LARGE DEVIATIONS FOR GIBBS ENSEMBLES OF THE CLASSICAL TODA CHAIN WITH ALICE GUIONNET

Ronan Memin

April 28, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

TABLE OF CONTENTS

1 INTRODUCTION

2 Large deviations, β - ensembles

3 LINK WITH TODA, CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Toda model: N particles on \mathbb{R} , with positions $(t \mapsto q_j(t))_{1 \leq j \leq N}$ and speeds $(t \mapsto p_j(t))_{1 \leq j \leq N}$, such that

$$rac{d}{dt}q_j=p_j ext{ and } rac{d}{dt}p_j=e^{-r_{j-1}}-e^{-r_j},$$

where $r_j = q_{j+1} - q_j$ (streches) and periodic condition $q_{j+N} = q_j$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Toda model: N particles on \mathbb{R} , with positions $(t \mapsto q_j(t))_{1 \leq j \leq N}$ and speeds $(t \mapsto p_j(t))_{1 \leq j \leq N}$, such that

$$rac{d}{dt}q_j=p_j ext{ and } rac{d}{dt}p_j=e^{-r_{j-1}}-e^{-r_j},$$

where $r_j = q_{j+1} - q_j$ (streches) and periodic condition $q_{j+N} = q_j$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The sum $\sum_{j=1}^{N} r_j$ is constant to zero

INTRODUCTION

If
$$L_N = \begin{pmatrix} a_1 & b_1 & b_N \\ b_1 & a_2 & b_2 & \\ & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots \\ b_N & & b_{N-1} & a_N \end{pmatrix}$$
, $a_j = p_j$ et $b_j = e^{-r_j/2}$,

this system can be put in the form

$$\frac{\mathrm{d}L_N}{\mathrm{d}t}=L_NB_N-B_NL_N,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for some matrix B.

INTRODUCTION

If
$$L_N = \begin{pmatrix} a_1 & b_1 & b_N \\ b_1 & a_2 & b_2 & \\ & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots \\ b_N & & b_{N-1} & a_N \end{pmatrix}$$
, $a_j = p_j$ et $b_j = e^{-r_j/2}$,

this system can be put in the form

$$\frac{\mathrm{d}L_N}{\mathrm{d}t}=L_NB_N-B_NL_N,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for some matrix B.

 \Rightarrow Eigenvalues of L_N independent of time

INTRODUCTION

If
$$L_N = \begin{pmatrix} a_1 & b_1 & b_N \\ b_1 & a_2 & b_2 & \\ & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots \\ b_N & & b_{N-1} & a_N \end{pmatrix}$$
, $a_j = p_j$ et $b_j = e^{-r_j/2}$,

this system can be put in the form

$$\frac{\mathrm{d}L_N}{\mathrm{d}t}=L_NB_N-B_NL_N,$$

for some matrix B.

⇒ Eigenvalues of L_N independent of time ⇒ For all $V : \mathbb{R} \to \mathbb{R}$, $\frac{1}{N} \sum_{i=1}^{N} V(\lambda_i) =: \text{Tr}(V(L_N))$ is constant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathrm{d}\mathbb{T}_{N}^{(V,P)} = \frac{1}{Z} \exp\{-\mathrm{Tr}(V(L_N))\} \prod_{i=1}^{N} e^{-Pr_i} \mathrm{d}r_i \mathrm{d}p_i.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\mathrm{d}\mathbb{T}_{N}^{(V,P)} = \frac{1}{Z} \exp\{-\mathrm{Tr}(V(L_N))\} \prod_{i=1}^{N} e^{-Pr_i} \mathrm{d}r_i \mathrm{d}p_i.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Potential V and pressure P > 0.

$$\mathrm{d}\mathbb{T}_{N}^{(V,P)} = \frac{1}{Z} \exp\{-\mathrm{Tr}(V(L_N))\} \prod_{i=1}^{N} e^{-Pr_i} \mathrm{d}r_i \mathrm{d}p_i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Potential V and pressure P > 0.

Taking the initial condition with respect to this measure, L_N becomes a random matrix independent of time.

$$\mathrm{d}\mathbb{T}_{N}^{(V,P)} = \frac{1}{Z} \exp\{-\mathrm{Tr}(V(L_N))\} \prod_{i=1}^{N} e^{-Pr_i} \mathrm{d}r_i \mathrm{d}p_i.$$

Potential V and pressure P > 0.

Taking the initial condition with respect to this measure, L_N becomes a random matrix independent of time. Properties of its spectrum ? Convergence of

$$\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} ?$$

- Spohn, 2019: Convergence (and computation) for polynomial V
- Grava, Mazzuca, 2021: Proof for polynomial potential in the context of the Ablowitz-Ladik lattice

3 Guionnet, M., 2021: Convergence for potential with polynomial growth at ∞ , using large deviations

- Spohn, 2019: Convergence (and computation) for polynomial V
- Grava, Mazzuca, 2021: Proof for polynomial potential in the context of the Ablowitz-Ladik lattice

3 Guionnet, M., 2021: Convergence for potential with polynomial growth at ∞ , using large deviations

$$\Rightarrow$$
 Here : $V = x^2/2 + \text{continuous bounded}$.

TABLE OF CONTENTS

1 INTRODUCTION

2 Large deviations, β - ensembles

3 LINK WITH TODA, CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 (X_N) random variables with values in (\mathcal{X}, d) satisfies a *large deviation principle* with rate function $J : \mathcal{X} \to \mathbb{R}_+$ if

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 (X_N) random variables with values in (\mathcal{X}, d) satisfies a *large deviation principle* with rate function $J : \mathcal{X} \to \mathbb{R}_+$ if

For all
$$A \in \mathcal{B}(\mathcal{X})$$
,
 $-\inf_{A} J \leq \liminf_{N} \frac{1}{N} \log \mathbb{P}(X_{N} \in A) \leq \limsup_{N} \frac{1}{N} \log \mathbb{P}(X_{N} \in A) \leq -\inf_{\overline{A}} J.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 (X_N) random variables with values in (\mathcal{X}, d) satisfies a *large deviation principle* with rate function $J : \mathcal{X} \to \mathbb{R}_+$ if

For all
$$A \in \mathcal{B}(\mathcal{X})$$
,
 $-\inf_{A} J \leq \liminf_{N} \frac{1}{N} \log \mathbb{P}(X_{N} \in A) \leq \limsup_{N} \frac{1}{N} \log \mathbb{P}(X_{N} \in A) \leq -\inf_{\overline{A}} J.$
"roughly",
 $\mathbb{P}(X_{N} \simeq x) \simeq e^{-NJ(x)}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Suppose J has compact level sets : $J^{-1}(] - \infty, a]$).

Suppose J has compact level sets : $J^{-1}(] - \infty, a]$). If J has a unique minimizer x_0 , then (X_N) converges almost surely towards x_0 .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Suppose J has compact level sets : $J^{-1}(] - \infty, a]$). If J has a unique minimizer x_0 , then (X_N) converges almost surely towards x_0 .

Strategy : Show that $(\hat{\mu}_N)$ satisfies a large deviation principle, and show the uniqueness of minimizer.

If $(X_N)_N$ satisfies an LDP with rate function J and if Y_N has distribution

$$d\mathbb{P}_{Y_N}=\frac{1}{Z}e^{-Nf(x)}d\mathbb{P}_{X_N}(x),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(with $f \in \mathcal{C}_b^0$),

If $(X_N)_N$ satisfies an LDP with rate function J and if Y_N has distribution

$$d\mathbb{P}_{Y_N}=\frac{1}{Z}e^{-Nf(x)}d\mathbb{P}_{X_N}(x),$$

(with $f \in C_b^0$), Then (Y_N) satisfies an LDP with rate function $\tilde{J}(x) = J(x) + f(x) - \inf_x \{J(x) + f(x)\}.$ A matrix A_N of size $N \times N$ is in the β -ensemble with potential V if the joint law of its (unordered) eigenvalues is given by

$$d\mathbb{P}_{N}(\lambda_{1},\ldots,\lambda_{N})=\frac{1}{Z_{N}^{V,\beta}}\prod_{1\leqslant i< j\leqslant N}|\lambda_{i}-\lambda_{j}|^{\beta}e^{-\sum_{i=1}^{N}V(\lambda_{i})}d\lambda_{1}\ldots d\lambda_{N}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A matrix A_N of size $N \times N$ is in the β -ensemble with potential V if the joint law of its (unordered) eigenvalues is given by

$$d\mathbb{P}_{N}(\lambda_{1},\ldots,\lambda_{N})=\frac{1}{Z_{N}^{V,\beta}}\prod_{1\leqslant i< j\leqslant N}|\lambda_{i}-\lambda_{j}|^{\beta}e^{-\sum_{i=1}^{N}V(\lambda_{i})}d\lambda_{1}\ldots d\lambda_{N}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Widely studied ensemble

A matrix A_N of size $N \times N$ is in the β -ensemble with potential V if the joint law of its (unordered) eigenvalues is given by

$$d\mathbb{P}_{N}(\lambda_{1},\ldots,\lambda_{N})=\frac{1}{Z_{N}^{V,\beta}}\prod_{1\leqslant i< j\leqslant N}|\lambda_{i}-\lambda_{j}|^{\beta}e^{-\sum_{i=1}^{N}V(\lambda_{i})}d\lambda_{1}\ldots d\lambda_{N}.$$

Widely studied ensemble

Garcia-Zelada (2018) : For β of order $\frac{1}{N}$, under this measure, $(\hat{\mu}_N)_N$ satisfies an LDP with nice, explicit rate function.

THEOREM (DUMITRIU, EDELMAN - 2002)

Let $N \ge 1$, and $\beta > 0$. The matrix T_N^{β} (independent entries up to symmetry) given by

$$T_N^{\beta}(i,i) \sim N(0,1)$$

and

$$T_N^{\beta}(i,i+1) = T_N(i+1,i) \sim rac{1}{\sqrt{2}} \chi_{(N-i)\beta}, \ 1 \leqslant i \leqslant N-1,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is in the β ensemble with potential $V = \frac{1}{2}x^2$.

Matrix representation of β -ensemble

$$\begin{pmatrix} \mathcal{N}(0,1) & \frac{1}{\sqrt{2}}\chi_{(N-1)\beta} \\ \frac{1}{\sqrt{2}}\chi_{(N-1)\beta} & \mathcal{N}(0,1) & \frac{1}{\sqrt{2}}\chi_{(N-2)\beta} \\ & \ddots & \ddots & \ddots \\ & & \frac{1}{\sqrt{2}}\chi_{2\beta} & \mathcal{N}(0,1) & \frac{1}{\sqrt{2}}\chi_{\beta} \\ & & & \frac{1}{\sqrt{2}}\chi_{\beta} & \mathcal{N}(0,1) \end{pmatrix}$$

・ロト・4回ト・ミト・ミト・ミージへ()

Toda, potential $V = \frac{x^2}{2}$, pressure P > 0 :

$$L_{N}(P) = \begin{pmatrix} \mathcal{N}(0,1) & \frac{1}{\sqrt{2}}\chi_{2P} & & \frac{1}{\sqrt{2}}\chi_{2P} \\ \frac{1}{\sqrt{2}}\chi_{2P} & \mathcal{N}(0,1) & \frac{1}{\sqrt{2}}\chi_{2P} & & \\ & \ddots & \ddots & \ddots & \\ & & \frac{1}{\sqrt{2}}\chi_{2P} & \mathcal{N}(0,1) & \frac{1}{\sqrt{2}}\chi_{2P} \\ \frac{1}{\sqrt{2}}\chi_{2P} & & & \frac{1}{\sqrt{2}}\chi_{2P} & \mathcal{N}(0,1) \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

TABLE OF CONTENTS

1 INTRODUCTION

2 Large deviations, β - ensembles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3 LINK WITH TODA, CONCLUSION

LINK WITH TODA

Case
$$V = \frac{1}{2}x^2$$
. $N = kM + r$ Consider
$$\begin{pmatrix} L_k^{(M)} & & \\ & \ddots & \\ & & L_k^{(1)} & \\ & & & 0 \end{pmatrix}$$

,

$$L_k^{(j)} = L_k(jP/M)$$

Case
$$V = \frac{1}{2}x^2$$
. $N = kM + r$ Consider
$$\begin{pmatrix} L_k^{(M)} & & \\ & \ddots & \\ & & L_k^{(1)} & \\ & & & 0 \end{pmatrix}$$

 $L_k^{(j)} = L_k(jP/M)$ Link between the LDP for Toda and for β ensemble.

・ロト・(型ト・(型ト・(型ト))

Case
$$V = \frac{1}{2}x^2$$
. $N = kM + r$ Consider

$$\begin{pmatrix} L_k^{(M)} & & & \\ & \ddots & & \\ & & & L_k^{(1)} & \\ & & & & 0 \end{pmatrix},$$

 $L_k^{(j)} = L_k(jP/M)$ Link between the LDP for Toda and for β ensemble.

General theory of large deviations : We deduce a link between those LDP for $V = \frac{1}{2}x^2$ + bounded continuous

- ロ ト - 4 目 ト - 4 目 ト - 1 - 9 へ ()

Show uniqueness of minimizer $\mu_{Toda}^{(V,P)}$ of the Toda rate function, with

$$\mu_{\mathsf{Toda}}^{(\mathcal{V},\mathcal{P})} = \partial_{\mathcal{P}} \left(\mathcal{P} \mu_{\beta-\mathsf{ens.}}^{(\mathcal{V},\mathcal{P})}
ight),$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Show uniqueness of minimizer $\mu_{Toda}^{(V,P)}$ of the Toda rate function, with

$$\mu_{\mathsf{Toda}}^{(\mathbf{V},\mathbf{P})} = \partial_{\mathbf{P}} \left(\mathbf{P} \mu_{\beta-\mathsf{ens.}}^{(\mathbf{V},\mathbf{P})} \right),$$

i.e for $f \in \mathcal{C}_b$

$$\int_{\mathbb{R}} f \mathsf{d} \mu_{\mathsf{Toda}}^{(\mathsf{V},\mathsf{P})} = \partial_{\mathsf{P}} \left(\int_{\mathbb{R}} f \mathsf{d} \mu_{\beta\mathsf{-ens.}}^{(\mathsf{V},\mathsf{P})} \right).$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Thank you !