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If Ly = . . . , dj = pj et bj:e_’f/2,
by bn-1 an

this system can be put in the form

dLy
— = LyBy — Byl
dt NBN NLEN,

for some matrix B.

= Eigenvalues of Ly independent of time
= Forall V:R - R, £ M V(\)=:Tr(V(Ly)) is constant.
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N
(v,py 1 —Prigr.dp
dTy "' = Z exp{—Tr(V(Ln)} i|:|1 e drdp;.

Potential V and pressure P > 0.
Taking the initial condition with respect to this measure, Ly

becomes a random matrix independent of time.
Properties of its spectrum ? Convergence of

1N
o= =S 6y ?
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polynomial growth at co, using large deviations

= Here : V = x2/2 4 continuous bounded.
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(Xn) random variables with values in (X, d) satisfies a large
deviation principle with rate function J : X — R if

For all A € B(X),

E

—infJ < liminf
IE\J |mN|nN

1
log P(Xy € A) < lim Sup logP(Xy € A) < —inf J.
N A

"roughly",
P(Xy ~ x) ~ e NI,



KEY PROPERTY

Suppose J has compact level sets : J71(] — o0, a]).



KEY PROPERTY

Suppose J has compact level sets : J~1(] — o0, a]).
If J has a unique minimizer xp, then (Xj) converges almost surely
towards xg.



KEY PROPERTY

Suppose J has compact level sets : J~1(] — o0, a]).
If J has a unique minimizer xp, then (Xj) converges almost surely
towards xg.

Strategy : Show that (jiy) satisfies a large deviation principle, and
show the uniqueness of minimizer.
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OTHER KEY PROPERTY

If (Xn)n satisfies an LDP with rate function J and if Yy has
distribution

1 _
dPy, = e e N gy (x),

(with f € CD),
Then (Yy) satisfies an LDP with rate function

J(x) = J(x) + f(x) —inf {J(x) + F(x)}.
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A matrix Ay of size N x N is in the S-ensemble with potential V
if the joint law of its (unordered) eigenvalues is given by

1 N
dPy(M,- M) = =y [T i-AlPe 2 VO L dA.
Iy 1<i<jn
Widely studied ensemble

Garcia-Zelada (2018) : For 3 of order 4, under this measure,
(iin)n satisfies an LDP with nice, explicit rate function.



TRIDIAGONAL REPRESENTATION

THEOREM (DuMITRIU, EDELMAN - 2002)

Let N > 1, and B > 0. The matrix Tﬁ, (independent entries up to
symmetry) given by
Ta(i, i) ~ N(0,1)

and
1
TG i+1)=Ta(i+1,i) ~ X 1<i<N-—1,
2

is in the B ensemble with potential V = %x .



MATRIX REPRESENTATION OF [3-ENSEMBLE

N@O.1)  FHxw-us
%X(N—l)ﬁ N(0,1) %X(N—z)ﬁ

—~~
o -
—_
~

%X% Nl kx;a
ﬁXﬁ N(Oa 1)



KEY REMARK

Toda, potential V = X2—2 pressure P > 0 :

N(0,1) %XzP %X2P
%sz N(0,1) \%sz

%sz N(0,1) %sz
%sz %sz N(0,1)
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Case V = %x2. N = kM + r Consider

M
LM

LM
0

LY = L,(jP/M) Link between the LDP for Toda and for 3
ensemble.

General theory of large deviations : We deduce a link between
those LDP for V = %X2 + bounded continuous
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CONCLUSION

Show uniqueness of minimizer u%&’:) of the Toda rate function,

with V.P Vv.P
:“Sroéa) = 8P (Pﬂ(ﬂ-éns).) ’

[ fanli = oe ([ ranl?))

i.e for f € Cp



Thank you !
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