Limiting current distribution for a two-species particle model from first principles

Jan de Gier

The University of Melbourne

GGI program Randomness, Integrability and Universality, 29 April, Florence

In collaboration with Zeying Chen Iori Hiki Masato Usui Tomohiro Sasamoto

arXiv:1803.06829 (Phys. Rev. Lett. **120**, 240601 (2018)) arXiv:2104.00026 (accepted in Comm. Math. Phys.)

KPZ growt

KPZ growth

- Stochastic growth normal to the surface
- Kardar-Parisi-Zhang (KPZ) 1986
- Basic object: (random) height function h(x, t)

KPZ equation (nonlinear stochastic PDE):

KPZ equation

 $\vartheta_t h(t,x) = \tfrac{1}{2} \vartheta_x^2 h(t,x) + \tfrac{1}{2} \left(\vartheta_x h(t,x) \right)^2 + \xi(t,x)$

Claim: Diffusion + non-linearity + space-time Gaussian white noise correctly describes 1+1D surface growth

Realisation in liquid crystal growth: Takeuchi lab

KPZ growth

1+1D Growth

Takeuchi and Sasamoto, Tokyo 2017

KPZ growth

KPZ growth

Theorem (Non-Gaussian fluctuations)

 $h\sim \nu t+ct^{1/3},\quad t\to\infty$

Transformation to Stochastic Heat Equation (SHE):

 $h(t, x) := \log z(t, x).$

SHE equation

$$\partial_{t}z(t,x) = \frac{1}{2}\partial_{x}^{2}z(t,x) + \xi(t,x)z(t,x)$$

KPZ growth

Fluctuations

The Laplace transform formula for z(t, x) can be written as a Fredholm determinant

Theorem (Laplace transform of SHE)

$$\begin{split} \mathbb{E}[e^{-\zeta z(t,0)}] &= \mathsf{det}(I - \mathsf{K}_{\zeta})_{L^2(\mathbb{R}_+)} \\ \mathsf{K}_{\zeta}(\eta,\eta') &= \int_{\mathbb{R}} f_{\zeta}(\xi,t) \mathsf{Ai}(\xi + \eta) \mathsf{Ai}(\xi + \eta') \mathsf{d}\xi. \end{split}$$

Theorem (Fluctuations of SHE)

$$\lim_{t \to \infty} P\left(\frac{h(t, x) - t}{t^{1/3}} < s\right) = F_{\text{GUE}}(s).$$

 $\mathsf{F}_{\mathsf{GUE}}(s)$ is the Tracy-Widom distribution of the Gaussian Unitary Ensemble of random matrix theory.

ASEP

The asymmetric exclusion process on \mathbb{Z} :

Figure: Configuration of particles and hopping rates in the ASEP on \mathbb{Z}

Markov chain:

$$\frac{\mathsf{d}}{\mathsf{d}\,\mathsf{t}}\mathbb{P}(\nu;\mathsf{t}) = \sum_{\lambda\neq\nu} W(\lambda\rightarrow\nu)\mathbb{P}(\lambda;\mathsf{t}) - \sum_{\lambda\neq\nu} W(\nu\rightarrow\lambda)\mathbb{P}(\nu;\mathsf{t}),$$

Initial condition:

$$\mathbb{P}(\mu \to \nu; 0) = \prod_{i=1}^n \delta_{\nu_i, \mu_i}.$$

ASEP transition probability

One particle (Bethe ansatz) eigenfunction:

$$\varphi_z(\nu, t) = \exp\left(-t\frac{z(p-q)^2}{p(1+z)(1+z/\tau)}\right)\left(\frac{1+z}{1+z/\tau}\right)^{\nu-1}, \qquad \tau = \frac{p}{q}$$

Many particles (Tracy-Widom):

$$\begin{split} \mathbb{P}(\mu \rightarrow \nu; t) &= \frac{1}{(2\pi i)^n} \oint_{-\tau} dz_1 \cdots \oint_{-\tau} dz_n \prod_{i=1}^n \frac{p-q}{(1+z_i/\tau)^2} \\ &\times \sum_{\pi \in S_n} \prod_{\pi_i < \pi_j} \frac{\tau z_i - z_j}{z_i - \tau z_j} \prod_{i=1}^n \phi_{z_i} (\nu_{\pi_i} - \mu_i, t) \end{split}$$

ASEP

ASEP expectation values

 $N_{x}(t)$: the number of particles to have crossed a given site x after time t.

Convenient observable (ASEP self-dual): $Q_{\chi}(t) = \tau^{N_{\chi}(t)}$ with $\tau = \frac{p}{q}$ and

$$\widetilde{Q}_x(t) = \frac{Q_x(t) - Q_{x-1}(t)}{\tau - 1} = \tau^{N_x - 1(t)} \boldsymbol{1}_{x \in v_t}$$

Theorem (Borodin-Corwin-Sasamoto (step initial condition),...)

$$\mathbb{E}[\widetilde{Q}_{x_1}(t)\cdots\widetilde{Q}_{x_k}(t)] = \oint dz_1 \cdots \oint dz_n \prod_{1 \leq i < j \leq k} \frac{z_i - z_j}{z_i - \tau z_j} \prod_{\alpha=1}^k \varphi_{z_i}(x_i, t) \frac{1}{z_i + \tau}$$

Fluctuations of particle flow across the origin follow KPZ statistics given by the Tracy-Widom distribution:

Theorem (Fluctuations of ASEP)

$$\lim_{t\to\infty} P\left(\frac{N_0(t)-\nu t}{t^{1/3}}>-s\right)=F_{\text{GUE}}(s).$$

ASEI

Summary

Ingredients:

- Yang-Baxter integrable stochastic lattice model
- Observable expressed in terms of k-fold integral (Bethe Ansatz)
- Asympotics for large $k \rightarrow$ Fredholm determinant
- Saddle point analysis

New results:

- Rank two model (two species of particles)
- Dynamic poles in integral
- Combination of Gaussian and GUE modes

Multi-species mode

AHR model

Introduced by Arndt-Heinzl-Rittenberg, the transition rates are

 $\begin{array}{ll} p: & (+,0) \to (0,+) \\ q: & (0,-) \to (-,0) \\ 1: & (+,-) \to (-,+) \end{array}$

Throughout we will take p + q = 1 (factorised steady state).

Nonlinear Fluctuating Hydrodynamics

Continuity equation

$$\frac{\partial \mathbf{u}(\mathbf{x},\mathbf{t})}{\partial \mathbf{t}} + \frac{\partial \mathbf{j}(\mathbf{u}(\mathbf{x},\mathbf{t}))}{\partial \mathbf{x}} = \mathbf{0},$$

where $u(x,t)=(\rho_+,\rho_-)$ and $\boldsymbol{j}(u)=(j_+,j_-)$ given by non-linear flows

$$\begin{split} j_+(u) &= \rho_+(1-\rho_+-\rho_-)+2\rho_+\rho_-,\\ j_-(u) &= -(1-\rho_+-\rho_-)\rho_--2\rho_+\rho_-\,. \end{split}$$

Adding diffusion and noise, heuristic non-linear fluctuating hydrodynamics (NLFHD) leads to

$$P_{\text{crossing}}(t) \sim F_{\text{GUE}}(s_{+})F_{\text{Gauss}}(s_{-}),$$

where s_{\pm} are eigenmodes.

Aim of this work is to rigorously prove this.

Transition probability

Definition

The transition probability satisfies the master equation

$$\frac{d}{dt}G(t) = p\sum_{i}G(\vec{x}_{i}^{-},t) + q\sum_{i}G(\vec{y}_{i}^{+},t) - (np + mq)G(t) \qquad t > 0,$$

Scattering conditions

Exclusion: G(x, x; t) = G(x, x + 1; t),

Exclusion: G(y, y; t) = G(y, y - 1; t),

Scattering: G(x = y; y + 1; t) = qG(x = y + 1; y + 1; t) + pG(x = y; y; t).

and initial condition

$$G(\vec{x}; \vec{y}; 0) = \prod_{i=1}^{n} \delta_{x_{i}, x_{i}^{(0)}} \prod_{j=1}^{m} \delta_{y_{j}, y_{j}^{(0)}}$$

• Explicit form can be determined by nested Bethe ansatz due to Yang-Baxter integrability.

Transition probability

Initial conditions: assume $x_i^{(0)} < y_k^{(0)}$, i.e. at t = 0 all + particles are to the left of all - particles.

Final condition: $x_j > y_k$, i.e. at time t all + particles have passed all - particles

Then

$$\begin{split} G(\mathbf{x},\mathbf{y},t) = & \oint \prod_{j=1}^{n} d\, z_{j} \prod_{k=1}^{m} d\, w_{k} \, e^{\Lambda t} \prod_{k=1}^{m} \prod_{j=1}^{n} \frac{1}{q z_{j} + p w_{k}} \\ & \times \det \left(\left(\frac{z_{j} - 1}{z_{i} - 1} \right)^{j-1} z_{i}^{x_{j}} \right) z_{j}^{-x_{j}^{(0)} - 1} \\ & \times \det \left(\left(\frac{w_{k} - 1}{w_{\ell} - 1} \right)^{m-k} w_{\ell}^{-y_{k}} \right) w_{k}^{y_{k}^{(0)} - 1}, \end{split}$$

with all contours around the origin, and with eigenvalue

$$\Lambda = p \sum_{j=1}^{n} (z_j^{-1} - 1) + q \sum_{k=1}^{m} (w_k^{-1} - 1).$$

• It is possible to give an explicit expression for any intial and final condition.

Current distribution: step initial condition

Given the following step initial condition

Then

$$\mathbb{P}(x_{1}(t) \ge s) = \sum_{x_{1}=s}^{\infty} \cdots \sum_{x_{n}=x_{n-1}+1}^{\infty} \sum_{y_{1}=-\infty}^{-n} \cdots \sum_{y_{n}=y_{n-1}+1}^{-1} G(\{x_{j}\};\{y_{k}\};t),$$

Proposition

 $\mathbb{P}(x_1(t) \geqslant 0) =$

$$\oint \prod_{j=1}^{n} dz_{j} \prod_{k=1}^{m} dw_{k} e^{At} \frac{\prod_{1 \leq i < j \leq n} (z_{i} - z_{j}) \prod_{1 \leq k < l \leq m} (w_{l} - w_{k}) \prod_{j=1}^{n} z_{j}^{n-j+s} \prod_{k=1}^{m} w_{k}^{k-1}}{\prod_{j=1}^{n} (z_{j} - 1)^{n+1-j} \prod_{k=1}^{m} (w_{k} - 1)^{k} \prod_{j=1}^{n} \prod_{k=1}^{m} (qz_{j} + pw_{k})},$$

with all contours around the origin.

Current distribution

Current distribution

- $e^{\Lambda t}$ produces an essential singularity at origin: $\Lambda = p \sum_{j=1}^{n} (z_j^{-1} 1) + q \sum_{k=1}^{m} (w_k^{-1} 1)$.
- Deform w-contours to lie around poles other than the origin
- Only (simple) poles at w = 1 give nonzero contribution

After evaluating the residues in w, we get

Proposition

$$\mathbb{P}(\mathbf{x}_{1}(t) \ge \mathbf{0}) = \oint \prod_{j=1}^{n} \frac{\mathsf{d} z_{j}}{2\pi i} e^{\tilde{\Lambda}t} \frac{\prod_{1 \le i < j \le n} (z_{i} - z_{j}) \prod_{j=1}^{n} z_{j}^{n-j}}{\prod_{j=1}^{n} (z_{j} - 1)^{n+1-j} \prod_{j=1}^{n} (qz_{j} + p)^{m}}$$

TASEP limit

Corollary

When n = m and p = q = 1/2 we retrieve the same distribution as for the single species TASEP under step initial condition, i.e.

$$P_{n,n,1}(t) = \frac{1}{n!} \oint \prod_{j=1}^{n} dx_j e^{\varepsilon t} \frac{\prod_{1 \leq i < j \leq n} (x_i - x_j)^2}{\prod_{j=1}^{n} (x_j - 1)^n},$$

where the contours are still around the origin and $\mathcal{E} = \sum_{j=1}^{n} (x_j^{-1} - 1)$.

This is made explicit by symmetrising and the simple change of variable $z_j = x_j/(2 - x_j)$.

From known analysis (Tracy-Widom) this probability converges to the GUE distribution as $n, t \rightarrow \infty$.

Step-Bernoulli condition

Let the distance among positive particles be independently distributed with parameter ρ' ,

Proposition

The total exchange probability $\mathsf{P}_{n,m,\rho}(t)$ with Bernoulli initial data is given by

$$\begin{split} P_{n,m,\rho}(t) = \oint \prod_{j=1}^{n} dz_{j} \prod_{k=1}^{m} dw_{k} e^{\Lambda_{n,m} t} \times \\ & \frac{\rho^{n} \prod_{1 \leq i < j \leq n} (z_{i} - z_{j}) \prod_{1 \leq k < l \leq m} (w_{l} - w_{k}) \prod_{j=1}^{n} z_{j}^{n-j} \prod_{k=1}^{m} w_{k}^{k-1}}{\prod_{j=1}^{n} (z_{j} - 1)^{n+1-j} (1 - \rho' z_{j}) \prod_{k=1}^{m} (w_{k} - 1)^{k} \prod_{j=1}^{n} \prod_{k=1}^{m} (qz_{j} + pw_{k})}, \end{split}$$

with all contours around the origin.

The *w*-contours can be readily evaluated if n > m but not when n < m

Exchange

Asymptotics

Non-linear fluctuating hydrodynamics (KPZ formalism) suggests a scaling limit of the form

$$\begin{split} n &= j_1 t + \alpha t^{1/3} + \beta t^{1/2} \\ m &= j_2 t + \gamma t^{1/3} + \delta t^{1/2}, \end{split}$$

where $j_{1,2}$, α , β , γ , δ are known functions of ρ' , and n < m.

Need to analyse

$$P_{n,m,\rho}(t) = \underbrace{\oint \dots \oint}_{n \times m} \text{ factorised integrand}$$

where n, m, t are large.

Trick: Convert to Fredholm determinant:

$$P_{n,m,\rho}(t) = \det(\mathbb{I} - AB)_{m \times m} = \det(\mathbb{I} - BA)_{L^{2}(\mathbb{R})},$$

where n, m, t all occur as parameters in BA.

Asymptotics

Need to calculate integrals like

$$\mathbb{J}_2 = \oint_1 \mathsf{d}^{n-1} \, z \, \mathsf{L}(\vec{z}) \, \mathsf{det}(\mathbb{I} - \mathsf{K}(\vec{z}))_{\ell^2(\mathbb{N})}$$

with

$$\mathsf{K}(\mathsf{x},\mathsf{y};\vec{z}) = \oint_{1} \frac{\mathsf{d}\zeta}{2\pi \mathsf{i}} \mathsf{F}(\zeta,\mathsf{x}) \prod_{j=1}^{n-1} \frac{1+z_{j}\zeta}{1+\zeta} \oint_{C} \frac{\mathsf{d}w}{2\pi \mathsf{i}} \mathsf{G}(w,\mathsf{y}) \prod_{j=1}^{n-1} \frac{1+w}{1+z_{j}w} \frac{1}{w-\zeta},$$

Proposition

For any $(x_1,x_2,\ldots,x_k)\in\mathbb{N}^k,$ $\rho\in(0,1),$ t>0 and n, $m\in\mathbb{N},$ the following equality holds:

$$\begin{split} & \oint_{1} d^{n-1} z \, L(\vec{z}) \det \left[K(x_{i}, x_{j}, \vec{z}) \right]_{1 \leqslant i, j \leqslant k} \\ & = \oint_{1} d^{n-1} z \, L(\vec{z}) \det \left\{ K_{W}(x_{i}, x_{j}) - \left[\sum_{l=1}^{n-1} \prod_{k=1}^{l} (z_{k}-1) A_{l}(x_{i}) \right] B(x_{j}) \right\}_{1 \leqslant i, j \leqslant k}. \end{split}$$

Asymptotics

$$\mathfrak{I}_2 = \mathfrak{I}_z \det \left(\mathbb{I} - \mathsf{K}(\vec{z} = \vec{1}) \right)_{\ell^2(\mathbb{N})} + \text{ lower order }$$

In order to perform asymptotic analysis, we define the rescaled functions

$$\xi = x/\lambda_c t^{1/3}, \qquad \zeta = y/\lambda_c t^{1/3}$$

such that

$$\mathcal{K}(\xi,\zeta) = (w_c + c)^{\lambda_c t^{1/3}(\xi-\zeta)} \lambda_c t^{1/3} \mathsf{K}(\lambda_c t^{1/3}\xi, \lambda_c t^{1/3}\zeta),$$

The rescaled kernel is explicitly described as

Current distribution

Sadlle point analysis

Figure: Saddle point contour ensuring uniform convergence

Theorem

$$\lim_{t\to\infty} \det(1-\mathcal{K})_{\ell^2(\mathbb{N}/(\lambda_c t^{1/3}))} = \lim_{t\to\infty} \det(1-\mathcal{K})_{L^2(0,\infty)} = \det(1-A)_{L^2(s,\infty)} = F_2(s)$$

$$A(x,y) = \int_0^\infty Ai(x+\lambda) Ai(y+\lambda) d\lambda$$

and

$$s = \frac{1}{c_2 t^{1/3}} \left((1+\rho)n - (3-\rho)m + \frac{1}{2}(1-\rho)(1-(1-\rho)^2/4)t \right)$$

Recall

$$\mathbb{J}_2 = \mathbb{J}_z \det \left(\mathbb{I} - \mathsf{K}(\vec{z} = \vec{1}) \right)_{\ell^2(\mathbb{N})} + \text{ lower order}$$

The integral \mathcal{I}_z converges to a Gaussian

$$\mathbb{J}_2 \to (1 - F_G(s'))F_2(s) \quad \text{as } t \to \infty$$

Final result

Theorem

In the appropriate scaling limit

$$\lim_{t \to \infty} \mathbb{P}_{n,m,\rho}(t) = F_{\text{GUE}}(s)F_{\text{Gauss}}(s'),$$

$$\begin{split} s(n,m;t) &=: \frac{1}{c_2 t^{1/3}} \Big((1+\rho)n - (3-\rho)m + \frac{1}{2} (1-\rho)(1-(1-\rho)^2/4)t \Big), \\ s'(n,m;t) &=: \frac{1}{c_g t^{1/2}} \Big(-2(2-\rho)n + 2\rhom + (2-\rho)(1-\rho)\rhot \Big), \end{split}$$

Conclusion

- (First) proof of Nonlinear Fluctuating Hydrodynamics for a two-component mixture
- Using integrability
- Mix of Gaussian and KPZ modes
- Dynamic poles in integrand