The rough-smooth boundary in dimer models

Kurt Johansson
KTH, Stockholm, Sweden

Galileo Galilei Institute, May 26, 2022

Two-periodic Aztec diamond

Two-periodic Aztec diamond

Aztec diamond

A domino tiling of an Aztec diamond shape corresponds to a dimer configuration on the Aztec graph.

Probability measure

Let $\nu(e)>0$ be the weight of the edge e in the graph \mathcal{G}. The probability of a certain dimer cover C, i.e. each vertex is covered exactly once, is

$$
\frac{1}{Z} \prod_{e \in C} \nu(e)
$$

Z is the partition function.

Two Periodic Weighting

The two-periodic weighting of the Aztec diamond is defined in the following way. For a two-colouring of the faces, the edge weights around a particular coloured face alternate between a and b, we have a-edges and b-edges. E.g. for a size 4 Aztec diamond

Aztec diamond height function

To each tiling of an Aztec diamond we can associate a height function. The heights sit on the faces of the Aztec graph. The height differences between two faces are given by

- +3 if we cross a dimer with a white vertex to the right
- - 1 if we do not cross a dimer and have a white vertex to the right

Two-periodic Aztec diamond height function

Two-periodic Aztec diamond height function

Picture by B. Young

Variational principle for the limit height shape

The limiting height function solves

$$
\inf _{h} \int_{\Omega} \sigma(\nabla h) d x
$$

where σ is the surface tension. (Cohn-Kenyon-Propp).
Properties investigated by Kenyon and Okounkov.
Recent breakthrough work by Astala-Duse-Prause-Zhong, Dimer models and Conformal structures. Investigate possible geometries and prove regularity results. Pokrovsky-Talapov law: height function $\sim d^{3 / 2}$ at typical boundary point of the rough region.

Phases

The curve in the picture is a degree 8 curve with two real components. We get three regions which are called frozen, rough and smooth.

Phases

Kenyon, Okounkov and Sheffield have characterized the different limiting translation invariant Gibbs measures that are possible for bipartite dimer models on the plane.

There are three classes of Gibbs measures, frozen, rough and smooth.

Correlations between dominos decay polynomially with distance in the rough region, and exponentially in the smooth region.

Frozen-Rough boundary

Frozen-Rough boundary

Airy kernel point process

Figure: The Airy line ensemble. The top path is the Airy process.

Airy kernel point process

The extended Airy point process is a determinantal point process on parallel lines $\left\{\tau_{q}\right\} \times \mathbb{R}, 1 \leq q \leq L_{1}$ in \mathbb{R}^{2}. We can think of it as a random measure μ_{Ai} defined via a Laplace transform. Let $A_{p}, 1 \leq p \leq L_{2}$, be disjoint intervals in $\mathbb{R}, w_{p, q} \in \mathbb{C}$,

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\sum_{p=1}^{L_{2}} \sum_{q=1}^{L_{1}} w_{p, q} \mu_{\mathrm{Ai}}\left(\left\{\tau_{q}\right\} \times A_{p}\right)\right)\right] \\
& =\operatorname{det}\left(I+\left(e^{\Psi}-1\right) K_{\mathrm{extAi}}\right)_{L^{2}\left(\left\{\tau_{1}, \ldots, \tau_{q}\right\} \times \mathbb{R}\right)},
\end{aligned}
$$

where

$$
\Psi(x)=\sum_{q=1}^{L_{1}} \sum_{p=1}^{L_{2}} w_{p, q} \mathbb{I}_{\left\{\tau_{q}\right\} \times A_{p}}(x)
$$

Airy kernel point process

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\sum_{p=1}^{L_{2}} \sum_{q=1}^{L_{1}} w_{p, q} \mu_{\mathrm{Ai}}\left(\left\{\tau_{q}\right\} \times A_{p}\right)\right)\right] \\
& =\operatorname{det}\left(I+\left(e^{\Psi}-1\right) K_{\mathrm{extAi}}\right)_{L^{2}\left(\left\{\tau_{1}, \ldots, \tau_{q}\right\} \times \mathbb{R}\right)}
\end{aligned}
$$

where

$$
\Psi(x)=\sum_{q=1}^{L_{1}} \sum_{p=1}^{L_{2}} w_{p, q} \mathbb{I}_{\left\{\tau_{q}\right\} \times A_{p}}(x)
$$

Recall that the extended Airy kernel is given by

$$
K_{\mathrm{extAi}}\left(\tau_{1}, \xi_{1} ; \tau_{2}, \xi_{2}\right)=-\phi_{\tau_{1}, \tau_{2}}\left(\xi_{1}, \xi_{2}\right)+\tilde{K}_{\mathrm{extAi}}\left(\tau_{1}, \xi_{1} ; \tau_{2}, \xi_{2}\right)
$$

where

$$
\tilde{K}_{\text {extAi }}\left(\tau_{1}, \xi_{1} ; \tau_{2}, \xi_{2}\right)=\int_{0}^{\infty} e^{-\lambda\left(\tau_{1}-\tau_{2}\right)} \operatorname{Ai}\left(\xi_{1}+\lambda\right) \operatorname{Ai}\left(\xi_{2}+\lambda\right) d \lambda
$$

The rough-smooth boundary

The rough-smooth boundary

To the left part of frozen-rough boundary, to the right part of rough-smooth boundary.

The rough-smooth boundary

Particles in the two-periodic Aztec diamond.

The rough-smooth boundary

What are the "long paths" that we see in the picture? Can we define a boundary that converges to the Airy process?

The Kasteleyn method

For the Aztec diamond graph we define the Kasteleyn matrix by
$\mathbb{K}(b, w)= \begin{cases}\nu(b, w) & \text { if } e=(b, w) \text { is horizontal } \\ \text { i } \nu(b, w) & \text { if } e=(b, w) \text { is vertical } \\ 0 & \text { otherwise (i.e. no edge between } b \text { and } w)\end{cases}$

Theorem (Montroll-Potts-Ward, Kenyon)
If $e_{i}=\left(b_{i}, w_{i}\right)$, then the probability that e_{1}, \ldots, e_{m} belong to a dimer cover is

$$
\mathbb{P}\left(e_{1}, \ldots, e_{m}\right)=\operatorname{det}\left(\mathbb{K}\left(b_{i}, w_{i}\right) \mathbb{K}^{-1}\left(w_{i}, b_{j}\right)\right)_{1 \leq i, j \leq m}
$$

This means that the dimers form a determinantal point process with correlation kernel $K\left(e_{i}, e_{j}\right)=\mathbb{K}\left(b_{i}, w_{i}\right) \mathbb{K}^{-1}\left(w_{i}, b_{j}\right)$, $e_{i}=\left(b_{i}, w_{i}\right)$.

Dimer-dimer correlations at the rough-smooth boundary

(Based on joint work with S. Mason, Dimer-dimer correlations at the rough-smooth boundary, arXiv:2110.14505; formula for the inverse Kasteleyn matrix from J., Chhita.)

Consider a size n two-periodic Aztec diamond with n very large. Formula for the inverse Kasteleyn matrix

$$
K_{a, 1}^{-1}(x, y)=\mathbb{K}_{1,1}^{-1}(x, y)-C_{\omega_{c}}(x, y)+R(x, y)+B^{*}(x, y)
$$

Dimer-dimer correlations at the rough-smooth boundary

B^{*} is exponentially small in n. Write
$x=n(1+\xi)(1,1)+\left(2 a_{1}-1,2 a_{2}\right), y=n(1+\xi)(1,1)+\left(2 b_{1}, 2 b_{2}-1\right)$.
$\xi=\xi_{c}=-\frac{1}{2} \sqrt{1-2 c}, c=\frac{a}{1+a^{2}}$, gives asymptotic boundary.

Dimer-dimer correlations at the rough-smooth boundary

We are close to the boundary: $\xi_{c}-\xi \rightarrow 0$ as $n \rightarrow \infty$.
Let $G(w)=\frac{1}{\sqrt{2 c}}\left(w-\sqrt{w^{2}+2 c}\right)$ and

$$
g_{\xi}(w)=\log w-\xi \log G(w)+\xi \log G\left(w^{-1}\right)
$$

Then $g_{\xi}^{\prime}(w)$ has roots at $\pm \omega_{c}, \pm \bar{\omega}_{c}$, where ω_{c} is in the first quadrant. $\omega_{c}=\mathrm{i}$ iff $\xi=\xi_{c}$. R is an error term for our purposes.

$$
|R(x, y)| \leq C\left|G\left(\omega_{c}\right)\right|^{b_{1}-b_{2}+a_{2}-a_{1}} \min \left(\frac{1}{n^{1 / 3}}, \frac{1}{\sqrt{n \sqrt{\xi_{c}-\xi}}}\right)
$$

for $\left|a_{i}\right|,\left|b_{i}\right| \leq \max \left(n^{1 / 3}, \sqrt{n \sqrt{\xi_{c}-\xi}}\right)$.

Dimer-dimer correlations at the rough-smooth boundary

In the region we are investigating,

$$
\begin{aligned}
K_{a, 1}^{-1}(x, y) & =\mathbb{K}_{1,1}^{-1}(x, y)-C_{\omega_{c}}(x, y)+\text { negligible } \\
& =\mathbb{K}_{s_{1}, s_{2}}^{-1}(x, y)+\text { negligible }
\end{aligned}
$$

where $\mathbb{K}_{s_{1}, s_{2}}^{-1}$ gives a rough Gibbs measure in the whole plane. $\mathbb{K}_{1,1}^{-1}$ can be expressed in terms of the integrals

$$
E_{k, \ell}=\frac{\mathrm{i}^{-k-\ell}}{4\left(1+a^{2}\right) \pi \mathrm{i}} \int_{|w|=1} \frac{G(w)^{\ell} G(1 / w)^{k}}{\sqrt{w^{2}+2 c} \sqrt{1 / w^{2}+2 c}} \frac{d w}{w}
$$

$C_{\omega_{c}}(x, y)$ can be expressed in terms of the integral the same integral but integrated over $\Gamma_{\omega_{c}}$ which consists of two short arcs on the unit circle around i and -i of length $c \sqrt{\xi_{c}-\xi}$. $k \approx\left(x_{2}-y_{2}\right) / 2$ and $\ell \approx\left(x_{1}-y_{1}\right) / 2$.

The rough-smooth boundary. Correlation asymptotics

Consider two dimers along the main diagonal oriented orthogonally to the diagonal. Think of n as very large but fixed and consider growing r.

Assume $n^{-2 / 3} \ll \xi_{c}-\xi$ (not right at the boundary) and $\xi_{c}-\xi<\delta_{n} \rightarrow 0$ (not fully in the rough region).

- $r_{\text {min }}<r<c_{1} \log \frac{1}{\sqrt{\xi_{c}-\xi}}$: corr $\sim c e^{-r / \alpha}$ (exponential decay)
- $c_{1} \log \frac{1}{\sqrt{\xi_{c}-\xi}}<r<c_{2} \frac{1}{\sqrt{\xi_{c}-\xi}}$: corr $\sim c\left(\xi_{c}-\xi\right)$ (constant)
- $c_{2} \frac{1}{\sqrt{\xi_{c}-\xi}}<r \ll \sqrt{n \sqrt{\xi_{c}-\xi}}$ and $r \sim \frac{d}{\sqrt{\xi_{c}-\xi}}$:

$$
\text { corr } \sim\left(\xi_{c}-\xi\right) \frac{\sin ^{2} d}{d^{2}} \text { (power law and oscillatory) }
$$

The rough-smooth boundary. Correlation asymptotics

Two length scales

1) the lattice spacing
2) the distance $\frac{1}{\sqrt{\xi_{c}-\xi}}$

The results can be thought of as the decay of correlations for infinite volume Gibbs measures in the rough phase close to the smooth phase.

The rough-smooth boundary

What are the "long paths" that we see in the picture? Can we define a boundary that converges to the Airy process?

Squishing

(Based on joint work with Beffara and Chhita.)
An a-dimer is a dimer that covers an a-edge. They are oriented from white to black.

Figure: The red dimers are a-dimers, and the black b-dimers.

Squishing

We let the b-faces become smaller, go to zero in size.
Kん́sús

Squishing

We get double edges, loops and paths.

Paths and Loops

To get a unique split between paths and loops and get well-defined loops we need a convention. We use mirrors.

Paths

The paths go between the boundaries.

Figure: After squishing.

Paths

The paths go between the boundaries.

Figure: After squishing, $n=300, a=0.5$.

What we would like to prove

With high probability, if we go along the main diagonal there is a last path in the third quadrant close to the asymptotic rough-smooth boundary and this path converges to the Airy process.

What we can prove
Let $h(f)$ be the height at the face f in the Aztec diamond. Then we can split it into two parts:

$$
h(f)=h_{\ell}(f)+h_{c}(f)
$$

where $h_{\ell}(f)$ is the loop height and $h_{c}(f)$ is the corridor height.

What we can prove

Assume that $a<1 / 3$. Imbed the interval A as a discrete interval of length $\sim m^{1 / 3}$ in the Aztec diamond at the rough-smooth boundary. Define the random signed measure

$$
\kappa_{m}(\{\beta\} \times A)=\frac{1}{4}\left(h_{c}\left(F_{+}\right)-h_{c}\left(F_{-}\right)\right),
$$

where F_{+}and F_{-}are the end-faces of the discrete imbedded interval. Then $\kappa_{m}(\{\beta\} \times A)$ converges in terms of Laplace transforms to $\mu_{\mathrm{Ai}}(\{\beta\} \times A)$ as $m \rightarrow \infty$, where μ_{Ai} is the Airy kernel point process.

We expect that with high probability κ_{m} is actually a positive measure. We should think of κ_{m} as counting the number of paths between the two faces.

Thank you for your attention!

