)p2n+2(T )µ
2n
, (7)

because its singular part in the vicinity of the criti-
cal point it grows as �(µ) ⇠ Re(µ2�µ

2
LY )

��1 where
� = 1/2 in the mean field limit. Of course, in many
cases it is very di�cult, to generate such large num-
ber of terms. Therefore we also show results ob-
tained by 11 terms for comparison. We computed
the singularities both from Padé and conformal Padé
which are shown in Fig. 2 for two di↵erent tempera-
tures very close to and away from the critical point.
We used a simple conformal map,

�1(z) =
4µ2

LY z

(1 + z)2
, (8)

defined over one-cut complex plane with a singular-
ity located at µ2

LY to resolve f near the singularity
µ
2
LY . Since the other singularity is the complex con-

jugate pair, µ⇤2
LY , including its contribution is trivial.

Of course, a priori, we don’t know what µLY . There-
fore we first obtained a crude estimate for it from
regular Padé and we used it in �1(z), and refined
this estimate via conformal Padé.

In order to reconstruct the trajectory, µLY (T ), we
repeated this procedure for di↵erent temperatures.
In order to smooth out the T dependence of µLY we
used fits whose forms are determined from Eq. (6);
namely a linear fit for ReµLY (T ) and a y = ax

3/2

fit for ImµLY (T ). The results are shown in Fig. 3.
From these fits we obtained the values of Tc, µc, c1

and c2 shown in Table I.
Finally we computed the susceptibility as a func-

tion µ via Padé and conformal Padé. In order to
capture the global behavior of the equation of state
we used a di↵erent conformal map,

�2(z) = 4|µLY |2


✓

(1� z)2

�✓  1� ✓

(1 + z)2

�1�✓

, (9)

FIG. 2. The poles and zeroes of Padé and conformal
Padé approximants for two di↵erent temperatures com-
pared with the exact locations of µ2

LY .
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FIG. 3. The Lee-Yang singularity trajectory, µLY (T ), re-
constructed from conformal Padé with 20 and 10 terms.
The vertical line denotes Tc.

defined on a two-cut complex plane with two branch
points located at |µLY |2e±i⇡✓ [25, 27, 28]. The re-
sults for two representative temperatures near and
away from Tc are shown in Fig 4.

DISCUSSION

We now discuss these results. Firstly, notice that
near the critical point, T = 1.08Tc, Padé cannot re-

Tc µc c1 c2

exact 0.192 0.717 0.249 4.684
conf. Padé (N=21) 0.195 0.716 0.248 4.323
conf. Padé (N=11) 0.185 0.707 0.225 3.666

TABLE I. The location of the critical point and the Ising
model mapping parameters given in Eq. (6) extracted
from conformal Padé.

In the Gross-Neveu model, it has been demonstrated that 
a scaling analysis of the Lee-Yang edge  singularities can 
be used to determine the critical point 

[Basar, PRL 127 (2021) 171603]

However, 8th order is not sufficient to extract the correct 
results. 

 Need more precise data from lattice QCD →
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Summary  

Find evidence for a brunch cut along  

Find Z(2) scaling of closest singularities

Hence, our singularities can be identified with the Lee-Yang edge singularities 

̂μB = ̂μR
B ± iπ

We [Bielefeld-Parma] have developed a multipoint Padé method to extract singularities of 
the net baryon number density in the  planêμB

Close to the RW transition

Close to the chiral transition 
Multipoint Padé: find one singularity which is in good agreement with expectation, need 
to verify the scaling in  and T ml

Padé with high statistics  data [HotQCD]: singularities also in the correct bulk part, 
they approach the real  axis, but not in consistency with universal scaling

Nτ = 8
μB

Close to the critical end-point 

Bound on the critical point:  and ̂μcep > 2.5 Tcep < 135 MeV

New Method
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