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KPZ growth

KPZ growth

Stochastic growth normal to the surface

Kardar-Parisi-Zhang (KPZ) 1986

Basic object: (random) height function h(x, t)

KPZ equation (nonlinear stochastic PDE):

KPZ equation

∂th(t,x) = 1
2∂

2
xh(t,x) +

1
2 (∂xh(t,x))2 + ξ(t,x)

Claim:
Diffusion + non-linearity + space-time Gaussian white noise
correctly describes 1+1D surface growth

Realisation in liquid crystal growth: Takeuchi lab
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KPZ growth

1+1D Growth

Takeuchi and Sasamoto, Tokyo 2017
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KPZ growth

KPZ growth

Theorem (Non-Gaussian fluctuations)

h ∼ vt+ ct1/3, t→∞
Transformation to Stochastic Heat Equation (SHE):

h(t,x) := logz(t,x).

SHE equation

∂tz(t,x) =
1
2
∂2
xz(t,x) + ξ(t,x)z(t,x)
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KPZ growth

Fluctuations

The Laplace transform formula for z(t,x) can be written as a Fredholm determinant

Theorem (Laplace transform of SHE)

E[e−ζz(t,0)] = det(I−Kζ)L2(R+)

Kζ(η,η ′) =

∫
R
fζ(ξ, t)Ai(ξ+ η)Ai(ξ+ η ′)dξ.

Theorem (Fluctuations of SHE)

lim
t→∞P

(
h(t,x) − t
t1/3 < s

)
= FGUE(s).

FGUE(s) is the Tracy-Widom distribution of the Gaussian Unitary Ensemble of random matrix
theory.
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ASEP

ASEP

The asymmetric exclusion process on Z:

p p

q

p

q

×

×

×

×

Figure: Configuration of particles and hopping rates in the ASEP on Z

Markov chain:

d
d t
P(ν; t) =

∑
λ,ν

W(λ→ ν)P(λ; t) −
∑
λ,ν

W(ν→ λ)P(ν; t),

Initial condition:

P(µ→ ν; 0) =

n∏
i=1

δνi,µi
.
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ASEP

ASEP transition probability

One particle (Bethe ansatz) eigenfunction:

ϕz(ν, t) = exp
(
−t

z(p−q)2

p(1 + z)(1 + z/τ)

)(
1 + z

1 + z/τ

)ν−1

, τ =
p

q

Many particles (Tracy-Widom):

P(µ→ ν; t) =
1

(2πi)n

∮
−τ

dz1 · · ·
∮
−τ

dzn
n∏
i=1

p−q

(1 + zi/τ)2

×
∑
π∈Sn

∏
πi<πj

τzi − zj
zi − τzj

n∏
i=1

ϕzi(νπi −µi, t)
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ASEP

ASEP expectation values

Nx(t): the number of particles to have crossed a given site x after time t.

Convenient observable (ASEP self-dual): Qx(t) = τNx(t) with τ = p
q and

Q̃x(t) =
Qx(t) −Qx−1(t)

τ− 1
= τNx−1(t)1x∈νt

Theorem (Borodin-Corwin-Sasamoto (step initial condition),. . . )

E[Q̃x1(t) · · · Q̃xk(t)] =
∮

dz1 · · ·
∮

dzn
∏

16i<j6k

zi − zj
zi − τzj

k∏
α=1

ϕzi(xi, t)
1

zi + τ

Fluctuations of particle flow across the origin follow KPZ statistics given by the Tracy-Widom
distribution:

Theorem (Fluctuations of ASEP)

lim
t→∞P

(
N0(t) − vt

t1/3 > −s

)
= FGUE(s).
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ASEP

Summary

Ingredients:

Yang-Baxter integrable stochastic lattice model

Observable expressed in terms of k-fold integral (Bethe Ansatz)

Asympotics for large k → Fredholm determinant

Saddle point analysis

New results:

Rank two model (two species of particles)

Dynamic poles in integral

Combination of Gaussian and GUE modes
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Multi-species model

AHR model

Introduced by Arndt-Heinzl-Rittenberg, the transition rates are

p : (+, 0)→ (0,+)

q : (0,−)→ (−, 0)

1 : (+,−)→ (−,+)

Throughout we will take p+q = 1 (factorised steady state).
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Multi-species model

Nonlinear Fluctuating Hydrodynamics

Continuity equation

∂u(x, t)
∂t

+
∂j(u(x, t))

∂x
= 0,

where u(x, t) = (ρ+,ρ−) and j(u) = (j+, j−) given by non-linear flows

j+(u) = ρ+(1 − ρ+ − ρ−) + 2ρ+ρ−,

j−(u) = −(1 − ρ+ − ρ−)ρ− − 2ρ+ρ− .

Adding diffusion and noise, heuristic non-linear fluctuating hydrodynamics (NLFHD) leads to

Pcrossing(t) ∼ FGUE(s+)FGauss(s−),

where s± are eigenmodes.

Aim of this work is to rigorously prove this.
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Multi-species model

Transition probability

Definition

The transition probability satisfies the master equation

d
d t
G(t) = p

∑
i

G(~x−i , t) +q
∑
i

G(~y+
i , t) − (np+mq)G(t) t > 0,

Scattering conditions
Exclusion: G(x,x; t) =G(x,x+ 1; t),

Exclusion: G(y,y; t) =G(y,y− 1; t),

Scattering: G(x = y;y+ 1; t) = qG(x = y+ 1;y+ 1; t) + pG(x = y;y; t).

and initial condition

G(~x;~y; 0) =

n∏
i=1

δ
xi,x(0)

i

m∏
j=1

δ
yj ,y(0)

j

• Explicit form can be determined by nested Bethe ansatz due to Yang-Baxter integrability.
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Multi-species model

Transition probability

Initial conditions: assume x(0)
j < y

(0)
k , i.e. at t = 0 all + particles are to the left of all − particles.

Final condition: xj > yk, i.e. at time t all + particles have passed all − particles

Then

G(x, y, t) =

∮ n∏
j=1

dzj
m∏
k=1

dwk eΛt
m∏
k=1

n∏
j=1

1
qzj + pwk

× det

((
zj − 1
zi − 1

)j−1

z
xj
i

)
z
−x

(0)
j −1

j

× det

((
wk − 1
w` − 1

)m−k

w
−yk
`

)
w
y
(0)
k −1
k ,

with all contours around the origin, and with eigenvalue

Λ = p

n∑
j=1

(z−1
j − 1) +q

m∑
k=1

(w−1
k − 1).

• It is possible to give an explicit expression for any intial and final condition.
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Current distribution

Current distribution: step initial condition

Given the following step initial condition

· · ·0000

ntimes︷             ︸︸             ︷
++ · · ·++

mtimes︷             ︸︸             ︷
−− · · ·−−0000 · · · ,

Then

P(x1(t) > s) =

∞∑
x1=s

· · ·
∞∑

xn=xn−1+1

−n∑
y1=−∞ · · ·

−1∑
yn=yn−1+1

G({xj}; {yk}; t),

Proposition

P(x1(t) > 0) =

∮ n∏
j=1

dzj
m∏
k=1

dwk eΛt

∏
16i<j6n

(zi − zj)
∏

16k<l6m

(wl −wk)

n∏
j=1

z
n−j+s
j

m∏
k=1

wk−1
k

n∏
j=1

(zj − 1)n+1−j
m∏
k=1

(wk − 1)k
n∏
j=1

m∏
k=1

(
qzj + pwk

) ,

with all contours around the origin.
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Current distribution

Current distribution

eΛt produces an essential singularity at origin: Λ = p
∑n
j=1(z

−1
j − 1)+q

∑m
k=1(w

−1
k − 1).

Deformw-contours to lie around poles other than the origin

Only (simple) poles atw = 1 give nonzero contribution

After evaluating the residues inw, we get

Proposition

P(x1(t) > 0) =

∮ n∏
j=1

dzj
2πi

eΛ̃t

∏
16i<j6n

(zi − zj)

n∏
j=1

z
n−j
j

n∏
j=1

(zj − 1)n+1−j
n∏
j=1

(
qzj + p

)m
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Current distribution

TASEP limit

Corollary

When n =m and p = q = 1/2 we retrieve the same distribution as for the single species TASEP under
step initial condition, i.e.

Pn,n,1(t) =
1
n!

∮ n∏
j=1

dxj eEt

∏
16i<j6n(xi − xj)

2∏n
j=1(xj − 1)n

,

where the contours are still around the origin and E =
∑n
j=1(x

−1
j − 1).

This is made explicit by symmetrising and the simple change of variable zj = xj/(2 − xj).

From known analysis (Tracy-Widom) this probability converges to the GUE distribution as
n, t→∞.
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Current distribution

Step-Bernoulli condition

Let the distance among positive particles be independently distributed with parameter ρ ′,

Proposition

The total exchange probability Pn,m,ρ(t) with Bernoulli initial data is given by

Pn,m,ρ(t) =

∮ n∏
j=1

dzj
m∏
k=1

dwk eΛn,mt×

ρn
∏

16i<j6n

(zi − zj)
∏

16k<l6m

(wl −wk)

n∏
j=1

z
n−j
j

m∏
k=1

wk−1
k

n∏
j=1

(zj − 1)n+1−j(1 − ρ ′zj
) m∏
k=1

(wk − 1)k
n∏
j=1

m∏
k=1

(
qzj + pwk

) ,

with all contours around the origin.

Thew-contours can be readily evaluated if n >m but not when n <m
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Current distribution

Exchange
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Current distribution

Asymptotics

Non-linear fluctuating hydrodynamics (KPZ formalism) suggests a scaling limit of the form

n = j1t+αt
1/3 +βt1/2,

m = j2t+γt
1/3 + δt1/2,

where j1,2, α,β,γ,δ are known functions of ρ ′, and n <m.

Need to analyse

Pn,m,ρ(t) =

∮
. . .
∮

︸   ︷︷   ︸
n×m

factorised integrand

where n,m, t are large.

Trick: Convert to Fredholm determinant:

Pn,m,ρ(t) = det(I−AB)m×m = det(I−BA)L2(R),

where n,m, t all occur as parameters in BA.
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Current distribution

Asymptotics

Need to calculate integrals like

I2 =

∮
1

dn−1 zL(~z) det(I−K(~z))`2(N)

with

K(x,y;~z) =

∮
1

dζ
2πi
F(ζ,x)

n−1∏
j=1

1 + zjζ

1 + ζ

∮
C

dw
2πi
G(w,y)

n−1∏
j=1

1 +w

1 + zjw

1
w− ζ

,

Proposition

For any (x1,x2, . . . ,xk) ∈Nk, ρ ∈ (0, 1), t > 0 and n,m ∈N, the following equality holds:

∮
1

dn−1 zL(~z) det
[
K(xi,xj,~z)

]
16i,j6k

=

∮
1

dn−1 zL(~z) det

{
KW(xi,xj) −

[
n−1∑
l=1

l∏
k=1

(zk − 1)Al(xi)

]
B(xj)

}
16i,j6k

.
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Current distribution

Asymptotics

I2 = Iz det
(
I−K(~z = ~1)

)
`2(N)

+ lower order

In order to perform asymptotic analysis, we define the rescaled functions

ξ = x/λct
1/3, ζ = y/λct

1/3

such that
K(ξ,ζ) = (wc + c)

λct
1/3(ξ−ζ)λct

1/3K(λct
1/3ξ,λct1/3ζ),

The rescaled kernel is explicitly described as

K(ξ,ζ) = λct
1/3
∮

1

dz
2πi e

f(z,t,ξ)−f(wc,t,ξ)+g(z)×∮
0,−ρ′,−1

dw
2πi e

−f(w,t,ζ)+f(wc,t,ζ)+h(w) 1
w− z

,
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Current distribution

Sadlle point analysis

−1−c 0 1wc

Γ1

Γ2

Γ3

Σ1

Σ2

Σ3

Σ4

Γδvert

Figure: Saddle point contour ensuring uniform convergence
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Current distribution

Theorem

lim
t→∞det(1 −K)

`2(N/(λct1/3)) = lim
t→∞det(1 −K)L2(0,∞) = det(1 −A)L2(s,∞) = F2(s)

A(x,y) =

∫∞
0

Ai(x+ λ)Ai(y+ λ) dλ

and

s =
1

c2t1/3

(
(1 + ρ)n− (3 − ρ)m+ 1

2 (1 − ρ)(1 − (1 − ρ)2/4)t
)

Recall
I2 = Iz det

(
I−K(~z = ~1)

)
`2(N)

+ lower order

The integral Iz converges to a Gaussian

I2 →
(
1 − FG(s

′)
)
F2(s) as t→∞
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Current distribution

Final result

Theorem

In the appropriate scaling limit

lim
t→∞Pn,m,ρ(t) = FGUE(s)FGauss(s

′),

s(n,m; t) =:
1

c2t1/3

(
(1 + ρ)n− (3 − ρ)m+ 1

2 (1 − ρ)(1 − (1 − ρ)2/4)t
)

,

s′(n,m; t) =:
1

cgt1/2

(
− 2(2 − ρ)n+ 2ρm+ (2 − ρ)(1 − ρ)ρt

)
,
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Current distribution

Conclusion

(First) proof of Nonlinear Fluctuating Hydrodynamics for a two-component mixture

Using integrability

Mix of Gaussian and KPZ modes

Dynamic poles in integrand
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