Two-dimensional massive integrable models on a torus

Ivan Kostov
Institute de Physique Théorique, CEA - Saclay

- Infinite-volume thermodynamics of a massive QFT can be expressed in terms of its S-matrix only
[R.Dashen,S.-k.Ma,andH.J.Bernstein (1969), for 2D: AI. Zamolodchikov, 90s

- Is that so for the finite-volume thermodynamics?

Yes, in principle. QSC \Rightarrow spectrum of excited states \Rightarrow torus partition function

- In this talk I will defend the following claim:

The torus partition function is a grand canonical ensemble of loops with scattering factors associated with the crossings.

- The loop-gas representation of the partition function will be used to set up an effective field theory.

1. Decouple the two-body interaction of the loops by a Hubbard-Stratonovich transformation
2. Perform the path integral over the loops
3. The result is an effective field theory for the HS fields defined in the complex rapidity plane. The limit $L \rightarrow \infty$ or $R \rightarrow \infty$ is a mean-field type limit with the mean field determined by the TBA equation

Path integral for a loop immersed in the torus $\mathbb{T}=\mathbb{R}^{2} / \Omega$

$$
\boldsymbol{\Omega}=L \mathbb{Z} \times R \mathbb{Z} \quad \text { - period lattice }
$$

The path configuration space of loops splits into topological sectors labeled by winding numbers $w, w^{\prime} \in \mathbb{Z}$:

$$
\mathscr{F}(L, R)=\sum_{w, w^{\prime} \in \mathbb{Z}}[\mathscr{F}(L, R)]_{w, w^{\prime}}
$$

1. Compute the path integral $\mathscr{F}(\overrightarrow{\delta x})$ for a loop with inserted discontinuity $\overrightarrow{\delta x}$
2. Evaluate the sum of $\mathscr{F}(\overrightarrow{\delta x})$ with $\overrightarrow{\delta x} \in \boldsymbol{\Omega}$

$w=3, \bar{w}=1$
3. $\mathscr{F}(\overrightarrow{\delta x})=-\frac{1}{2} \operatorname{Tr}\left[\log \left(-\nabla^{2}+m^{2}\right) e^{\nabla \cdot \overrightarrow{\delta x}}\right]=-\frac{1}{2} R L \int \frac{d^{2} k}{(2 \pi)^{2}} e^{i \vec{k} \cdot \overrightarrow{\delta x}} \log \left(\vec{k}^{2}+m^{2}\right)$
4. $\quad[\mathscr{F}(L, R)]_{w, \tilde{w}}=\mathscr{F}(\overrightarrow{\delta x})$ with $\delta x_{1}=w^{\prime} R, \delta x_{2}=w L$

Path integral wave functions of on-shell particles in physical and in mirror kinematics

$$
\mathscr{F}(\Delta \vec{x})=-\frac{1}{2} R L \int \frac{d^{2} k}{(2 \pi)^{2}} \log \left(k_{1}^{2}+k_{2}^{2}+m^{2}\right) e^{i k_{1} \delta x_{1}+i k_{2} \delta x_{2}}
$$

$$
\begin{array}{ll}
=\frac{1}{2} \frac{L}{\left|\delta x_{2}\right|} \int_{\mathbb{R}} \frac{R d k_{1}}{2 \pi} e^{i k_{1} \delta x_{1}-\sqrt{k_{1}^{2}+m^{2}}\left|\delta x_{2}\right|} & \left(\delta x_{2} \neq 0\right) \\
=\frac{1}{2} \frac{R}{\left|\delta x_{1}\right|} \int_{\mathbb{R}} \frac{L d k_{2}}{2 \pi} e^{i k_{2} \delta x_{2}-\sqrt{k_{2}^{2}+m^{2}}\left|\delta x_{1}\right|} & \left(\delta x_{1} \neq 0\right)
\end{array}
$$

wave function of on-shell particle in the direct channel analytically continued to imaginary time $t=-i \delta x_{2}$
wave function of on-shell particle in the cross channel analytically continued to imaginary time $t=-i \delta x_{1}$

$$
\begin{gathered}
E \rightarrow-i p \\
p \rightarrow i E
\end{gathered}
$$

$$
\theta \rightarrow \quad i \pi / 2-\theta
$$

Two possible descriptions of the winding loops:

- Description in physical kinematics (for loops winding at least once around the L-cycle):

$$
\mathscr{F}_{w, w^{\prime}}=\frac{R}{2|w|} \int_{\mathbb{R}} \frac{d p(\theta)}{2 \pi} e^{-|w| L E(\theta)+w^{\prime} R p(\theta)} \quad(w \neq 0) \quad \stackrel{\uparrow}{\downarrow} \underset{\leftarrow L \rightarrow}{\xrightarrow{\text { time }}} \stackrel{\begin{array}{l}
\text { on-mass-shell } \\
\text { winding particle in } \\
\text { physical kinematics }
\end{array}}{\left.\begin{array}{l}
\text { (}
\end{array}\right)}
$$

- Description in mirror kinematics (for loops winding at least once around the R-cycle):

$$
\begin{aligned}
& \tilde{\mathscr{F}}_{w^{\prime}, w}=\frac{L}{2\left|w^{\prime}\right|} \int_{\mathbb{R}} \frac{d p(\theta)}{2 \pi} e^{-\left|w^{\prime}\right| R E(\theta)+i w L p(\theta)} \quad\left(w^{\prime} \neq 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \mathscr{F}_{w, w^{\prime}}=\tilde{\mathscr{F}}_{w^{\prime}, w} \quad\left(w, w^{\prime} \neq 0\right)
\end{aligned}
$$

Different choices for the kinematics lead to different but equivalent expressions for the free energy

Let us check how the loop gas description works for free theory (free massive boson)

$$
\mathscr{Z}=\exp [\mathscr{F}] \quad \mathscr{F}=\sum_{\substack{w, w^{\prime} \in \mathbb{Z} \\
\\
\\
\\
\\
\\
\text { divergent infinite-volume } \\
\text { energy density, to be neglected }}}[\mathscr{F}]_{w, w^{\prime}}=\mathscr{F}_{0,0}+\sum_{w \neq 0} \mathscr{F}_{w, 0}+\sum_{w^{\prime} \neq 0, w \in \mathbb{Z}} \tilde{\mathscr{F}}_{w^{\prime}, w} \begin{aligned}
& \text { one } \\
& \begin{array}{l}
\text { possible } \\
\text { choice }
\end{array}
\end{aligned}
$$

$$
\mathrm{L}_{k}[x] \equiv \sum_{n=1}^{\infty} n^{k-2} e^{-n x}=(-1)^{k-1} \operatorname{Li}_{2-k}\left(\sigma e^{-x}\right) \quad \mathrm{L}_{1}[x]=-\log \left(1-e^{-x}\right) \quad \mathrm{L}_{2}[x]=\frac{1}{e^{x}-1}
$$

$$
\mathscr{F}^{(R, L)}=\int_{\mathbb{R}} \frac{R d p(\theta)}{2 \pi} \mathrm{~L}_{1}[L E(\theta)]-\oint_{\mathscr{C}_{\mathbb{R}}} \frac{L d p(\theta)}{2 \pi} \mathrm{~L}_{1}[R E(\theta)] \mathrm{L}_{2}[i L p(\theta)]
$$

$\mathscr{C}_{\mathbb{R}}=$ contour enclosing the real axis \mathbb{R}

Take the contour integral by residues:

$$
\mathscr{F}(L, R)=\frac{\pi}{6} \frac{R}{L} c_{0}(m L)-\sum_{n \in \mathbb{Z}} \log \left(1-e^{-R E_{n}}\right)
$$

the effective central charge

$$
c_{0}(m R) \equiv-\frac{6 R}{\pi} \int_{\mathbb{R}} \frac{d p}{2 \pi} \log \left(1-e^{-R \sqrt{p^{2}+m^{2}}}\right)
$$

the excited states

$$
p_{n}=\frac{2 \pi n}{R} \quad E_{n}=\sqrt{p_{n}^{2}+m^{2}}
$$

Now consider a theory of non-trivial factorised scattering interaction by scattering: (for simplicity one neutral particle, no bound states)

Relativistic QFT's with factorized scattering matrix

Factorized scattering:

$S\left(\theta-\theta^{\prime}\right) \quad$ - two-particle scattering matrix

$S(\theta) S(-\theta)=1$	unitarity
$S(\theta)^{*}=S\left(-\theta^{*}\right)$	real analyticity
$S(\theta)=S(i \pi-\theta)$	crossing
$\sigma \equiv S(0)= \pm 1$	"TBA statistics"

Mirror transformation= double Wick rotation exchanging the space and the time direction:

$$
\begin{aligned}
\theta & \rightarrow i \pi / 2-\theta \\
E(\theta) \rightarrow E(i \pi / 2-\theta) & =-i p(\theta) \\
p(\theta) \rightarrow p(i \pi / 2-\theta) & =i E(\theta)
\end{aligned}
$$

We will strongly use the analyticity and will consider scattering processes for complex rapidities. E.g. scattering matrix between a particle with rapidity θ in the direct channel and a particle with rapidity θ^{\prime} in the cross channel is $W\left(\theta+\theta^{\prime}\right)=S\left(\theta+\theta^{\prime}-i \pi / 2\right)$

A recipe to introduce the interaction by scattering in the path integral for N loops:

"From loops to scattering particles and then back to loops by analytical continuation"

- $\overrightarrow{\delta x_{j}}=\overrightarrow{x_{j}}-\overrightarrow{x_{j}^{\prime}}, \quad j=1, \ldots, N$
- Analytical continue to Minkowski space, with $\vec{x}_{1}, \ldots, \vec{x}_{N}$ in the far past and $\vec{x}_{1}^{\prime}, \ldots, \vec{x}_{N}^{\prime}$ in the far future, well separated in space
- Introduce the interaction by factorised scattering

$$
\int_{\mathbb{R}} \frac{d p_{1}}{2 \pi} \ldots \frac{d p_{N}}{2 \pi} \mu\left(p_{1}, \ldots, p_{N}\right) \prod_{i<j} S\left(p_{i}-p_{j}\right)
$$

- Analytically continue back to the Euclidean lattice Ω

Boltzmann weights and measure for the partition function of loops:

- weight $=\prod_{1}^{N} \frac{e^{-\left|w_{j}\right| L E\left(\theta_{j}\right)+i w_{j}^{\prime} R p\left(\theta_{j}\right)}}{2\left|w_{j}\right|} \prod_{k=1}^{\tilde{N}} \frac{e^{-R\left|\tilde{w}_{k}\right| E\left(\tilde{\theta}_{k}\right)+i \tilde{w}_{k}^{\prime} L p\left(\tilde{\theta}_{k}\right)}}{2\left|\tilde{w}_{k}\right|}$

$$
\times W\left(\theta_{j}+\tilde{\theta}_{k}\right)^{-\left|w_{j}\right|\left|\tilde{w}_{k}\right|+w_{j} \tilde{w}_{k}^{\prime}} S\left(\theta_{j}-\tilde{\theta}_{k}\right)^{w_{j}^{\prime} \tilde{w}_{k}\left|-\left|w_{j}\right| \tilde{w}_{k}^{\prime}\right.}
$$

\qquad Two-body interaction $W(\theta) \equiv S(\theta-i \pi / 2)$

The integration measure is assumed to be the flat measure for the phase shifts:

$$
\begin{aligned}
& \mu\left(p_{1}, \ldots, p_{N}, \tilde{p}_{1}, \ldots, \tilde{p}_{\tilde{N}}\right)= d \phi_{1} \wedge d \phi_{2} \ldots \wedge d \phi_{N} \wedge d \tilde{\phi}_{1} \wedge d \tilde{\phi}_{2} \ldots \wedge d \tilde{\phi}_{\tilde{N}} \\
& \phi_{j}=R p\left(\theta_{j}\right)-i \sum_{j^{\prime}=1}^{N}\left|w_{j^{\prime}}\right| \log S\left(\theta_{j}-\theta_{j^{\prime}}\right)-i \sum_{k=1}^{\tilde{N}} \tilde{w}_{k}^{\prime} \log W\left(\theta_{j}+\tilde{\theta}_{k}\right), \quad(j=1, \ldots, N) \\
& \tilde{\phi}_{k}=L p\left(\tilde{\theta}_{k}\right)-i \sum_{j=1}^{N} w_{j}^{\prime} \log W\left(\tilde{\theta}_{k}+\theta_{j}\right)-i \sum_{k^{\prime}=1}^{\tilde{N}}\left|\tilde{w}_{k^{\prime}}\right| \log S\left(\tilde{\theta}_{k}-\tilde{\theta}_{k^{\prime}}\right) \quad(k=1, \ldots, \tilde{N})
\end{aligned}
$$

- measure $=\prod_{j=1}^{N} d \phi_{j} \prod_{k=1}^{\tilde{N}} d \tilde{\phi}_{k}=\prod_{j=1}^{N} d \theta_{j} \prod_{k=1}^{\tilde{N}} d \tilde{\theta}_{k} \operatorname{det}\left[\begin{array}{lll}\partial \phi_{j} / \partial \theta_{j} & \partial \phi_{j} / \partial \tilde{\theta}_{k} \\ \partial \tilde{\phi}_{k} / \partial \theta_{j} & \partial \tilde{\phi}_{k} / \partial \tilde{\theta}_{k}\end{array}\right]$

Decouple the two-body interaction of loops by a Hubbard-Stratonovich transformation

- HS auxiliary gaussian fields $\varphi(\theta), \bar{\varphi}(\theta)$ associated with the two cycles of \mathbb{T} :
- classical values: $\quad\langle\varphi(\theta)\rangle=L m \cosh \theta,\langle\tilde{\varphi}(\theta)\rangle=R m \cosh \theta$
- 2pt function: $\quad\left\langle\varphi(\theta) \tilde{\varphi}\left(\theta^{\prime}\right)\right\rangle=-\log W\left(\theta-\theta^{\prime}\right) \quad$ phys/mir

$$
\Rightarrow\left\langle\varphi(\theta) \tilde{\varphi}^{ \pm}\left(\theta^{\prime}\right)\right\rangle=\mp \log S\left(\theta-\theta^{\prime}\right) \quad \begin{array}{cc}
& \text { phys } / \text { phys } \\
\varphi^{ \pm}(\theta) \equiv \varphi(\theta \pm i \pi / 2) & \mathrm{mir} / \mathrm{mir}
\end{array}
$$

- A second 'Faddeev-Popov ghost' field $\psi(\theta), \bar{\psi}(\theta)$ is needed to generate the Jacobian for the measure:

$$
{ }^{\prime \prime} d \varphi(\theta)^{\prime \prime}=(\partial \varphi(\theta)-\tilde{\psi}(\theta) \partial \psi(\theta)) d \theta \quad\left\langle\psi(\theta) \tilde{\psi}\left(\theta^{\prime}\right)\right\rangle=-\log W\left(\theta-\theta^{\prime}\right)
$$

- Operator loop amplitudes:

$$
\begin{aligned}
& \mathbf{F}_{w, w^{\prime}}=\frac{1}{2} \sigma^{w+w^{\prime}-1} \int_{\mathbb{R}} \frac{d \theta}{2 \pi} \exp \left(-|w| \varphi-w^{\prime} \tilde{\varphi}^{[-]}\right)\left(\frac{\partial_{\theta} \tilde{\varphi}^{-}}{|w|}-\tilde{\psi}^{-} \partial_{\theta} \psi(\theta)\right) \quad(w \neq 0) \\
& \tilde{\mathbf{F}}_{w^{\prime}, w}=\frac{1}{2} \sigma^{w+w^{\prime}-1} \int_{\mathbb{R}} \frac{d \theta}{2 \pi} \exp \left(-\left|w^{\prime}\right| \tilde{\varphi}-w \varphi^{+}\right)\left(\frac{\partial_{\theta} \varphi^{+}}{\left|w^{\prime}\right|}-\psi^{+} \partial_{\theta} \tilde{\psi}\right) \quad\left(w^{\prime} \neq 0\right) \\
& \mathbf{F}_{w, w^{\prime}}=\tilde{\mathbf{F}}_{w^{\prime}, w} \quad\left(w, w^{\prime} \neq 0\right)
\end{aligned}
$$

Effective field theory for the partition function

- Boltzmann weights of the loop gas as expectation values of HS fields:

$$
\text { weight }=\left\langle\prod_{j=1}^{N} \mathbf{F}_{w_{j}, w_{j}^{\prime}} \prod_{j=1}^{\tilde{N}} \tilde{\mathbf{F}}_{\tilde{w}_{j}^{\prime}, \tilde{w}_{j}}\right\rangle \quad \mathscr{Z}_{\mathrm{tor}}^{(L, R)}=\sum_{N, \tilde{N}=0}^{\infty} \sum_{\left\{w_{j} \neq 0\right\}} \sum_{\left\{\tilde{w}_{j} \neq 0, \tilde{w}_{j}^{\prime}\right\}} \int \frac{\text { weight } \times \text { measure }}{N!\tilde{N}!} \begin{aligned}
& \text { one } \\
& \text { possible } \\
& \text { choice }
\end{aligned}
$$

- The sum inside the expectation value exponentiates and the exponent is expressed in terms of the functions

$$
\sum_{n=1}^{\infty} \sigma^{n-1} n^{k-2} e^{-n x} \equiv \mathrm{~L}_{k}^{\sigma}[x]=(-1)^{k-1} \operatorname{Li}_{2-k}\left(\sigma e^{-x}\right)
$$

$$
\begin{aligned}
\mathscr{Z}_{\text {tor }}^{(L, R)} & =\left\langle\exp \left[\mathbf{F}_{\text {tor }}\right]\right\rangle \\
\mathbf{F}_{\text {tor }} & =\int_{\mathbb{R}} \frac{d \theta}{2 \pi i}\left[\mathrm{~L}_{1}^{\sigma}[\varphi] \partial_{\theta} \tilde{\varphi}^{-}+\mathrm{L}_{2}^{\sigma}[\varphi] \tilde{\psi}^{-} \partial_{\theta} \psi\right] \\
& +\oint_{\mathscr{C}_{\mathbb{R}}} \frac{d \theta}{2 \pi i}\left(\mathrm{~L}_{1}^{\sigma}[\tilde{\varphi}] \mathrm{L}_{2}^{\sigma}\left[\varphi^{+}\right] \partial_{\theta} \tilde{\varphi}^{+}+\mathrm{L}_{2}^{\sigma}[\tilde{\varphi}] \psi^{+} \partial_{\theta} \tilde{\psi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}_{1}^{\sigma}[x]=-\sigma \log \left(1-\sigma e^{-x}\right) \\
& \mathrm{L}_{2}^{\sigma}[x]=\frac{1}{e^{x}-\sigma} \\
& \mathrm{L}_{3}^{\sigma}[x]=\frac{e^{x}}{\left(e^{x}-\sigma\right)^{2}}
\end{aligned}
$$

$\langle\varphi(\theta)\rangle=L m \cosh \theta,\langle\tilde{\varphi}(\theta)\rangle=R m \cosh \theta$
$\left\langle\varphi(\theta) \tilde{\varphi}\left(\theta^{\prime}\right)\right\rangle=\left\langle\psi(\theta) \tilde{\psi}\left(\theta^{\prime}\right)\right\rangle=-\log W\left(\theta-\theta^{\prime}\right)$

Oscillator representation

$$
\begin{aligned}
& \varphi(\theta)=\sum_{n \text { odd }} \mathbf{a}_{n} \frac{e^{-n \theta}}{n}, \quad \tilde{\varphi}(\theta)=\sum_{n \text { odd }} \tilde{\mathbf{a}}_{n} \frac{e^{-n \theta}}{n} \\
& \psi(\theta)=\sum_{n \text { odd }} \mathbf{b}_{n} \frac{e^{-n \theta}}{n}, \quad \tilde{\psi}(\theta)=\sum_{n \text { odd }} \tilde{\mathbf{b}}_{n} \frac{e^{-n \theta}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \langle 0 \mid 0\rangle=1 \\
& \langle 0| \mathbf{a}_{-n}=\langle 0| \tilde{\mathbf{a}}_{-n}=0 \quad \mathbf{a}_{n}|0\rangle=\tilde{\mathbf{a}}_{n}|0\rangle=0 \\
& \langle 0| \mathbf{b}_{-n}=\langle 0| \tilde{\mathbf{b}}_{-n}=0 \quad \mathbf{b}_{n}|0\rangle=\tilde{\mathbf{b}}_{n}|0\rangle=0 \\
& \text { (} n>0 \text {, odd) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}_{n} \tilde{\mathbf{a}}_{m}-\tilde{\mathbf{a}}_{m} \mathbf{a}_{n}=-n W_{n} \delta_{m+n, 0} \\
& \mathbf{a}_{m} \mathbf{a}_{n}=\mathbf{a}_{n} \mathbf{a}_{m}, \quad \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{n}=\tilde{\mathbf{a}}_{n} \tilde{\mathbf{a}}_{m} \\
& \mathbf{b}_{n}, \tilde{\mathbf{b}}_{m}+\tilde{\mathbf{b}}_{m} \mathbf{b}_{n}=-n W_{n} \delta_{m+n, 0} \\
& \mathbf{b}_{m} \mathbf{b}_{n}=\mathbf{b}_{n} \mathbf{b}_{m}, \quad \tilde{\mathbf{b}}_{m} \tilde{\mathbf{b}}_{n}=\tilde{\mathbf{b}}_{n} \tilde{\mathbf{b}}_{m} \quad(n, m=\text { odd })
\end{aligned}
$$

$$
\begin{array}{rlr}
\log W(\theta) & =\sum_{k \geq 1, \text { odd }}^{\infty} \frac{W_{n}}{n} e^{-n \theta} & (\Re)>0) \\
& =\sum_{k \geq 1, \text { odd }}^{\infty} \frac{W_{n}}{n} e^{n \theta} & (\Re \theta<0)
\end{array}
$$

The scattering matrix is encoded in the canonical commutation relations

$$
\begin{aligned}
& \mathscr{Z}_{\text {tor }}^{(L, R)}=\langle 0| e^{\mathbf{H}_{+}} e^{\mathbf{F}_{\text {tor }}} e^{-\mathbf{H}_{-}}|0\rangle \\
& \mathbf{H}_{-}=\frac{m}{2 W_{1}}\left(L \tilde{\mathbf{a}}_{-1}+R \mathbf{a}_{-1}\right) \quad \mathbf{H}_{+}=\frac{m}{2 W_{1}}\left(L \tilde{\mathbf{a}}_{1}+R \mathbf{a}_{1}\right)
\end{aligned}
$$

The two periods are encoded in two "Hamiltonians" transforming the Fock vacua

Example: Sinh-GORDON model $\quad \mathscr{A}=\int_{T} d^{2} x\left[\frac{1}{4 \pi}(\nabla \phi)^{2}+2 \mu \cosh (2 b \phi)\right]$

$$
\begin{aligned}
& S(\theta)=\frac{\sinh (\theta)-i \sin (\pi \alpha)}{\sinh (\theta)+i \sin (\pi \alpha)} \longleftarrow \alpha=\frac{b^{2}}{1+b^{2}} \\
& \log W(\theta)=\sum_{n \geq 1, \text { odd }} \frac{W_{n}}{n} e^{-n \theta}, \quad W_{n}=4 \cos \frac{n \pi a}{2} \longleftarrow a=1-2 \alpha=\frac{1-b^{2}}{1+b^{2}}
\end{aligned}
$$

Remark 1: curiously the operator representation reproduces the infinitevolume energy density

$$
\mathscr{Z}_{\text {tor }}^{(L, R)} \underset{R, L \rightarrow \infty}{=}\langle 0| e^{\mathbf{H}_{+}} e^{-\mathbf{H}_{-}}|0\rangle=\exp \left[L R \epsilon_{0}\right] \quad \epsilon_{0}=\frac{m^{2}}{2 W_{1}}=\frac{m^{2}}{8 \sin \pi \alpha}
$$

[Destri-De Vega, 1991]

Remark 2: With this specific S-matrix one can write the Ward identity for φ as a finite-difference equation
$\langle\varphi(\theta+i \pi / 2)+\varphi(\theta-i \pi / 2)\rangle_{\text {tor }}=\left\langle\log \left(1+e^{-\varphi(\theta+i \pi a / 2)}\right)+\log \left(1+e^{-\varphi(\theta-i \pi a / 2)}\right)\right\rangle_{\text {tor }}$

TBA limit $R \rightarrow \infty=$ mean field limit

$$
\mathscr{Z}_{\mathrm{cyl}}=\langle 0| e^{\mathbf{H}_{+}} e^{\mathbf{F}_{\mathrm{cyl}}} e^{-\mathbf{H}_{-}}|0\rangle \quad \mathbf{F}_{\mathrm{cyl}}=\int_{\mathbb{R}} \frac{d \theta}{2 \pi i}\left[\log \left(1+e^{-\varphi}\right) \partial_{\theta} \tilde{\varphi}^{-}+\frac{\psi \partial_{\theta} \tilde{\mathcal{T}}^{-}}{1+e^{\varphi}}\right]
$$

The Feynman diagram technique ends at one loop. Fermionic and bosonic loops cancel. Hence no gaussian fluctuations, pure mean field theory. The fields can be replaced by their expectation values $\epsilon(\theta)=\langle\varphi(\theta)\rangle_{\text {cyl }}$ and $\phi(\theta)=-i\langle\varphi(\theta-i \pi / 2)\rangle_{\text {cyl }}$

$$
\begin{aligned}
& \mathscr{Z}_{\mathrm{cyl}}=\exp \left[\mathscr{F}_{\mathrm{cyl}}\right] \\
& \mathscr{F}_{\mathrm{cyl}}=\left\langle\mathbf{F}_{\mathrm{cyl}}\right\rangle=-\sigma R \int \frac{d \theta}{2 \pi} \log \left(1-\sigma e^{-\epsilon(\theta)}\right) \partial p(\theta)
\end{aligned}
$$

Ward identities:
Relation to the TBA approach:
ρ_{p}, ρ_{h} - particle and hole densities

$$
\epsilon=\log \frac{\rho_{h}}{\rho_{p}}, \quad \partial_{\theta} \phi=R\left(\rho_{p}+\rho_{h}\right)
$$

$\epsilon(\theta)=L E(\theta)-\int_{-\infty}^{\infty} \frac{d \theta^{\prime}}{2 \pi} K\left(\theta-\theta^{\prime}\right) \log \left(1+e^{-\epsilon\left(\theta^{\prime}\right)}\right)$
\longrightarrow TBA equation for the pseudoenergy ϵ
$\partial \phi(\theta)=R \partial p(\theta)+\int_{-\infty}^{\infty} \frac{d \theta^{\prime}}{2 \pi} K\left(\theta-\theta^{\prime}\right) \frac{\partial \phi\left(\theta^{\prime}\right)}{e^{\epsilon\left(\theta^{\prime}\right)}-\sigma}$
$\rho_{p}(\theta)+\rho_{h}(\theta)=\partial \tilde{p}(\theta)+\int_{\mathbb{R}} \frac{d \theta^{\prime}}{2 \pi} K\left(\theta, \theta^{\prime}\right) \rho_{p}(\theta)$
Bethe equation in terms of densities
$K\left(\theta, \theta^{\prime}\right)=-\left\langle\partial \tilde{q}^{-}(\theta) \varphi\left(\theta^{\prime}\right)\right\rangle_{c}=-i \partial_{\theta} \log S\left(\theta-\theta^{\prime}\right)$
scattering kernel

Feynman rules $(\sigma=-1)$:

$$
\begin{aligned}
\mathbf{F}_{\mathrm{cyl}} & =\sum_{n=0}^{\infty} \int_{\mathbb{R}} \frac{d \theta}{2 \pi i}\left[\mathrm{v}_{n+1} \frac{\varphi^{n}}{n!} \partial_{\theta} \tilde{\varphi}^{-}+\mathrm{v}_{n+2} \frac{\varphi^{n}}{n!} \tilde{\psi} \partial_{\theta} \psi\right]=\sum_{n=0}^{\infty} \int_{\mathbb{R}} \frac{d \theta}{2 \pi}\left[\begin{array}{cc}
n & \text { oे } \\
\mathrm{o}_{\mathrm{O}}
\end{array}\right)+n\left\{\begin{array}{l}
\text { à } \\
\mathrm{v}_{\mathrm{o}}
\end{array}\right] \\
\mathrm{v}_{k} & \equiv(-1)^{k} \mathrm{Li}_{2-k}(-1)
\end{aligned}
$$

Vacuum Feynman graphs (boson and fermionic loops cancel, only trees survive)
[I.K., D. Serban, D.-L. Vu , 2017, 2018]

Ward identity for the expectation value $\epsilon=\langle\varphi\rangle_{\mathrm{cyl}}$ (TBA equation)

Dressed vertices:

$$
\begin{array}{lll}
=0 & =1 & L_{0}^{0} \\
L_{2}^{-}[\epsilon] & =\frac{1}{e^{\epsilon}+1} & \mathrm{~L}_{1}^{-}[\epsilon]=\log \left(1+e^{-\epsilon}\right)
\end{array}
$$

Ward identities:
$\circ=\theta+\cdots$
$\cdots=\otimes+\infty$

Free energy:

Diagram technique for the torus - complicated. Loops of all orders will contribute

What could be done next:

- Learn how to perform systematic perturbative expansion above the mean field (TBA) limit
- Generalisation to diagonal scattering matrices (type ADE) easy
- Generalisation to non-diagonal scattering and bound states - need new insight
- The EQFT for the torus can be formulated with little effort for the finite cylinder with integrable boundaries.
- Leclair-Mussardo formula for the torus

