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Goal

We aim to show how seemingly simple random combinatorial structures (partitions,
plane partitions, cylindric partitions) lead to complex asymptotic probabilistic behavior
often encountered (and universal to) the theory of random matrices.



Uniform v Plancherel measure on partitions, Ulam’s problem



Partitions

I an integer partition (often just partition) λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) is a
non-increasing sequence of non-negative integers which is eventually 0

I λ = (2, 2, 2, 1, 1), pictured below, has size |λ| :=
∑

i λi = 8 and length
`(λ) := max{i : λi > 0} = 5

I a partition λ is identified with it’s Young diagram

• • ◦ ◦ ◦ ◦ ◦•◦••◦••
or Maya diagram/particle ensemble {λi − i + 1

2
}

I partitions are natural discrete models of both fermions (this talk!) and bosons

This talk deals exclusively with extremal statistics on partitions, i.e. the distribution of
the largest part λ1 or the right-most particle position. All results can be extended
further to other parts/particles.



Two natural measures on partitions

I (poissonized) Plancherel

P(λ) = e−θ
2
θ2|λ| (dimλ)2

(|λ|!)2

where dimλ = number of fillings of λ with numbers 1, . . . , |λ| increasing down
rows and columns (standard Young tableaux) and θ > 0 is a parameter

I uniform
P(λ) = (u; u)∞u|λ|

where (x ; u)n =
∏

0≤i≤n−1(1− xui ) and 0 ≤ u < 1 is a parameter.

These measures have different extremal statistics asymptotic behavior:

I Plancherel: λ1 is asymptotically Tracy–Widom GUE in law, a distribution
universal for the largest eigenvalue of random hermitian matrices (and other
correlated systems)

I uniform: λ1 is asymptotically Gumbel, a distribution universal as maximum of iid
random variables



Ulam’s problem and Hammersley last passage percolation I

PPP(θ2) in the unit square.



Ulam’s problem and Hammersley last passage percolation II

Quantity of interest: L = longest up-right path from (0, 0) to (1, 1) (= 4 here).

Interest: θ →∞? (large number of points, large random permutation, ...)



Ulam’s problem and Hammersley last passage percolation III
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L is the length (any) of the longest increasing subsequence in a random permutation
of SN with N ∼ Poisson(θ2).



Hammersley LPP and the poissonized Plancherel measure

By the Robinson–Schensted–Knuth correspondence and Schensted’s theorem,

L = λ1

in distribution where λ has the poissonized Plancherel measure:

P(λ) = e−θ
2
θ2|λ| (dimλ)2

(|λ|!)2
= e−θ

2
sλ(plθ)sλ(plθ).

where sλ(plθ) = det
1≤i,j≤`(λ)

hλi−i+j (plθ) and hk (plθ) = θk

k!
1k≥0.

(repr. theoretically dimλ := dimSn λ = number of standard Young tableaux of shape
λ, λ an irrep. of Sn with n = |λ| ∼ Poisson(θ2), s is a Schur function, plθ the
Plancherel specialization sending p1 → θ, pi → 0, i ≥ 2).



The Baik–Deift–Johansson theorem and Tracy–Widom

Theorem (BaiDeiJoh99)
We have:

lim
θ→∞

P
(
L− 2θ

θ1/3
≤ s

)
= FGUE(s) := det(1− Ai2)L2(s,∞)

with

Ai2(x , y) :=

∫ ∞
0

Ai(x + s)Ai(y + s)ds

and Ai the Airy function (solution of y ′′ = xy decaying at ∞).

FGUE(s) is the Tracy–Widom GUE distribution—the the universal asymptotic
distribution of the largest eigenvalue of random (iid entries) Hermitian random
matrices.



Unpacking the result: Fredholm determinants

Let (X , dµ) be a measured space (discrete with counting or continuous with
Lebesgue) and A a trace-class operator on L2X with kernel A(x , y). That is, A acts
on functions f as

(Af )(x) =

∫
X
A(x , y)f (y)dµ(y).

The Fredholm determinant det(1 + zA)L2X is defined by:

det(1 + zA)L2X = 1 +
∑
N≥1

zN

N!

∫
X
dµ(x1) · · ·

∫
X
dµ(xN) det

1≤a,b≤N
A(xa, xb)

= exp
∑
j≥1

(−1)j−1z j tr Aj

j
.

We are usually interested in X = (s,∞) (and dµ is Lebesgue) or
X = {`, `+ 1, `+ 2, . . . } (and dµ is counting), and in z = −1. For operators A with
kernels as above, tr A =

∫
X A(x , x)dµ(x).



The Erdős–Lehner theorem and Gumbel

Theorem (ErdLeh41)
For the uniform measure P(λ) ∝ u|λ| we have, as u = 1−M−1 → 1 as M →∞, the
following Gumbel limit law:

lim
M→∞

P
(
λ1 − 2M log M

M
< ξ

)
= e−e−ξ .



Cylindrical geometry and finite temperature systems



Cylindrical geometry

PPP (θ2)

PPP (uθ2)

PPP (u2θ2)

PPP (u3θ2)

PPP (u4θ2)

With L the longest up-right path in this cylindric geometry, let

λ1 = L + κ1

where κ = (κ1 ≥ κ2 ≥ · · · ≥ 0) is an independent uniform partition P(κ) ∝ u|κ|.
Imamura–Mucciconi–Sasamoto 2021 show that L is distributed according to a q-Whittaker measure.



The finite temperature Plancherel measure

λ1 comes from the following 2-partition model (Borodin 06): on pairs µ ⊂ λ consider
the measure

P(µ, λ) ∝ u|µ| ·
θ2(|λ|−|µ|) dim2(λ/µ)

(|λ/µ|!)2
∝ u|µ|sλ/µ(plθ)sλ/µ(plθ)

with u = e−β , β = inverse temperature, dim(λ/µ) = number of SYT of shape λ/µ,

and sλ/µ(plθ) = det
1≤i,j≤`(λ)

hλi−i−µj+j (plθ) with hk (plθ) = θk

k!
1k≥0.

I u = 0 yields the poissonized Plancherel measure

I θ = 0 yields the (grand canonical) uniform measure



A finite temperature analogue of the Baik–Deift–Johansson theorem

Theorem (B/Bouttier 2019)
Let M = θ

1−u
→∞ and u = exp(−αM−1/3)→ 1. Then

lim
M→∞

P
(
λ1 − 2M

M1/3
≤ s

)
= Fα(s) := det(1− Aiα)L2(s,∞)

with

Aiα(x , y) :=

∫ ∞
−∞

eαs

1 + eαs
· Ai(x + s)Ai(y + s)ds

the finite temperature Airy kernel.



A word on the finite temperature Airy kernel and distribution

Fα(s) (Johansson 2006) interpolates between:

I the Tracy–Widom GUE FGUE(s) law (universal max of corr. systems, α→∞)

I and the Gumbel law e−e−s
(universal max of iid rv’s, α→ 0+)

lim
α→∞

Fα(s) = FGUE(s), lim
α→0+

1

α
Fα
(

s

α
−

log(4πα3)

2α

)
= e−e−s

as the kernel itself interpolates between Airy and diagonal exponential

lim
α→∞

Aiα(x , y) = Ai2(x , y), lim
α→0+

1

α
Aiα

(
x

α
−

log(4πα3)

2α
,
y

α
−

log(4πα3)

2α

)
= e−xδx,y .



Interlude: more on the finite temperature Airy kernel and distribution

The distribution Fα(s) = det(1− Aiα)L2(s,∞) appeared in the edge/long time scaling
of:

I finite temperature random matrix models and continuous fermions: Johansson
(2006), Dean–Le Doussal–Majumdar–Schehr (2015+), Liechty–Wang (2018), . . .

I finite temperature discrete fermionic models: B–Bouttier (2019)

I the KPZ equation and related models: Sasamoto–Spohn (2010), Calabrese–Le
Doussal–Rosso (2010), Amir–Corwin–Quastel (2011), Borodin–Corwin–Ferrari
(2014), Dimitrov (2018), Imamura–Mucciconi–Sasamoto 2021, . . .

and has been studied in its own right by the Riemann–Hilbert community recently
(Cafasso–Claeys 2019, Bothner–Cafasso–Tarricone 2021, . . . ).



Interlude: Johansson’s result and the Moshe–Neuberger–Shapiro matrix
model

Consider the following (Moshe–Neuberger–Shapiro) 2-matrix distribution (U unitary,
H hermitian N × N matrices):

P(U,H) ∝ e−(2b+1) tr H2
e2b tr UHU−1HdUdH (1)

with dU Haar measure and dH Lebesgue measure. Let λ1 ≥ λ2 ≥ · · · ≥ λN be the
eigenvalues of H.

Theorem (Johansson 2006, Liechty–Wang 2018)
It holds that

lim
N→∞

P
(√

2N1/6(λ1 −
√

2N) ≤ s
)

= Fα(s).

Remark: the statement is an oversimplification for many reasons (for one, I haven’t
told you what happens to b in the N →∞ limit).



A sketch of the proof

I put everything in (fermionic gl∞) Fock space

I passage to the grand canonical ensemble: on triples c ∈ Z, µ ⊂ λ ⊃ µ consider:

P(µ, λ, c) ∝ u|µ|+
c2

2 tc ·
θ2(|λ|−|µ|) dim2(λ/µ)

(|λ/µ|!)2
∝ u|µ|+

c2

2 tc sλ/µ(plθ)sλ/µ(plθ)

u = e−β with β inverse temperature; t = ef with f chemical potential; c = charge

I (Borodin 06, B/Bouttier 2019, Wick lemma in finite temp.): the ensemble
{λi − i + c + 1/2} is determinantal with Bessel fn. J corr. kernel

P({k1, . . . , kn} ⊂ {λi − i + c + 1/2}) = det
1≤i,j≤n

K(ki , kj )

K(a, b) =
∑

`∈Z+1/2

Ja−`

(
2θ

1−u

)
Jb−`

(
2θ

1−u

) u`t

1 + u`t

I dist. of λ1 + c = Fredholm det. of above op. (inclusion-exclusion)

I Nicholson’s approximation M1/3J2M+xM1/3 (2M)→ Ai(x), M →∞ or steepest
descent analysis yields discrete kernel → fin. temp. Airy kernel

I a few more estimates to conclude convergence of Fredholm det.

I one can remove the charge c in the end



More details: free fermions in finite temperature
Let ψk , ψ

∗
k for k ∈ Z′ := Z + 1

2
be creation/annihilation operators satisfying CAR:

ψkψ
∗
` + ψ∗`ψk = δk,`, ψkψ` + ψ`ψk = 0, ψ∗kψ

∗
` + ψ∗`ψ

∗
k = 0

acting on Fock space basis vectors |λ, c〉 by placing/removing particles at position k
(with signs). Let α±1 =

∑
k∈Z′ ψkψ

∗
k±1 be Heisenberg bosons ([α1, α−1] = 1).

Then P(λ, µ, c) ∝ 〈µ, c|uH tC eθα1 |λ, c〉〈λ, c|eθα−1 |µ, c〉 and moreover

P(λ has particles at pos k1, . . . , kn) ∝ tr

(
uH tC eθα1

n∏
i=1

ψkiψ
∗
ki
eθα−1

)

∝ det
1≤i,j≤n

tr
(
uH tC eθα1ψkiψ

∗
kj
eθα−1

)
(Wick lemma in fin. temp., with H|λ, c〉 = (|λ| + c2

2 )|λ, c〉,C |λ, c〉 = c|λ, c〉), and
placing generating functions Ψ(z) =

∑
k ψkz

k ,Ψ∗(w) =
∑

k ψ
∗
kw
−k , playing with

commutation relations, and extracting Fourier coeff.→ kernel above.

Figure: The Fock basis state |(4, 2, 1), 2〉.



All three asymptotic regimes into one picture

Theorem (B/Bouttier 2019)
With u = e−β → 1 as β → 0+ and θ →∞ (or finite) we have:

I θβ2 → 0+ leads to Gumbel behavior: thermal fluctuations win;

I θβ2 →∞ leads to Tracy–Widom: quantum fluctuations win;

I θβ2 → α3 ∈ (0,∞) leads to finite temperature Tracy–Widom Fα: equilibrium
between thermal and quantum.



Plane partitions, infinite geometries and the RMT hard-edge



Infinite geometry LPP and (plane) partitions

I let Λ1,1 = height of peak of a plane partition distributed as

P(Λ) ∝ qvol(Λ)a tr (Λ)

(= 7 in example)

( tr (Λ) = number of cubes in the middle = 12 in our example)

I Λ1,1 = λ1 in dist. with λ1 = first part of random λ from dist.:

P(λ) ∝ (aq)|λ|[sλ(1, q, q2, . . . )]2

(here the Schur functions sλ are evaluated in infinite geometric progressions).



Infinite geometry LPP, equi-distributed diagonals

By the Robinson–Schensted–Knuth and Burge correspondences + Greene and
Krattenthaler theorems, we have:

L1 = L2 = Λ1,1 = λ1 in distribution

with L1, L2 the longest directed polymers given below:

I equi-distributed-by-diagonal full quarter plane, where on diagonal i + j = k + 1
(k ≥ 1) each variable is iid Geom(aqi+j−1) = Geom(aqk )

I P(Geom(u) = k) = uk (1− u), k ∈ N
I L1 = maximal (sum) path from (1, 1)→ (∞,∞) using down-left steps (orange)

I L2 = maximal (sum) path from (∞, 1)→ (1,∞) using down-right steps (blue)

(1, 1)

Geom(aq)

Geom(aq2)

Geom(aq3)

Geom(aq4)

Geom(aq5)

i

j



Equi-distributed diagonals main result

Theorem (B/Occelli 2020)
Let q = e−ε, a = e−αε and L ∈ {L1, L2,Λ1,1, λ1}. We have:

lim
ε→0+

P
(
L− 2ε−1 log ε−1

ε−1
< s

)
= det(1− Oα)L2(s,∞) := Gα(s)

where Oα(x , y) := e−
x+y

2 Bessα(e−x , e−y ), Bessα(x , y) :=
∫ 1

0 Jα(2
√
tx)Jα(2

√
ty)dt

is the RMT Bessel kernel (hard-edge of Laguerre/Jacobi ensembles) and J’s are Bessel
functions.

Proposition (Joh 08, B/Occelli 2020)
The distribution Gα interpolates between Gumbel and Tracy–Widom GUE:

I G0(s) = e−e−s
is the Gumbel distribution (see my GitHub);

I limα→∞ Gα(−2 log(2α) + α−2/3s) = FGUE(s) (e.g. BorFor 03).



All three regimes in one picture

As before but with some important differences, we can see the three different regimes
explicitly.

Theorem (B/Occelli 2020)
As q → 1−, L has:

I Gumbel fluctuations, if a = 1 (VerYak 06);

I Tracy–Widom fluctuations (on a different scale), if 0 < a < 1 fixed;

I transitional (exponential) hard-edge Bessel fluctuations, if a→ 1 critically.



Back to cylinders



Trace-volume-and-seam distributed cylindric plane partitions

Consider the simplest cylindric plane partitions on a circumference-2N cylinder,
distributed according to their volume, trace, and seam:

P(Λ) =
a tr (Λ) · (a−1q−N)sm(Λ) · qvol(Λ)

Z
(2)

where Z = (qN ; qN)−1
∞
∏

1≤i,j≤N(qi+j−1; qN)−1
∞ , tr is the trace (number of cubes

under dark red, = 11 below), and sm is the seam (number of cubes under dark blue,
after identification, = 3 below)

We again look at the distribution of the peak Λ1,1.



Some equalities in distribution

From the Robinson–Schensted–Knuth correspondence we again have

Λ1,1 = λ1 = L + κ1 in distribution

I λ1 is the first part of a partition coming from the following 2-partition model:

P(λ, µ) ∝ qN|µ|[sλ/µ(
√
aq

1
2 ,
√
aq

3
2 , . . . ,

√
aqN−

1
2 )]2

I L is the longest downward SE-SW path on a cylinder filled with independent
geometric random variables equi-distributed by diagonal

I κ1 is the first part of a uniform partition independent of everything else,
P(κ) ∝ (qN)|κ|

I qN = e−inverse temperature in physical language



The LPP picture

The L (= 53 in the example) from the previous slide, the length of the longest (adding
the integers encountered) down SE-SW path in a cylindric geometry. Each square on
a given horizontal line is iid with the indicated geometric distribution.
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The main result, two regimes, Airy and Bessel

Theorem (B/Occelli 2021)
We have (recall λ1 = Λ1,1 in dist.), for q = e−ε → 1 as ε→ 0+

I (i) (N fixed, a grows critically) if a = e−αε → 1 and for N fixed:

lim
ε→0+

P
(
λ1 − 2ε−1 log ε−1

ε−1
< s

)
= GN

α (s) := det(1− ON
α )L2(s,∞)

where the determinant on the right is a Fredholm determinant of the following
finite temperature Bessel kernel (operator) in exponential coordinates

ON
α (x , y) = e−

x
2
− y

2

∫ ∞
0

1

1 + uN
Jα(2
√
ue−x )Jα(2

√
ue−y )du

with J the Bessel function of the first kind;

I (ii) (N grows slowly, a fixed) if N = βε−2/3 →∞ and for 0 < a < 1 fixed (below
c1 = −2 log(1−

√
a), c2 = 2−1/3a1/6(1−

√
a)−2/3):

lim
ε→0+

P
(
λ1 − c1ε

−1

c2ε−1/3
< s

)
= Fβc2 (s) := det(1− Aiβc2 )L2(s,∞)

where Aiβ is the finite temperature Airy kernel from before.



Some remarks

Some remarks on the previous result:

I as N →∞ in part (i), we recover the exponentiated Bessel kernel from the
previous section

ON
α (x , y)→ Oα(x , y) = e−

x
2
− y

2 Bessα(e−x , e−y )

which interpolates between Gumbel and Tracy–Widom

I a different interpolation between the same two limit laws happens in part (ii) via
the finite temperature Airy kernel, as explained above

I there is probably a a more general limiting regime, involving all parameters, where
one sees the above two cases transparently

I other limiting regimes are possible, and perhaps even interesting

I both the Bessel and Airy (Tracy–Widom) finite temperature kernels and
distributions appeared before, in a unified way, in the physics literature (Le
Doussal–Majumdar–Schehr–et al.), as manifestations of limiting behavior of
continuous free fermions in certain potentials and at finite temperature

I our work gives a discrete mathematical physical, combinatorial and representation
theoretic counterpart to the continuous systems from above



Thank you!


