Non-compact spin chains and integrable particle systems

Rouven Frassek

University of Modena and Reggio Emilia, Italy

GGI Workshop, 28. April 2022

Based on collaborations with C. Giardinà (Unimore) and J. Kurchan (Ens Paris)

Content

- 1. Review: Integrable simple exclusion models (ASEP/SSEP)
- 2. Quantum inverse scattering method
- 3. Non-compact spin chains as stochastic particle process
 - Non-compact XXX chain
 - Non-compact XXZ chain
 - Non-compact XXX chain with open boundaries
- 4. Construction of steady state
- 5. Outlook

Integrable simple exclusion models

Simple Exclusion Process

Most famous stochastic particle processes are: ASEP and SSEP

- Integrable
- Nearest-neighbor hopping model
- One particle per site (exclusion)
- Closed or open boundary conditions

Hopping rates: \pmb{r} and \pmb{l} and α , β , γ and δ

SSEP: *r* = *l* = 1

Some great reviews: [Derrida], [Schütz], [Blythe, Evans], [Crampé, Ragoucy, Vanicat], ...

Markov matrix of ASEP/SSEP

Exclusion process is generated by Markov matrix

$$M = \mathcal{B}_1 + \sum_{i=1}^{N-1} \omega_{i,i+1} + \mathcal{B}_N$$

Bulk:

$$\omega = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -l & r & 0 \\ 0 & l & -r & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Boundary:

$$\mathcal{B}_{1} = \begin{pmatrix} -\alpha & \gamma \\ \alpha & -\gamma \end{pmatrix}, \qquad \mathcal{B}_{N} = \begin{pmatrix} -\delta & \beta \\ \delta & -\beta \end{pmatrix}$$

Stochastic process:

Sum over rows vanishes

Off-diagonal entires have opposite sign of diagonal entries

Stochastic process can be mapped to integrable spin chain

- ASEP ↔ XXZ spin chain
- SSEP ↔ XXX spin chain

Hamiltonian is related to Markov generator

 $M = SHS^{-1}$

Particle process can be studied using integrability tools: Coordinate Bethe ansatz, algebraic Bethe ansatz, ...

Multi-species generalisations from higher rank spin chains

ASEP/SSEP produces traffic jams!

Lot of effort to avoid traffic jams...

Multi-particle generalisations

Put particles on top of each other

Naïve observation:

- Higher spin integrable model: Hamiltonian not stochastic
- Higher spin stochastic model: Hamiltonian not integrable
- → Non-compact integrable spin chains [RF, Giardinà, Kurchan '19]

SSEP within the quantum inverse scattering method

Starting point: Yang-Baxter equation

 $R_{12}(z_1 - z_2)R_{13}(z_1 - z_3)R_{23}(z_2 - z_3) = R_{23}(z_2 - z_3)R_{13}(z_1 - z_3)R_{12}(z_1 - z_2)$

- Fundamental relation underlying integrable systems
- Each R-matrix R_{ij} acts on the tensor product of three spaces V₁ ⊗ V₂ ⊗ V₃ with

 $R_{12}(z) = R(z) \otimes I, \dots$

• Fundamental R-matrix for SSEP / XXX Heisenberg spin chain

$$R(z) = z + P$$
 with $P = \sum_{a,b=1}^{2} e_{ab} \otimes e_{ba}$

where $(e_{ab})_{cd} = \delta_{ac}\delta_{bd}$, $z \in \mathbb{C}$ and P acts as a permutation

Graphical notation

• R-matrix:

$$R_{ij}(z_i - z_j) = i$$

• Multiplication of R-matrices:

$$R_{12}(z_1 - z_2)R_{13}(z_1 - z_3) = \begin{array}{c} 1 \\ 2 \\ 3 \end{array}$$

Yang-Baxter equation:

Spin chain monodromy

- Multiplication of 2 × 2 matrices in auxiliary space and tensor product in quantum space
- Satisfies RTT-relation

 $R(z_1-z_2)(\mathcal{M}(z_1)\otimes\mathbb{I})(\mathbb{I}\otimes\mathcal{M}(z_2))=(\mathbb{I}\otimes\mathcal{M}(z_2))(\mathcal{M}(z_1)\otimes\mathbb{I})R(z_1-z_2)$

Pictorially

Transfer matrix

$$T(z) = \operatorname{tr}_{a}\mathcal{M}(z) = \underbrace{\begin{array}{c|c} & \cdots & \\ & & & \\ & & & \\ & & & \\ & & 1 & 2 & N \end{array}}^{\cdots}$$

Markov generator / Hamiltonian

$$M_{SSEP}^{cl.} = \frac{\partial}{\partial z} \log T(z)|_{z=0} + const$$

Commuting family of operators (common eigenstates) $[T(z), T(z')] = 0, \qquad [T(z), M^{cl.}_{SSEP}] = 0$

How to describe process with reservoir?

Open spin chains

Transfer Matrix

Graphically

K-matrices

QISM for boundary models

Boundary Yang-Baxter equation

 $R_{12}(z_1-z_2)\hat{\mathcal{K}}_1(z_1)R_{12}(z_1+z_2)\hat{\mathcal{K}}_2(z_2) = \hat{\mathcal{K}}_2(z_2)R_{12}(z_1+z_2)\hat{\mathcal{K}}_1(z_1)R_{12}(z_1-z_2)$

And analogously for other boundary involving $\mathcal{K}(z)$

Most general K-matrices

$$\mathcal{K}(z) = \begin{pmatrix} p_1 + p_2(z+1) & p_3(z+1) \\ p_4(z+1) & p_1 - p_2(z+1) \end{pmatrix}, \qquad \hat{\mathcal{K}}(z) = \begin{pmatrix} q_1 + q_2 z & zq_3 \\ zq_4 & q_1 - q_2 z \end{pmatrix}$$

Adjust boundary parameters

 $\begin{array}{ll} q_1 = \mathbf{1}, \quad q_2 = \beta - \delta, \quad q_3 = 2\beta, \quad q_4 = 2\delta \\ p_1 = \mathbf{1}, \quad p_2 = \gamma - \alpha, \quad p_3 = 2\gamma, \quad p_4 = 2\alpha \end{array}$

Markov generator / Hamiltonian

$$M_{SSEP} = \frac{\partial}{\partial z} \log T(z)|_{z=0} + const.$$

Commuting transfer matrices

[T(z), T(z')] = 0, $[T(z), M_{SSEP}] = 0$

Expansion of T(z) generates commuting charges

 $[M_{SSEP}, Q_k] = 0$

Will become handy later...

Non-compact integrable spin chains

Quantum space of non-compact chains with hws $V = |m_1\rangle \otimes |m_2\rangle \otimes \ldots \otimes |m_N\rangle, \qquad m_i = 0, 1, 2, \ldots$ For spin s generators of $\mathfrak{sl}(2)$ act locally as $S_+|m\rangle = (m+2s)|m+1\rangle, \quad S_-|m\rangle = m|m-1\rangle \quad S_0|m\rangle = (m+s)|m\rangle$ Nearest-neighbor Hamiltonian density [Faddeev et al.]

 $\mathcal{H} = \mathbf{2}\left(\psi(\mathbb{S}) - \psi(\mathbf{2S})\right)$

where $\psi(x)$ is Digamma function and \mathbb{S} is related to the two-site Casimir operator via $C_{[2]} = \mathbb{S}(\mathbb{S} - 1)$

- First studied in high energy QCD [Lipatov;Faddeev,Korchemsky]
- Important subsector of the $\mathcal{N} = 4$ SYM spin chain! (s = $\frac{1}{2}$)
- Integrable models [Derkachov]

The operator ${\mathbb S}$

Consider tensor product decomposition

$$D_{s} \otimes D_{s} = \bigoplus_{j=0}^{\infty} D_{2s+j}$$

Operator S acts diagonally on the irreps on the rhs

 $\mathbb{S}|D_{2S+j}\rangle = (2S+j)|D_{2S+j}\rangle$

Eigenvalues of Hamiltonian density are harmonic numbers h_s

$$\mathcal{H}|D_{2S+j}\rangle = 2\sum_{k=1}^{j} \frac{1}{2S+k-1}|D_{2S+j}\rangle$$

- Can't tell if process is stochastic from eigenvalues
- A priory not known how *H* acts on the lhs...
 → Clebsch Gordan decomposition

Harmonic action as stochastic process

Nearest neighbor hopping model for $s = \frac{1}{2}$

[Beisert; Braun, Derkachov, Manashov; Lipatov; Faddeev, Korchemsky]

$$\mathcal{H}|m\rangle \otimes |m'\rangle = (h(m) + h(m')) |m\rangle \otimes |m'\rangle - \sum_{k=1}^{m} \frac{1}{k} |m-k\rangle \otimes |m'+k\rangle$$
$$- \sum_{k=1}^{m'} \frac{1}{k} |m+k\rangle \otimes |m'-k\rangle$$

with the harmonic numbers $h(m) = \sum_{k=1}^{m} \frac{1}{k}$.

Hamiltonian density \mathcal{H} is generator of Markov process!

[Giardinà, Kurchan, RF '19]

E.g.
$$m + m' = 2$$
:
 $\mathcal{H}_2 = \begin{pmatrix} \frac{3}{2} & -1 & -\frac{1}{2} \\ -1 & 2 & -1 \\ -\frac{1}{2} & -1 & \frac{3}{2} \end{pmatrix}$

Harmonic action as stochastic process

Hamiltonian defined on N sites as

$$H = \sum_{i=1}^{N-1} \mathcal{H}_{i,i+1}$$

Symmetric stochastic process without exclusion!

 \rightarrow *k* particles jump with the rate $\varphi(k) = \frac{1}{k}$

Hopping rates generalise to arbitrary spin s > O [Martins,Melo '09]

$$\varphi_{s}(m,k) = \frac{1}{k} \frac{\Gamma(m+1)\Gamma(m-k+2s)}{\Gamma(m-k+1)\Gamma(m+2s)}$$

Again we find a symmetric particle process!

 \hookrightarrow Rates depend on number of particles at departing site

Up to now only reinterpreting results of others...

Add a particle current (non-equilibrium models):

- q-analog/XXZ-analog → asymmetric (drift) process
- Rational case with boundary reservoirs

Non-compact XXZ spin chain as stochastic particle process

Non-compact $U_q(\mathfrak{sl}_2)$ invariant XXZ chain

Commutation relations $\mathcal{U}_q(\mathfrak{sl}_2)$

$$[S_+, S_-] = -[2S_0], \qquad [S_0, S_{\pm}] = \pm S_{\pm}$$

with q-number $[x] = \frac{q^{x}-q^{-x}}{q-q^{-1}}$. Generators of $\mathcal{U}_{q}(\mathfrak{sl}_{2})$ act locally as

 $S_+|m\rangle = [m+2s]|m+1\rangle$, $S_-|m\rangle = [m]|m-1\rangle$ $S_0|m\rangle = (m+s)|m\rangle$

Hamiltonian density of XXZ chain with |q| < 1 [Bytsko]

$$\mathcal{H} = \frac{\psi_q(\mathbb{S}) - \psi_q(2s)}{-q^{4s}\log(q)}$$

with q-Digamma function ψ_q and \mathbb{S} is related to the co-product of the Casimir operator via $\Delta(C) = [\mathbb{S}][\mathbb{S} - 1]$.

Some definitions and special functions...

Co-product

 $\Delta(S_{\scriptscriptstyle O}) = S_{\scriptscriptstyle O} \otimes 1 + 1 \otimes S_{\scriptscriptstyle O} \,, \qquad \Delta(S_{\scriptscriptstyle \pm}) = S_{\scriptscriptstyle \pm} \otimes q^{-S_{\scriptscriptstyle O}} + q^{S_{\scriptscriptstyle O}} \otimes S_{\scriptscriptstyle \pm}$

q-Gamma function

$$\Gamma_q(x) = q^{\frac{1}{2}x(1-x)}(q^{-1}-q)^{1-x}\frac{(q^2;q^2)_{\infty}}{(q^{2x};q^2)_{\infty}}$$

with $(a;q)_n = \prod_{k=0}^{n-1}(1-aq^k)$

q-Digamma function

 $\psi_q(\mathbf{x}) = \partial_{\mathbf{x}} \log \Gamma_q(\mathbf{x})$

Harmonic action for XXZ chain

Use Clebsch-Gordan decomposition to obtain nearest neighbor hopping action on two sites [RF '19]

$$\mathcal{H}|m\rangle \otimes |m'\rangle = (\alpha_{+}(m) + \alpha_{-}(m')) |m\rangle \otimes |m'\rangle - \sum_{k=1}^{m} \rho(m,k)|m-k\rangle \otimes |m'+k\rangle \\ - \sum_{k=1}^{m'} \rho(m',k)|m+k\rangle \otimes |m'-k\rangle$$

with diagonal entries

$$\alpha_{\pm}(m) = \frac{\psi_q(m+2s) - \psi_q(2s) \pm m \log(q)}{-2q^{4s} \log(q)}$$

and off-diagonal entries

$$\rho(m,k) = \frac{q^{2ks}}{q^{4s} \left(1 - q^{2k}\right)} \frac{(q^2;q^2)_m (q^{4s};q^2)_{m-k}}{(q^2;q^2)_{m-k} (q^{4s};q^2)_m}$$

As in ASEP, Hamiltonian density $\mathcal H$ is not a Markov matrix! Similarity transformation yields Markov matrix

$$\mathcal{M} = \begin{pmatrix} \alpha_{+}(n) + \alpha_{-}(0) & -\beta_{-}(1,1) & -\beta_{-}(2,2) & \cdots & -\beta_{-}(n,n) \\ -\beta_{+}(n,1) & \alpha_{+}(n-1) + \alpha_{-}(1) & -\beta_{-}(2,1) & \cdots & -\beta_{-}(n,n-1) \\ -\beta_{+}(n,2) & -\beta_{+}(n-1,1) & \alpha_{+}(n-2) + \alpha_{-}(2) & \cdots & -\beta_{-}(n,n-2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\beta_{+}(n,n) & -\beta_{+}(n-1,n-1) & -\beta_{+}(n-2,n-2) & \cdots & \alpha_{+}(0) + \alpha_{-}(n) \end{pmatrix}$$

with

$$\beta_{\pm}(\boldsymbol{m},\boldsymbol{k}) = \frac{\mu^{\frac{1}{2}\boldsymbol{k}(1\pm1)}}{\mu(1-\gamma^{\boldsymbol{k}})} \frac{(\gamma;\gamma)_{\boldsymbol{m}}(\mu;\gamma)_{\boldsymbol{m}-\boldsymbol{k}}}{(\gamma;\gamma)_{\boldsymbol{m}-\boldsymbol{k}}(\mu;\gamma)_{\boldsymbol{m}}}$$

where γ = $\mathbf{q^2}$ and μ = $\mathbf{q^{4s}}$

Coincides with rates of q-Hahn process introduced by [Povolotsky;Barraquand-Corwin;Sasamoto-Wadati] without reference to XXZ chain!

Non-compact spin chains and stochastic particle processes

Harmonic processes

Non-compact XXX chain with boundaries

Stochastic process with boundary reservoirs

Add stochastic boundary conditions to rational process

$$H = \mathcal{B}_1 + \sum_{i=1}^{N-1} \mathcal{H}_{i,i+1} + \mathcal{B}_N.$$

Guess boundary terms for O < β_i < 1 and S = $\frac{1}{2}$ [RF, Giardinà, Kurchan '19]

$$\mathcal{B}_i|m_i\rangle = \left(h(m_i) + \sum_{k=1}^{\infty} \frac{\beta_i^k}{k}\right)|m_i\rangle - \sum_{k=1}^{m_i} \frac{1}{k}|m_i - k\rangle - \sum_{k=1}^{\infty} \frac{\beta_i^k}{k}|m_i + k\rangle$$

Introduces reservoirs at left and right end of the chain:

Is this process integrable?

Construct the fundamental transfer matrix

 $T(x) = \operatorname{tr} \mathcal{K}(x) \mathcal{M}(x) \hat{\mathcal{K}}(x) \hat{\mathcal{M}}(x)$

with the monodromies

 $\mathcal{M}(x) = \mathcal{R}_1(x) \cdots \mathcal{R}_N(x), \qquad \hat{\mathcal{M}}(x) = \mathcal{R}_N(x) \cdots \mathcal{R}_1(x)$

where

$$\mathcal{R}(x) = (-1)^{\mathbb{S}} \frac{\Gamma(2s-x)\Gamma(\mathbb{S}+x)}{\Gamma(2s+x)\Gamma(\mathbb{S}-x)}$$

Hamiltonian is logarithmic derivative of T(x) at permutation point

$$H = \partial_x \log T(x)|_{x=0}$$

But: Closed expression of K-matrix unknown!

Quantum Inverse Scattering Method

Derive the universal K-matrix from BYBE [RF, Giardinà, Kurchan '19]

 $\mathcal{L}(x-y)\hat{\mathcal{K}}(x)\mathcal{L}(x+y)\hat{K}(y) = \hat{K}(y)\mathcal{L}(x+y)\hat{\mathcal{K}}(x)\mathcal{L}(x-y)$

Lax matrix and K-matrix in fundamental representation

 $\mathcal{L}(x) = \begin{pmatrix} x + \frac{1}{2} + S_0 & -S_- \\ S_+ & x + \frac{1}{2} - S_0 \end{pmatrix}, \quad \hat{K}(x) = \begin{pmatrix} q_1 + xq_2 & xq_3 \\ xq_4 & q_1 - xq_2 \end{pmatrix}$ Solve for $\hat{\mathcal{K}}(x)$...

Universal solution to BYBE

1. Introduce useful parametrisation of boundary variables

$$q_1 = \delta$$
, $q_2 = \frac{1}{2}(1 + 2\alpha\beta)\gamma$, $q_3 = -(1 + \alpha\beta)\beta\gamma$, $q_4 = \alpha\gamma$

2. Make the ansatz

$$\hat{\mathcal{K}}(\mathbf{x}) = \mathbf{e}^{\beta \mathsf{S}_{+}} \, \mathbf{e}^{-\alpha \mathsf{S}_{-}} \, \hat{\mathcal{K}}_{\mathsf{o}}(\mathsf{S}_{\mathsf{o}}; \mathbf{x}) \, \mathbf{e}^{\alpha \mathsf{S}_{-}} \, \mathbf{e}^{-\beta \mathsf{S}_{+}}$$

Yields difference equation for $\hat{\mathcal{K}}_o(S_o;x)$ which can be solved

$$\hat{\mathcal{K}}_{O}(S_{O};x) = \frac{\Gamma(\frac{1}{2} + s + 2\frac{\delta}{\gamma} - x)}{\Gamma(\frac{1}{2} + s + 2\frac{\delta}{\gamma} + x)} \frac{\Gamma(\frac{1}{2} + S_{O} + 2\frac{\delta}{\gamma} + x)}{\Gamma(\frac{1}{2} + S_{O} + 2\frac{\delta}{\gamma} - x)}$$

Other boundary obtained via

$$\mathcal{K}(x) = \frac{1}{\hat{\mathcal{K}}(x+1)}$$

Relation to stochastic boundary

To derive stochastic boundary conditions for Hamiltonian fix

$$2\frac{\delta}{\gamma} = S - \frac{1}{2}, \qquad \alpha = \frac{1}{1 - \beta}$$

and compute the logarithmic derivative of the transfer matrix

$$\frac{\partial}{\partial x} \ln T(x)\Big|_{x=0} = \frac{\operatorname{tr}_a \mathcal{K}_a'(0)}{\operatorname{tr}_a \mathcal{K}_a(0)} + 2 \frac{\operatorname{tr}_a \mathcal{K}_a(0) \mathcal{H}_{a,1}}{\operatorname{tr}_a \mathcal{K}_a(0)} + \frac{\hat{\mathcal{K}}_N'(0)}{\hat{\mathcal{K}}_N(0)} + 2 \sum_{k=1}^{N-1} \frac{\partial}{\partial x} \ln \mathcal{R}_{k,k+1}(x)\Big|_{x=0},$$

Full Hamiltonian

$$H = \mathcal{B}_1 + \sum_{i=1}^{N-1} \mathcal{H}_{i,i+1} + \mathcal{B}_N$$

with algebraic expression for boundaries

$$\begin{aligned} \mathcal{B}_{i} &= e^{-S_{-}^{[i]}} e^{\rho_{i} S_{+}^{[i]}} \Big(\psi(S_{0}^{[i]} + s) - \psi(2s) \Big) e^{-\rho_{i} S_{+}^{[i]}} e^{S_{-}^{[i]}} \end{aligned}$$
where $\rho_{i} &= \frac{\beta_{i}}{1 - \beta_{i}}.$

for *i* ∈ {1, *N*}.

A longer computation shows that we obtain the spin s version of desired boundary terms!

$$\begin{aligned} \mathcal{B}_{i}|m_{i}\rangle &= \left(h^{(s)}(m_{i}) + \sum_{k=1}^{\infty}\frac{\beta_{i}^{k}}{k}\right)|m_{i}\rangle - \sum_{k=1}^{m_{i}}\frac{1}{k}\frac{\Gamma(m_{i}+1)\Gamma(m_{i}-k+2s)}{\Gamma(m_{i}-k+1)\Gamma(m_{i}+2s)}|m_{i}-k\rangle \\ &- \sum_{k=1}^{\infty}\frac{\beta_{i}^{k}}{k}|m_{i}+k\rangle, \end{aligned}$$

- Process is integrable!
- Derived stochastic boundaries for arbitrary spin s

Steady state of harmonic process with boundaries

SSEP solved in 1993 using matrix product ansatz [Derrida et al.] Representation of steady state $H|\mu\rangle = 0$

$$|\mu\rangle = \frac{1}{\langle W|(E+D)^{N}|V\rangle} \begin{pmatrix} \langle W|E\cdots EEE|V\rangle \\ \langle W|E\cdots ED|V\rangle \\ \langle W|E\cdots EDE|V\rangle \\ \vdots \\ \langle W|D\cdots DDD|V\rangle \end{pmatrix}$$

DEHP algebra

- Bulk relation: *DE ED* = *D* + *E*
- Boundary relations:

 $\langle W | (\alpha E - \gamma D) = \langle W |, \qquad (\beta D - \delta E) | V \rangle = | V \rangle$

MPA difficult as there are not only two operators E and D

Steady state

Follow alternative route applied for SSEP in [RF '19; RF, Giardina, Kurchan '20], inspired by [Alcaraz,Droz,Henkel,Rittenberg], [Melo,Ribeiro,Martins], [Essler,de Gier], [Crampé,Ragoucy,Vanicat]

1. SSEP generator can be brought to a block triangular form

$$H_{\Delta} = G^{-1}HG = \begin{pmatrix} -\alpha - \gamma & \Delta \\ 0 & 0 \end{pmatrix}_{1} + \sum_{i=1}^{N-1} \omega_{i,i+1} + \begin{pmatrix} -\beta - \delta & 0 \\ 0 & 0 \end{pmatrix}_{N}$$

with $\Delta = \frac{(\alpha + \gamma)(\alpha \beta - \gamma \delta)}{\beta + \delta}$ and **G** only depends on S_a^{tot} .

- **2.** H_{Δ} is isospectral to diagonal Hamiltonian $H^{\circ} = H_{\Delta=0}$ with $\Delta = 0$
- 3. Determine non-local transformation W_{Δ} s.t.

$$H^\circ = W_\Delta^{-1} H_\Delta W_\Delta$$

4. Obtain closed-form of steady state from pseudovacuum

 $|\Psi\rangle = GW_{\Delta}|\Omega\rangle$

Same logic works for non-compact boundary model [Frassek, Giardina '21] 31

Transformations for the non-compact model

Local transformation that block triangularises H:

$$G = \prod_{i=1}^{N} e^{-S_{-}^{[i]}} e^{\rho_{N}S_{+}^{[i]}}$$

Non-local transformation that block diagonalises H_{Δ} :

$$W_{\Delta} = \sum_{k=0}^{\infty} \Delta^{k} \frac{Q_{+}^{k}}{k!} \frac{\Gamma(2(S_{0}^{\text{tot}} + s))}{\Gamma(k + 2(S_{0}^{\text{tot}} + s))}$$

with

$$Q_{+} = S S_{+}^{\text{tot}} + \sum_{i=1}^{N} S_{+}^{[i]} \left(S_{0}^{[i]} + 2 \sum_{j=i+1}^{N} S_{0}^{[j]} \right)$$

 Q_+ is obtained from the transfer matrix at leading order in spectral parameter

Evaluation of the steady state

Steady state

$$\langle m|\mu\rangle = \langle m|GW_{\Delta}|\Omega\rangle = \sum_{n\geq m} F(n) \Big[\prod_{i=1}^{N} \frac{(-1)^{n_i-m_i}}{n_i!} \binom{n_i}{m_i} \frac{\Gamma(2s+n_i)}{\Gamma(2s)}\Big]$$

with factorial moments

$$F(n) = \sum_{k=0}^{|n|} \rho_N^{|n|-k} (\rho_1 - \rho_N)^k f_n(k)$$

where

$$f_n(k) = \sum_{|w|=k} \prod_{i=1}^{N} {n_i \choose w_i} \prod_{j=1}^{w_i} \frac{2s(N+1-i) - j + \sum_{k=i}^{N} w_k}{2s(N+1) - j + \sum_{k=i}^{N} w_k}$$

N = 1 and s = 1/2

$$\langle m_1 | \mu \rangle = \frac{(\beta_L - 1)(\beta_R - 1)}{\beta_L - \beta_R} \left(\gamma_{\beta_L} (m_1 + 1) - \gamma_{\beta_R} (m_1 + 1) \right).$$

with $\beta_L = \beta_1$ and $\beta_R = \beta_N$ and

$$\gamma_{\beta}(n) = \sum_{k=n}^{\infty} \frac{\beta^k}{k}$$

$$N = 2$$
 and $s = 1/2$

$$\langle m_1, m_2 | \mu \rangle = 2 \frac{(\beta_L - 1)^2 (\beta_R - 1)^2}{(\beta_L - \beta_R)^2} \left(\phi_{\beta_L}(m_1, m_2) - \kappa(m_1, m_2) + \phi_{\beta_R}(m_2, m_1) \right)$$

where

$$\phi_{\beta}(m_1, m_2) = \frac{1}{2} \gamma_{\beta}^2 (1+m_1) - \sum_{k=m_1+1}^{m_2} \frac{1}{k} \gamma_{\beta}(m_1+k+1) + \sum_{k=m_2+1}^{m_1} \frac{1}{k} \gamma_{\beta}(m_1+k+1)$$

and

$$\kappa(\boldsymbol{m}_1, \boldsymbol{m}_2) = \gamma_{\beta_L}(1 + \boldsymbol{m}_1)\gamma_{\beta_R}(1 + \boldsymbol{m}_2).$$

Eigenstates and mapping to equilibrium

 Other eigenstates of H can be obtained from standard Bethe ansatz for H°:

 $|\Psi\rangle = GW_{\Delta}|\Psi^{\circ}\rangle$

• Process can be mapped to equilibrium H^{eq} with $\rho = \rho_1 = \rho_N$ such that

$$H = G_{\rho_N} W_{\Delta} \underbrace{G_{\rho}^{-1} H^{eq} G_{\rho}}_{H^{\circ}} W_{\Delta}^{-1} G_{\rho_N}^{-1}$$

Observed macroscopically in [Tailleur, Kurchan, Lecomte '07]

Conclusion & Outlook

Conclusion & Outlook

Conclusion

- Interesting connections between high energy physics, quantum groups, statistical mechanics and probability theory
- QISM is powerful tool to study integrable stochastic processes

Work in progress

- Boundary K-matrices for non-compact XXZ
- W_{Δ} for ASEP? Interesting works by [Nichols,Rittenberg,de Gier]
- Role of Baxter Q-operator and relation to [Lazarescu, Pasquier]
- Generalisation to $\mathfrak{su}_q(n, 1)$ and relation to stochastic R-matrix

[Kuniba,Mangazeev,Maruyama,Okado]

Implications for AdS/CFT? [Olivucci,Vieira '21]

Thank you!

<u>References</u>

arXiv:1904.01048 "Non-compact quantum spin chains as integrable stochastic particle processes" with C. Giardinà and J. Kurchan

arXiv:1904.02191 "The non-compact XXZ spin chain as stochastic particle process"

arXiv:1910.13163 "Eigenstates of triangularisable open XXX spin chains and closed-form solutions for the steady state of the open SSEP"

arXiv:2004.12796 "Duality and hidden equilibrium in transport models" with C. Giardinà and J. Kurchan

arXiv:2107.01720 "Exact solution of an integrable non-equilibrium particle systems" with C. Giardinà

arXiv:2205.xxxxx "An integrable heat conduction model" with C. Franceschini and C. Giardinà