Methods and results for spectral functions why do we care about inverse Laplace transform?

Chris Allton [Swansea University]
FASTSUM Collaboration
Firenze March 2022

UK Academic Strike

FASTSUM Collaboration's NRQCD Project

Gert Aarts, CRA, Tim Burns, Sam Offler, Benjamin Page, Thomas Spriggs Swansea University

Benjamin Jäger

Southern Denmark University
Seyong Kim
Sejong University, Korea
Maria Paola Lombardo
INFN, Florence
Sinead Ryan
Trinity College, Dublin
Jon-Ivar Skullerud
National University of Ireland, Maynooth, Ireland

Overview

- Mathematical Limitations
- Towards chiral \& continuum limits
- $M_{\pi}=392,236,140 \mathrm{MeV}$
- $a_{\tau}=33,17 \mathrm{am}$
- Spectral Reconstruction from 7 Methods
- Max.Likelihood (x2)
- Moments
- Bayesian (x2)
- Machine Learning
- Backus-Gilbert

NRQCD and the Laplace transform

- QCD expansion in p^{2}
- Long history in phenomenology from late 1970's
- Agrees surprisingly well with experiment

$$
\begin{aligned}
& G(\tau)=\int \frac{d \omega}{2 \pi} K(\omega, \tau) \rho(\omega) d \omega=\text { Euclidean Correlation Function } \\
& K(\omega, \tau)=e^{-\omega \tau}=\text { Kernel }
\end{aligned}
$$

Spectral Functions

Why bother?

Extracting $\rho(\omega)$ crucial for:

- masses
- widths
- "unbinding"

You may think it's easy, but...

T=0 Correlators

FASTSUM Generation 2

$$
G(\tau) \equiv \sum_{x}\langle 0| J(x, \tau) J^{\dagger}(0,0)|0\rangle \quad \xrightarrow{\tau \rightarrow \infty} \quad \frac{\mid\langle 0| J \mid \text { gnd }\rangle\left.\right|^{2}}{2 M} e^{-M \tau}
$$

Lattice Determinations of Quarkonia Width

Extracting Spectral F'ns

Euclidean Lattice Correlator $\rightarrow \quad G(\tau)=\int d \omega K(\omega, \tau) \rho(\omega) \longleftarrow$ Spectral F'n

Input Data:

$$
G_{ \pm}(\tau)
$$

Output Data:

$$
\rho_{ \pm}(\omega)
$$

Thermal Case

$$
\begin{gathered}
\rho(\omega) \uparrow \\
\begin{array}{c}
G(\tau) \sim Z e^{-M_{0} \tau} \\
\\
\Longrightarrow M_{e f f} \equiv M_{0}
\end{array} \\
\\
\end{gathered}
$$

State

Lattice Determinations of Quarkonia Width

Extracting Spectral F'ns

Euclidean Lattice Correlator $\rightarrow \quad G(\tau)=\int d \omega K(\omega, \tau) \rho(\omega) \longleftarrow$ Spectral F'n

$$
G(\tau), \tau=1, \ldots, \mathcal{O}(10-100)
$$

ill-posed! i.e. ∞ solutions with $\chi^{2}=0$
An allegory of life: You can't get more out than you put in.

Mathematical Limitations on Inverse Problem

McWhirter and Pike, J.Phys.A (1978) 1729
On the numerical inversion of the Laplace transform...
Cuniberti, De Micheli and Viano, Commun. Math. Phys. 216 (2001), 59-83 (courtesy of Mikko Laine)

Shuzhe Shia, Lingxiao Wang, Kai Zhou arXiv:2201.02564

Why is it difficult to extract $\rho(\omega)$ from $G(\tau)$?

- Is it because

$$
G(\tau), \tau=1, \ldots, \mathcal{O}(10-100) \quad \rho_{ \pm}(\omega), \omega \sim 1, \ldots, \mathcal{O}(1000)
$$

- (and) or something else?

Mathematical Limitations on Inverse Problem

McWhirter and Pike, J.Phys.A (1978) 1729
On the numerical inversion of the Laplace transform...
Consider: $G(\tau)=\int_{0}^{\infty} d \omega K(\omega \tau) \rho(\omega) \quad$ Note the product $\omega \times \tau$
Note that Laplace transform has kernel of form: $K(\omega \tau)=e^{-\omega \tau}$
Note relativistic kernel is not in this form: $K(\omega, \tau)=\frac{\cosh (\omega(\tau-1 / 2 T))}{\sinh (\omega / 2 T)}$
Require that $K(\omega \tau)$ is bounded: $\int_{0}^{\infty}|K(x)| x^{-1 / 2} d x<\infty$

Mathematical Limitations on Inverse Problem

View $G(\tau)=\int_{0}^{\infty} d \omega K(\omega \tau) \rho(\omega)$ as a transformation

Mathematical Limitations on Inverse Problem

Consider a perturbation (error) in $\rho(\omega): \quad \delta \rho_{\Omega}(\omega)=\sin (\Omega \omega)$
This leads to a corresponding perturbation in $G(\tau)$:

$$
\delta G(\tau)=\int K(\omega \tau) \sin (\Omega \omega) d \omega
$$

Since $K(\omega \tau)$ is integrable: $\int K(\omega \tau) \sin (\Omega \omega) d \omega \longrightarrow 0$ as $\Omega \rightarrow \infty$
ie. $\delta G(\tau)$ can be made negligible!
Hence there are in ω number of $\rho(\omega)$ possible, i.e. $\rho(\omega)$ is not unique!

Mathematical Limitations on Inverse Problem

McWhirter and Pike, J.Phys.A (1978) 1729
On the numerical inversion of the Laplace transform...
"... This difficult numerical problem, which is frequently encountered by physicists and engineers, is still the subject of much attention"
"... need to consider information content in order to avoid obtaining meaningless results."

Mathematical Limitations on Inverse Problem

Consider an optics example

Object

Lens

Image

$$
I\left(x^{\prime}\right)=\frac{1}{2 \pi} \int_{-\Omega}^{\Omega} d \omega e^{-i \omega x^{\prime}} \int_{-X / 2}^{X / 2} e^{i \omega x} O(x) d x
$$

where Ω is he highest spatial frequency mode transmitted by lens

Mathematical Limitations on Inverse Problem

$$
\begin{aligned}
I\left(x^{\prime}\right) & =\frac{1}{2 \pi} \int_{-\Omega}^{\Omega} d \omega e^{-i \omega x^{\prime}} \int_{-X / 2}^{X / 2} e^{i \omega x} O(x) d x \\
& =\int_{-X / 2}^{X / 2} \frac{\sin \left[\Omega\left(x^{\prime}-x\right)\right]}{\pi\left(x^{\prime}-x\right)} O(x) d x
\end{aligned}
$$

Lens's highest spatial frequency mode has associate resolution limit of π / Ω
\rightarrow Concept of "Information Content" $=$ No. of π / Ω in Object

Hence Object of size X gives an Image with
$S=\frac{X}{\pi / \Omega}$ independent d.o.f. $=$ Shannon Number of Information Theory

Making Mathematical Progress on Inverse Problem

McWhirter and Pike, J.Phys.A (1978) 1729
Key concept is to cast inverse problem as eigenvalue problem
$\int_{-X / 2}^{X / 2} \frac{\sin \left[\Omega\left(x^{\prime}-x\right)\right]}{\pi\left(x-x^{\prime}\right)} \phi_{n}\left(x^{\prime}\right) d x^{\prime}=\lambda_{n} \phi_{n}(x)$
ϕ_{n} form complete orthogonal set.
$I\left(x^{\prime}\right)=\sum_{n=0}^{\infty} b_{n} \phi_{n}\left(x^{\prime}\right) \quad$ and $\quad O(x)=\sum_{n=0}^{\infty} a_{n} \phi_{n}\left(x^{\prime}\right)$
Then $O(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} \phi_{n}(x)$
Looks easy... BUT....

Making Mathematical Progress on Inverse Problem

McWhirter and Pike, J.Phys.A (1978) 1729
On the numerical inversion of the Laplace transform...

$$
\frac{X \Omega}{\pi}=11.5
$$

Figure 2. Eigenvalues λ_{n} of equation (2.7) as a function of n.

For other kernels/integral transforms, λ_{n} has similar features (but doesn't fall quite as fast)

Making Mathematical Progress: Laplace Case

$$
\begin{aligned}
& \text { Laplace Case: } \lambda_{n} \sim \sqrt{\frac{\pi}{\cosh (\pi n)}} \\
& \text { Recall } O(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} \phi_{n}(x)
\end{aligned}
$$

In general, we can write $\rho(\omega)$ as

$$
\begin{gathered}
\rho(\omega)=\sum_{n=0}^{N} a_{n} \phi_{n}(\omega)+\sum_{n=N+1}^{\infty} \theta_{n} \phi_{n}(\omega) \\
\text { "Knowable" } \\
\lambda \gg 0
\end{gathered}
$$

FASTSUM setup

Anisotropic Lattice:

$$
a_{\tau}<a_{s}
$$

allowing for better resolution, particularly at finite temperatures, since

$$
T=\frac{1}{L_{\tau}}=\frac{1}{N_{\tau} a_{\tau}}
$$

Lattice Parameters

Aarts et al, JHEP 07 (2014) 097

Lattice Parameters

$\mathrm{T}=0$ spectral functions

Generation 2

$$
G(\tau)=\int_{\omega_{\min }}^{\omega_{\max }} \frac{\mathrm{d} \omega}{2 \pi} K(\tau, \omega) \rho(\omega), \quad K(\tau, \omega)=e^{-\omega \tau}
$$

Correlation Ratios: Upsilon $\& \chi_{b 1}$

Thermal effects stronger in $\chi_{b 1}$

Lattice Parameters

Upsilon: Generation2 vs Generation2L Going lighter

ω

Preliminary

Upsilon: Generation2 vs Generation2L Going lighter

Preliminary

Generation3 Results Going finer

Upsilon: Generation2 vs Generation3 Going finer

Lattice systematics - are "small"

Going lighter

m
Going finer a_{τ}

w/o NRQCD additive constant

Preliminary

Study of Numerical Methods

1. Exponential (Conventional δ f'ns)
2. Gaussian Ground State ($+\delta$ f'n excited) \} (Minimise χ^{2})
3. Moments of Correlation F'ns
4. BR Method
5. Maximum Entropy Method
6. Kernel Ridge Regression
7. Backus Gilbert

Direct Method - "no" fit

Bayesian Approaches

Machine Learning
from Geophysics

Moments

$$
\begin{aligned}
& G(\tau)=\int e^{-\omega \tau} \rho(\omega) d \omega \longrightarrow \frac{d G(\tau)}{d \tau}=\int \omega e^{-\omega \tau} \rho(\omega) d \omega \\
& -\frac{1}{G(\tau)} \frac{d G(\tau)}{d \tau}=M_{e f f}(\tau)=\frac{1}{G(\tau)} \int \omega e^{-\omega \tau} \rho(\omega) d \omega=\langle\omega\rangle_{e^{-\omega \tau} \rho(\omega)}
\end{aligned}
$$

Similarly, we can take a 2nd derivative to calculate

Variance (i.e. width):

$$
\Gamma^{2}=\frac{1}{G(\tau)} \frac{d^{2} G(\tau)}{d \tau^{2}}-M_{e f f}^{2}=\left\langle(\omega-\langle\omega\rangle)^{2}\right\rangle
$$

Thomas Bayes 1701-1761

- Religious Minister
- Did not publish Bayes Theorem

Richard Price

- Born in Wales
- Educated in Neath
- Also a religious minister

- Published Bayes Theorem after Bayes death
- Friends and proponent of American Independence Leaders, Benjamin Franklin, Thomas Jefferson, George Washington

Bayesian Approaches

Need to maximise $P(F \mid D)$

Bayes Theorem :

$P(F \cap D)=P(F \mid D) P(D)=P(D \mid F) P(F)$
i.e. $P(F \mid D)=\frac{P(D \mid F) P(F)}{P(D)}$

Note $P(D \mid F) \sim \chi^{2}$
So we should always include $P(F)=$ "Priors"
$P(F)$ is encoded as an Entropy
BR and MEM use different Entropy definitions

Bayesian Approaches

Bayes's Theorem: $P(F \mid D)=\frac{P(D \mid F) P(F)}{P(D)}$
Is "Maximum Likelihood" method wrong because we don't include $P(F)=$ "Priors" ?
In fact we do include priors in Maximum Likelihood method in our choice of fitting f'n
e.g. $f(\tau)=Z e^{-M \tau}$

So we are always including prior information...
The Prior is a way of regulating the Inverse Problem and removing degeneracies.

Entropy

Extracting Spectral Functions

Input Data:
$G_{ \pm}(\tau), \tau=1, \ldots, \mathcal{O}(10-100)$

Output Data:
$\rho_{ \pm}(\omega), \omega \sim 1, \ldots, \mathcal{O}(1000)$

ill-posed!
i.e. ∞ solutions with $\chi^{2}=0$
"Entropy" Factor $P(F)$ breaks this degeneracy

Choice of Entropy Term

$$
P(F) \sim e^{S} \quad S=\text { Entropy }
$$

Maximum Entropy Method:

Shannon-Jaynes Entropy: $\quad S=\int_{0}^{\infty} d \omega\left[\rho(\omega)-m(\omega)-\rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)}\right]$
Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

BR Method:

$$
S=\int_{0}^{\infty} d \omega\left[1-\frac{\rho(\omega)}{m(\omega)}+\ln \frac{\rho(\omega)}{m(\omega)}\right]
$$

Apples and Apples

Systematic effects in T (MEM)

Fitting: $\tau=[2,30]$ for both T

Sequential suppression

$\Gamma \nearrow$ as T

Although Γ is upper bound, we can resolve thermal trends

Direct comparison of Bayesian Approaches

Kernel Ridge Regression Machine Learning

- uses training data to determine an alpha matrix of parameters determined analytically using a cost function
- cost function includes a term to prevent overfitting
- training data set is $\mathcal{O}\left(10^{4}\right)$ mock data with 5 Gaussians
- difficult to produce systematic error estimate

Backus Gilbert

Take $G(\tau)=\int \rho(\omega) e^{-\omega \tau} d \omega=\int \rho(\omega) K(\omega, \tau)$
Generate averaging functions: $A\left(\omega, \omega_{0}\right)=\sum_{\tau} c_{\tau} K(\omega, \tau)$
(an approximation to the $\delta \mathrm{f}^{\prime} \mathrm{n}$), such that

$$
\begin{aligned}
\hat{\rho}\left(\omega_{0}\right) & =\int A\left(\omega, \omega_{0}\right) \rho(\omega) d \omega \\
& =\sum_{\tau} c_{\tau} G(\tau) \\
& \approx \rho\left(\omega_{0}\right)
\end{aligned}
$$

Averaging coeffts c_{τ} determined by minimising the width of $A\left(\omega, \omega_{0}\right)$

Backus Gilbert Systematics

- Intrinsic Resolution
- Time window systematics

Backus Gilbert Laplace Shift

- Increased sensitivity near origin
- Shift spectral features towards origin using Laplace transform properties:

$$
\begin{aligned}
G(\tau) & =\int \rho(\omega) e^{-\omega \tau} \\
e^{a \tau} G(\tau) & =\int \rho(\omega-a) e^{-\omega \tau}
\end{aligned}
$$

Backus Gilbert Noise Subtraction

Can approximate noise/systematics by subtracting $\int A\left(\omega, \omega_{0}\right) d \omega \sim$ BG spectrum of constant from BG spectrum

Comprehensive Study of Systematics from Analysis Techniques

FASTSUM Quenched

Large Volume
High Statistics

- We will apply all our Inverse techniques

Quenched x

Summary

- Mathematical Limitations of Laplace Transform
- Towards chiral \& continuum limits
- $M_{\pi}=392,236,140 \mathrm{MeV}$
- $a_{\tau}=33,17 \mathrm{am}$

- Spectral Reconstruction from 7 Methods
- Max.Likelihood (x2)

- Moments
- Bayesian (x2)
- Machine Learning
- Backus-Gilbert

