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Overview   

• Mathematical Limitations 

• Towards chiral & continuum limits 
•  

•  

• Spectral Reconstruction from 7 Methods 
• Max.Likelihood (x2) 
• Moments 
• Bayesian (x2) 
• Machine Learning 
• Backus-Gilbert

Mπ = 392, 236, 140 MeV
aτ = 33, 17 am



NRQCD  and the Laplace transform
• QCD expansion in 

• Long history in phenomenology from late 1970’s

• Agrees surprisingly well with experiment

p2

G(τ) = ∫ dω
2π

K(ω, τ) ρ(ω) dω = Euclidean Correlation Function

K(ω, τ) = e−ωτ = Kernel



Maximum Entropy Method: Motivation

Do bound hadronic states persist into the “quark-gluon” plasma phase?
How can we extract transport coefficients?

Spectral functions can answer this!

C(t, !p) =

∫

ρ(ω, !p) K(t,ω) dω

↑ ↓ ↖

Euclidean Spectral (Lattice)
Correlator Function Kernel

where the (lattice) Kernel is:

K(t,ω) =
cosh[ω(t−Nt/2)]

sinh[ω/(2T )]

∼ exp[−ωt]

– p. 31/58
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5 Thermal baryon spectral functions

5.1 Results

The information in the thermal correlators discussed above is also present in the corre-

sponding spectral functions, via relation (2.27)

G±(τ) =

∫ ∞

−∞

dω

2π
K(τ,ω)ρ±(ω), K(τ,ω) =

e−ωτ

1 + e−ω/T
. (5.1)

As is well-known [56], a simple inversion of this type of relation, using numerically de-

termined correlators, is not possible. Hence we use the Maximum Entropy Method

MEM [56, 57], which extremises a combination of the standard likelihood (χ2) function,

determined by the data, and an entropy function,

S =

∫ ∞

−∞

dω

2π

[
ρ(ω)−m(ω)− ρ(ω) ln

ρ(ω)

m(ω)

]
, (5.2)

encoding prior knowledge, via the default model m(ω). The conditional probability to

be extremised is of the form exp(−1
2χ

2 + αS), with α a parameter balancing the relative

importance of the data and the prior knowledge. Both m(ω) and α are further discussed

below. In the past 15 years, this method, and related ones, have been used by a num-

ber of groups, mostly for mesonic correlators, i.e. charmonium, the dilepton rate and the

electrical conductivity, see e.g. refs. [13–24]. Applications to bottomonium, in which some

simplifications occur, can be found in refs. [25–28]. Here we give the first application

to baryons.

Generic details of our implementation can be found in previous work [13, 16, 25, 27].

Here we briefly mention some differences with the bosonic (mesonic) case. We are interested

in the spectrum for both positive and negative ω, since ρ−(ω) = −ρ+(−ω). Hence the

negative part of the spectrum of ρ+ informs us of ρ−, and vice versa. To bring the spectral

relation (5.1) to a numerically tractable form, we employ a cutoff −ωmax < ω < ωmax,

with aτωmax = 3.0 (ωmax = 16.9GeV). The remaining finite interval is discretised using

Nω = 2000 bins. We have varied both ωmax and Nω to verify robustness. In the MEM

analysis we used all the euclidean-time points, except for the time slices closest to the source

and sink. At the lowest temperature, we have left out the points around the minimum of

the correlators; this will be further discussed below. As default model, we use a featureless

constant, m(ω) = m0, where the value of m0 is determined by a fit to the correlation

function using ρ(ω) = m0 in eq. (5.1). Above Tc we have fixed the default model to ensure

a similar normalisation for all temperatures. We come back to the choice of default model

below as well.

We now discuss the results. We have performed MEM on the normalised correlators

G+(τ)/(aτG+(τ = 0)) and denote the associated dimensionless spectral functions with

ρ̄(ω). We note that the normalisation only affects the vertical scale but not the ω de-

pendence. Figure 7 contains the spectral functions in the three channels below Tc (left)

and above Tc (right). Spectral information for the positive-parity channel can be found at

ω > 0, whereas ω < 0 refers to the negative-parity channel. Below Tc, the groundstate

– 18 –

Maximum Entropy Method: Motivation

Do bound hadronic states persist into the “quark-gluon” plasma phase?
How can we extract transport coefficients?

Spectral functions can answer this!

C(t, !p) =

∫

ρ(ω, !p) K(t,ω) dω

↑ ↓ ↖

Euclidean Spectral (Lattice)
Correlator Function Kernel

where the (lattice) Kernel is:

K(t,ω) =
cosh[ω(t−Nt/2)]

sinh[ω/(2T )]

∼ exp[−ωt]

– p. 31/58

Maximum Entropy Method: Motivation

Do bound hadronic states persist into the “quark-gluon” plasma phase?
How can we extract transport coefficients?

Spectral functions can answer this!

C(t, !p) =

∫

ρ(ω, !p) K(t,ω) dω

↑ ↓ ↖

Euclidean Spectral (Lattice)
Correlator Function Kernel

where the (lattice) Kernel is:

K(t,ω) =
cosh[ω(t−Nt/2)]

sinh[ω/(2T )]

∼ exp[−ωt]

– p. 31/58
M
axim

um
Entropy

M
ethod: M

otivation

Do
bound

hadronic
states

persist into
the

“quark-gluon” plasm
a
phase?

How
can

we
extract transport coefficients?

Spectral functions
can

answer this!

C
(t, !p)

=

∫

ρ(ω
, !p)

K
(t,ω

)
dω

↑

↓
↖

Euclidean
Spectral

(Lattice)

Correlator
Function

Kernel

where
the

(lattice) Kernel is:

K
(t,ω

)
=

cosh
[ω
(t
−
N

t /2)]

sin
h
[ω
/(2T

)]

∼
exp

[−
ω
t]

–
p. 31/58

Spectral FuncOons

K(ω, τ) ∼ e−ωτ

G(τ) = ∫ dω
2π

K(ω, τ) ρ(ω) dω

for NRQCD



Extracting  crucial for: 

• masses 
• widths 
• “unbinding” 

You may think it’s easy, but…

ρ(ω)

Why bother?



T=0 Correlators
Zero Temperature Correlators

G(⌧) ⌘
X

x

h0|J(x , ⌧)J†(0, 0)|0i ⌧!1�! |h0|J|gndi|2

2M
e
�M⌧

10�15

10�12

10�9

10�6

10�3

100

0 20 40 60 80 100 120

G
(⌧
)/
G
(0
)

⌧/a⌧

a⌧M(⌥) = 0.21460(5)
a⌧M(�b1) = 0.2964(4)

FASTSUM Generation 2



Input Data: Output Data: 

ρ±(ω)

Zero Temperature Spectral Functions

G(⌧) =

Z !max

!min

d!
2⇡

K (⌧,!) ⇢(!), K (⌧,!) = e
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Lattice Determinations of Quarkonia Width 
Extracting Spectral F’ns

Euclidean Lattice Correlator Spectral F’n   G(τ) = ∫ dω K(ω, τ) ρ(ω)



0 20 40 60 80 100 120

τ / a
τ

0.3326

0.3328

0.333

0.3332

0.3334

M
ef

f =
 d

 l
n

G
(τ

) 
/ 

d
τ 

 [
la

tt
.u

n
it

s]

1 MeV

N
τ
=128

0 20 40 60 80 100 120

τ / a
τ

0.3

0.4

0.5

M
ef

f =
 d

 l
n

G
(τ

) 
/ 

d
τ 

 [
la

tt
.u

n
it

s]

N
τ
=128

ρ(ω)

ω
Ground 

State

ρ(ω)

ω
Ground 

State

Thermal Case

τ/as

τ/as

Meff

 

 
  

Meff ≡ 1
G(τ)

dG(τ)
dτ

G(τ) ∼ Z e−M0τ

⟹ Meff ≡ M0

Meff

 

                     

⟹ Meff = f(τ) ↘
≠ M0Γ

 GeV 
 

T = 47 MeV

a−1
τ = 6

as /aτ = 3.5

close-up 
of above

1 MeV

downward 
drift?



Input Data: Output Data: 

ρ±(ω), ω ∼ 1,...,((1000)

ill-posed !         i.e.  solutions with  ∞ χ2 = 0

Zero Temperature Spectral Functions
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An allegory of life: You can’t get more out than you put in.

AND they are correlated!

Lattice Determinations of Quarkonia Width 
Extracting Spectral F’ns

Euclidean Lattice Correlator Spectral F’n   G(τ) = ∫ dω K(ω, τ) ρ(ω)



Mathematical Limitations on Inverse Problem
McWhirter and Pike, J.Phys.A (1978) 1729

On the numerical inversion of the Laplace transform…

Cuniberti, De Micheli and Viano, Commun. Math. Phys. 216 (2001), 59-83
(courtesy of Mikko Laine)

Shuzhe Shia, Lingxiao Wang, Kai Zhou  arXiv:2201.02564

Why is it difficult to extract  from  ? 

• Is it because 

• (and) or something else? 

ρ(ω) G(τ)

ρ±(ω), ω ∼ 1,...,((1000)G(τ), τ = 1,...,((10 − 100)



Mathematical Limitations on Inverse Problem
McWhirter and Pike, J.Phys.A (1978) 1729

On the numerical inversion of the Laplace transform…

Consider:              Note the product  

Note that Laplace transform has kernel of form:   

Note relativistic kernel is not in this form:   

Require that  is bounded:   

G(τ) = ∫
∞

0
dω K(ωτ) ρ(ω) ω × τ

K(ωτ) = e−ωτ

K(ω, τ) = cosh(ω(τ − 1/2T ))
sinh(ω/2T )

K(ωτ) ∫
∞

0
|K(x) |x−1/2dx < ∞



Mathematical Limitations on Inverse Problem

View        as a transformationG(τ) = ∫
∞

0
dω K(ωτ) ρ(ω)

G(τ) ρ(ω)
time space frequency space

Fourier Transform



Mathematical Limitations on Inverse Problem

Consider a perturbation (error) in :      

This leads to a corresponding perturbation in : 

 

Since    is integrable:   as   

ie.    can be made negligible! 

Hence there are in  number of  possible,  i.e.   is not unique!

ρ(ω) δρΩ(ω) = sin(Ωω)

G(τ)

δG(τ) = ∫ K(ωτ) sin(Ωω) dω

K(ωτ) ∫ K(ωτ) sin(Ωω) dω ⟶ 0 Ω → ∞

δG(τ)

∞ ρ(ω) ρ(ω)



Mathematical Limitations on Inverse Problem
McWhirter and Pike, J.Phys.A (1978) 1729

On the numerical inversion of the Laplace transform…

“… This difficult numerical problem, which is frequently encountered 
by physicists and engineers, is still the subject of much attention”

“… need to consider information content in order to avoid obtaining 
meaningless results.”



Mathematical Limitations on Inverse Problem

Consider an optics example

LensObject Image

 

where    is he highest spatial frequency mode transmitted by lens

I(x′ ) = 1
2π ∫

Ω

−Ω
dω e−iωx′ ∫

X/2

−X/2
eiωx O(x) dx

Ω

X



Mathematical Limitations on Inverse Problem

 

           

Lens’s highest spatial frequency mode has associate resolution limit of   

  Concept of “Information Content”  = No. of    in Object 

Hence Object of size   gives an Image with 

  independent d.o.f.  =  Shannon Number of Information Theory 

I(x′ ) = 1
2π ∫

Ω

−Ω
dω e−iωx′ ∫

X/2

−X/2
eiωx O(x) dx

= ∫
X/2

−X/2

sin[Ω(x′ − x)]
π(x′ − x) O(x)dx

π/Ω

→ π/Ω

X

S = X
π/Ω



Making Mathematical Progress on Inverse Problem

Key concept is to cast inverse problem as eigenvalue problem 

 

  form complete orthogonal set. 

     and      

Then   

Looks easy… BUT…. 

∫
X/2

−X/2

sin[Ω(x′ − x)]
π(x − x′ ) ϕn(x′ ) dx′ = λn ϕn(x)

ϕn

I(x′ ) =
∞

∑
n=0

bn ϕn(x′ ) O(x) =
∞

∑
n=0

an ϕn(x′ )

O(x) =
∞

∑
n=0

bn

λn
ϕn(x)

McWhirter and Pike, J.Phys.A (1978) 1729



Making Mathematical Progress on Inverse Problem

McWhirter and Pike, J.Phys.A (1978) 1729
On the numerical inversion of the Laplace transform…

XΩ
π

= 11.5

For other kernels/integral transforms,    has similar features (but doesn’t fall quite as fast)λn



Making Mathematical Progress: Laplace Case

In general, we can write    as ρ(ω)

ρ(ω) =
N

∑
n=0

an ϕn(ω) +
∞

∑
n=N+1

θn ϕn(ω)

“Knowable” 
    λ ≫ 0

“Unknowable” 
       λ ∼ 0

Laplace Case:   

Recall     

λn ∼ π
cosh(πn)

O(x) =
∞

∑
n=0

bn

λn
ϕn(x)





FASTSUM setup
Anisotropic Lattice: 

 

allowing for better resolution, particularly at finite temperatures, since 

                                                     

aτ < as

T = 1
Lτ

= 1
Nτaτ
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Aarts et al, JHEP 07 (2014) 097
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T=0 spectral funcOons
Zero Temperature Spectral Functions
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Upsilon: GeneraOon2 vs GeneraOon2L 
Going lighter
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Upsilon: GeneraOon2 vs GeneraOon2L 
Going lighter
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Upsilon: GeneraOon2 vs GeneraOon3 
Going finer
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1. Exponential (Conventional  f’ns) 
2. Gaussian Ground State (+  f’n excited) 

3. Moments of Correlation F’ns 

4. BR Method 
5. Maximum Entropy Method 

6. Kernel Ridge Regression 

7. Backus Gilbert 

δ
δ

Maximum Likelihood 
(Minimise )χ2}
Direct Method - “no” fit

} Bayesian Approaches

Machine Learning

Study of Numerical Methods

from Geophysics



Moments







Similarly, we can take a 2nd derivative to calculate


Variance (i.e. width):


G(τ) = ∫ e−ωτρ(ω) dω ⟶ dG(τ)
dτ

= ∫ ω e−ωτ ρ(ω) dω

− 1
G(τ)

dG(τ)
dτ

= Meff(τ) = 1
G(τ) ∫ ω e−ωτ ρ(ω) dω = ⟨ω⟩e−ωτρ(ω)

Γ2 = 1
G(τ)

d2G(τ)
dτ2 − M2

eff = ⟨ (ω − ⟨ω⟩)2 ⟩



Thomas Bayes   1701 - 1761

• Religious Minister

• Did not publish Bayes Theorem

Richard Price   1723 - 1791

• Born in Wales

• Educated in Neath

• Also a religious minister

• Published Bayes Theorem after Bayes death

• Friends and proponent of American Independence Leaders, Benjamin Franklin, 

Thomas Jefferson, George Washington



Bayesian Approaches

F DF∩D

Need to maximise    

Bayes Theorem : 

 

i.e.   

Note    

So we should always include   = “Priors” 

  is encoded as an Entropy 

BR and MEM use different Entropy definitions

P(F |D)

P(F ∩ D) = P(F |D) P(D) = P(D |F) P(F)

P(F |D) = P(D |F) P(F)
P(D)

P(D |F) ∼ χ2

P(F)

P(F)



Bayesian Approaches

Bayes’s Theorem:   

Is “Maximum Likelihood” method wrong because we don’t include   = “Priors”  ? 

In fact we do  include priors in Maximum Likelihood method in our choice of fitting f’n 

e.g.    

So we are always including prior information… 

The Prior is a way of regulating the Inverse Problem and removing degeneracies.

P(F |D) = P(D |F) P(F)
P(D)

P(F)

f(τ) = Z e−M τ



EntropyEntropy

No Data Data

No Prior I(F ) ⌘ 0 F from min �2

Prior F ⌘ prior F from max P(F |D)

P(F ) = e�S



ExtracOng Spectral FuncOons
Input Data: Output Data: 

ρ±(ω), ω ∼ 1,...,((1000)

ill-posed !         i.e.  solutions with  ∞ χ2 = 0

“Entropy” Factor     breaks this degeneracyP(F)
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Choice of Entropy Term

S = ∫
∞

0
dω [ρ(ω) − m(ω) − ρ(ω) ln ρ(ω)

m(ω) ]

       S = EntropyP(F) ∼ eS

Shannon-Jaynes Entropy:

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

Maximum Entropy Method:

BR Method:

Burnier & Rothkop  Phys.Rev.Lett. 111 (2013) 182003

S = ∫
∞

0
dω [1 − ρ(ω)

m(ω) + ln ρ(ω)
m(ω) ]



Apples and Apples 
Systematic effects in T   (MEM)
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close-up

Fitting:    for both  Tτ = [2,30]

Sequential suppression   as  Γ ↗ T ↗

Although  is upper bound,  we can resolve thermal trendsΓ

Preliminary Preliminary



Direct comparison of Bayesian Approaches
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Kernel Ridge Regression 
Machine Learning

• uses training data to determine an alpha matrix of parameters determined analytically 
using a cost function 

• cost function includes a term to prevent overfitting 

• training data set is    mock data with 5 Gaussians 

• difficult to produce systematic error estimate

((104)



Backus Gilbert

Take     

Generate  averaging functions:   

(an approximation to the  f’n), such that 

               

                         

                         

Averaging coeffts    determined by minimising the width of  

G(τ) = ∫ ρ(ω) e−ωτ dω = ∫ ρ(ω) K(ω, τ)

A(ω, ω0) = ∑
τ

cτ K(ω, τ)

δ

̂ρ(ω0) = ∫ A(ω, ω0) ρ(ω) dω

= ∑
τ

cτ G(τ)

≈ ρ(ω0)
cτ A(ω, ω0)



Upsilon        Fit to Nτ = 128 [t1,128]

Backus Gilbert 
Systematics

• Intrinsic Resolution 

• Time window systematics



Backus Gilbert 
Laplace Shift

• Increased sensitivity near origin 

• Shift spectral features towards origin 
using Laplace transform properties:

G(τ) = ∫ ρ(ω)e−ωτ

eaτG(τ) = ∫ ρ(ω − a)e−ωτ



Backus Gilbert Noise Subtraction
Can approximate noise/systematics by subtracting 

from BG spectrum

∫ A(ω, ω0)dω ∼ BG spectrum of constant
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FASTSUM (Generation 2L)

PRELIMINARY

Comprehensive Study of SystemaOcs 
from Analysis Techniques
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FASTSUM Quenched
Large Volume 

High Statistics 

•   We will apply all our Inverse techniques
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Summary 

Towards Systematic Understanding of Bottomonium Spectrum from the Lattice
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• Mathematical Limitations of Laplace Transform 

• Towards chiral & continuum limits 
•  

•  

• Spectral Reconstruction from 7 Methods 
• Max.Likelihood (x2) 
• Moments 
• Bayesian (x2) 
• Machine Learning 
• Backus-Gilbert

Mπ = 392, 236, 140 MeV
aτ = 33, 17 am


