Time-time covariance for last passage percolation in half space

arXiv:2204.06782

Alessandra Occelli

joint work with P. L. Ferrari

ENS de Lyon, UMPA

Randomness, Integrability and Universality
Galileo Galilei Institute
Arcetri, 29.04.2022

Last passage percolation (LPP)

- O, E point in \mathbb{Z}^{2}
- $\omega_{i, j}$ independent r.v.'s, $i, j \in \mathbb{Z}$
- Directed path π composed of \rightarrow and \uparrow s.t. $\pi(0)=O$ and $\pi(n)=E$
- Last passage time: $L_{O \rightarrow E}=\max _{\pi: O \rightarrow E} \sum_{1 \leq k \leq n} \omega_{\pi(k)}$

Half-space last passage percolation

- LPP in the half-quadrant of \mathbb{Z}^{2}
$\omega_{i, j} \sim \begin{cases}\operatorname{Exp}(1), & i \geq j+1 \\ \operatorname{Exp}(\alpha), & i=j\end{cases}$
- Equivalent to LPP on the full quadrant with weights symmetric w.r.t. the diagonal $\omega_{i, j}=\omega_{j, i}$

Hammersley LPP in half-space
Baik-Rains '01
Sasamoto-Imamura '04

Symmetrized LPP with geometric weights Baik-Rains '01
and exponential weights
Baik-Barraquand-Corwin-Suidan '18

Point-to-point LPP in half space

Let $L^{p p}$ be the point-to-point LPP with weights

$$
\begin{cases}\omega_{0,0}^{p p}=0, & \\ \omega_{i, j}^{p,} \sim \operatorname{Exp}(\rho), & \text { for } i \in \mathbb{N}, \\ \omega_{i, 0}^{p p}=0, & \text { for } i \in \mathbb{N}, \\ \omega_{i, j}^{p p} \sim \operatorname{Exp}(1), & \text { for }(i, j) \in \mathcal{B}\end{cases}
$$

Stationary LPP in half space

Let $L^{s t, \rho}$ be the stationary LPP with weights

$$
\begin{cases}\omega_{0,0}^{\rho}=0, & \\ \omega_{i, i}^{\rho} \sim \operatorname{Exp}(\rho), & \text { for } i \in \mathbb{N}, \\ \omega_{i, 0}^{\rho} \sim \operatorname{Exp}(1-\rho), & \text { for } i \in \mathbb{N}, \\ \omega_{i, j}^{\rho} \sim \operatorname{Exp}(1), & \text { for }(i, j) \in \mathcal{B} .\end{cases}
$$

Stationary increments

$$
\begin{aligned}
& L_{m, n}^{s t, \rho}-L_{m, n-1}^{s t, \rho} \sim \operatorname{Exp}(\rho) \\
& L_{m, n}^{s t, \rho}-L_{m-1, n}^{s t, \rho} \sim \operatorname{Exp}(1-\rho)
\end{aligned}
$$

Scaling limits of half space LPP

Let $\rho=\frac{1}{2}+\alpha=\frac{1}{2}+\delta 2^{-4 / 3} N^{-1 / 3}$ and consider the end-points

$$
\begin{aligned}
& Q_{1}=\left(N+M_{1}(2 N)^{2 / 3}, N-M_{1}(2 N)^{2 / 3}\right), \quad M_{1}=(1-\tau)^{2 / 3} \tilde{M}_{1} \\
& Q_{\tau}=\left(\tau N+M_{\tau}(2 N)^{2 / 3}, \tau N-M_{\tau}(2 N)^{2 / 3}\right), \quad M_{\tau}=(1-\tau)^{2 / 3} \tilde{M}_{\tau}
\end{aligned}
$$

We know that (Baik-Barraquand-Corwin-Suidan '18)

$$
\begin{align*}
\mathcal{L}_{N}^{p p}\left(M_{1}, 1\right) & :=\frac{L^{p p}\left(Q_{1}\right)-4 N}{2^{4 / 3} N^{1 / 3}} \stackrel{N \rightarrow \infty}{\longrightarrow} \mathcal{A}_{\delta}^{p p}\left(M_{1}\right)-M_{1}^{2}, \\
\mathcal{L}_{N}^{p p}\left(M_{\tau}, \tau\right) & :=\frac{L^{p p}\left(Q_{\tau}\right)-4 \tau N}{2^{4 / 3} N^{1 / 3}} \xrightarrow{N \rightarrow \infty} \tau^{1 / 3} \mathcal{A}_{\delta \tau^{1 / 3}}^{p p}\left(M_{\tau} / \tau^{2 / 3}\right)-M_{\tau}^{2} / \tau \tag{N,N}
\end{align*}
$$

and (Betea-Ferrari-O. '22)

$$
\begin{aligned}
& \mathcal{L}_{N}^{s t, \rho}\left(M_{1}, 1\right):=\frac{L^{s t, \rho}\left(Q_{1}\right)-4 N}{2^{4 / 3} N^{1 / 3}} \stackrel{N \rightarrow \infty}{\longrightarrow} \mathcal{A}_{\delta}^{s t, h s}\left(M_{1}\right), \\
& \mathcal{L}_{N}^{s t, \rho}\left(M_{\tau}, \tau\right):=\frac{L^{s t, \rho}\left(Q_{\tau}\right)-4 \tau N}{2^{4 / 3} N^{1 / 3}} \xrightarrow{N \rightarrow \infty} \tau^{1 / 3} \mathcal{A}_{\delta \tau^{1 / 3}}^{s t, h s}\left(M_{\tau}\right) .
\end{aligned}
$$

Time-time covariance

We study the covariance of the process at two times

$$
\begin{aligned}
\operatorname{Cov}\left(\mathcal{L}_{N}^{*}\left(M_{\tau}, \tau\right), \mathcal{L}_{N}^{*}\left(M_{1}, 1\right)\right)= & \frac{1}{2} \operatorname{Var}\left(\mathcal{L}_{N}^{*}\left(M_{1}, 1\right)\right)+\frac{1}{2} \operatorname{Var}\left(\mathcal{L}_{N}^{*}\left(M_{\tau}, \tau\right)\right) \\
& -\frac{1}{2} \operatorname{Var}\left(\mathcal{L}_{N}^{*}\left(M_{\tau}, \tau\right)-\mathcal{L}_{N}^{*}\left(M_{1}, 1\right)\right)
\end{aligned}
$$

Previous results in full space

- Two-time and multi-time distribution for geometric LPP
- Experimental results on turbulent liquid crystals and numerical simulation of Eden model

```
Takeuchi-Sano '12, De Nardis-Le Doussal-Takeuchi '17
```

- Conjecture on the behavior of the covariance of the limit processes for $\tau \rightarrow 1$ (and $\tau \rightarrow 0$) based on heuristic arguments for point-to-point, deterministic and stationary random-line-to-point LPPs with points on the diagonal

Time-time covariance in full space

Experiments on turbulent liquid crystals by Takeuchi-Sano '12

$$
C_{t}\left(t, t_{0}\right)=\operatorname{Cov}\left(h(x, t), h\left(x, t_{0}\right)\right)
$$

Time-time covariance in full space

Universal behavior for macroscopically close times

Let $\mathcal{L}_{N}^{*}\left(M_{\tau}, \tau\right)$ be the rescaled LPP starting from a point, a deterministic or a random collection of points

Theorem (Ferrari-O. '18)
As $\tau \rightarrow 1$,

$$
\lim _{N \rightarrow \infty} \operatorname{Var}\left(\mathcal{L}_{N}^{*}\left(M_{\tau}, \tau\right)-\mathcal{L}_{N}^{*}\left(M_{1}, 1\right)\right)=\operatorname{Var}\left(\xi^{s t a t}\left((1-\tau)^{-2 / 3}\left(M_{1}-M_{\tau}\right)\right)\right)+\mathcal{O}(1-\tau)^{1-\delta}
$$

for any $\delta>0$.
$\xi^{s t a t}(w)$ is distributed according to the Baik-Rains distribution with parameter w

Time-time covariance in half space

Exact formula for stationary LPP with end-points on the diagonal

Theorem (Ferrari-O. '22)
Let $\rho=\frac{1}{2}+\delta 2^{-4 / 3} N^{-1 / 3}$ and $M_{1}=M_{\tau}=0$. Then,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \operatorname{Cov}\left(\mathcal{L}_{N}^{s t, \rho}(0,1), \mathcal{L}_{N}^{s t, \rho}(0, \tau)\right)= & \frac{1}{2} \operatorname{Var}\left(\mathcal{A}_{\delta}^{s t, h s}(0)\right)+\frac{\tau^{2 / 3}}{2} \operatorname{Var}\left(\mathcal{A}_{\delta \tau^{1 / 3}}^{s t, h s}(0)\right) \\
& -\frac{(1-\tau)^{2 / 3}}{2} \operatorname{Var}\left(\mathcal{A}_{\delta(1-\tau)^{s t / 3}}^{s t h s}(0)\right)
\end{aligned}
$$

To prove it, we derive the identity

$$
\max _{v \geq 0}\left\{\sqrt{2} B(v)+2 v \delta+\mathcal{A}_{\delta}^{p p}(v)-v^{2}\right\} \stackrel{(d)}{=} \mathcal{A}_{\delta}^{s t, h s}(0)
$$

Time-time covariance in half space

Universal behavior for point-to-point LPP as $\tau \rightarrow 1$

Theorem (Ferrari-O. '22)
Let $\rho=\frac{1}{2}+\delta 2^{-4 / 3} N^{-1 / 3}$ and $M_{\tau}=0$. Then, for any $0<\theta<1 / 3$, there exists a constant C such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left|\operatorname{Var}\left(\mathcal{L}_{N}^{p p}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)\right)-\operatorname{Var}\left(\mathcal{L}_{N}^{s t, \rho}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{s t, \rho}(0, \tau)\right)\right| \leq C(1-\tau)^{1-\theta} \\
& \text { as } \tau \rightarrow 1
\end{aligned}
$$

As a corollary, when $M_{1}=M_{\tau}=0$

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \operatorname{Cov}\left(\mathcal{L}_{N}^{p p}(0,1), \mathcal{L}_{N}^{p p}(0, \tau)\right)= & \frac{1}{2} \operatorname{Var}\left(\mathcal{A}_{\delta}^{p p}(0)\right)+\frac{\tau^{2 / 3}}{2} \operatorname{Var}\left(\mathcal{A}_{\delta \tau^{1 / 3}}^{p p}(0)\right) \\
& -\frac{(1-\tau)^{2 / 3}}{2} \operatorname{Var}\left(\mathcal{A}_{\delta(1-\tau)^{1 / 3}}^{s t, h s}(0)\right)+\mathcal{O}\left((1-\tau)^{1-\theta}\right)
\end{aligned}
$$

Comparison inequalities

Upper bound on point-to-point LPP

Proposition

Let $\rho_{+} \geq \rho$. Consider the stationary LPP with parameter ρ_{+}and the point-to-point model with parameter ρ. Then, for all $p \preceq q$,

$$
L^{p p}(q)-L^{p p}(p) \leq L^{\rho_{+}}(q)-L^{\rho_{+}}(p)
$$

Lower bound on point-to-point LPP
Proposition
Let $\rho_{-}=\frac{1}{2}+(\delta-\kappa) 2^{-4 / 3} N^{-1 / 3}$ with $\kappa>0$. Let $p \preceq q$ and define the crossing event

$$
\Omega_{\text {cross }}=\left\{\pi^{\rho-}(q) \cap \pi^{p p}(p) \cap \mathcal{B} \neq \emptyset\right\} .
$$

Under the event $\Omega_{\text {cross }}$,

$$
L^{\rho_{-}}(q)-L^{\rho_{-}}(p) \leq L^{p p}(q)-L^{p p}(p) .
$$

Bound on the crossing event: There exist $C, c>0$ such that, for all N,

$$
\mathbb{P}\left(\Omega_{\text {cross }}^{C}\right) \leq C e^{-c(\kappa-\delta)^{3}} .
$$

Localization of the geodesics

Consider the end-point $Q_{1}=\left(N+M_{1}(2 N)^{2 / 3}, N-M_{1}(2 N)^{2 / 3}\right)$ and let

$$
I(u)=\left(\tau N+u(2 N)^{2 / 3}, \tau N-u(2 N)^{2 / 3}\right), \quad \tau \in(0,1)
$$

Define \tilde{L} as $L^{s t, \rho}$ but with $\omega_{i, j}=0$ in the red region
Theorem (Ferrari-O. '22)
Let $\mathcal{L}_{M}=\left\{(i, j) \mid i-j=M(2 N)^{2 / 3}\right\}$. For all $M \geq M_{1}+9$, with $M=\mathcal{O}\left(N^{1 / 3} / \ln (N)\right)$, uniformly for all N large enough,

$$
\mathbb{P}\left(\pi^{p p}(Q) \cap \mathcal{L}_{M}=\emptyset\right) \geq 1-C e^{-c\left(M-M_{1}\right)^{3}}
$$

This follows from
Proposition (Ferrari-O. '22)
There exist constants $C, c>0$ such that

$$
\begin{aligned}
& \mathbb{P}\left(\pi^{p p}\left(Q_{1}\right) \prec I(M)\right) \geq \mathbb{P}\left(\pi^{\rho}\left(Q_{1}\right) \prec I(M)\right) \\
& \geq \mathbb{P}\left(\tilde{\pi}\left(Q_{1}\right) \prec I(M)\right) \geq 1-C e^{-c\left(M-M_{1}\right)^{3} /(1-\tau)^{2}}
\end{aligned}
$$

uniformly for all N large enough.

Proof: first order correction of the covariance

Theorem (Ferrari-O. '22)
Let $\rho=\frac{1}{2}+\delta 2^{-4 / 3} N^{-1 / 3}$ and $M_{\tau}=0$. Then, for any $0<\theta<1 / 3$, there exists a constant C such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left|\operatorname{Var}\left(\mathcal{L}_{N}^{p p}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)\right)-\operatorname{Var}\left(\mathcal{L}_{N}^{s t, \rho}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{s t, \rho}(0, \tau)\right)\right| \leq C(1-\tau)^{1-\theta} \\
& \text { as } \tau \rightarrow 1
\end{aligned}
$$

- Observe that, as $\tau \rightarrow 1$,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \mathbb{E}\left(\left|\mathcal{L}_{N}^{s t, \rho}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{s t, \rho}(0, \tau)\right|\right) \\
\left.\lim _{N \rightarrow \infty} \operatorname{Var}\left(\mathcal{L}_{N}^{s t, \rho}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{s t, \rho}((1-\tau))^{1 / 3}\right)\right) & =\mathcal{O}\left((1-\tau)^{2 / 3}\right)
\end{aligned}
$$

Let $I(u)=\left(\tau N+u(2 N)^{2 / 3}, \tau N-u(2 N)^{2 / 3}\right)$ and define

$$
\left.X_{N}=\mathcal{L}_{N}^{p p}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)=\max _{u \geq 0}\left[\mathcal{L}_{N}^{p p}(u, \tau)+\mathcal{L}_{N}^{\rho}\left(u, \tau ; M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)\right)\right]
$$

where

$$
\mathcal{L}_{N}^{\rho}\left(u, \tau ; M_{1}, 1\right)=\frac{L^{p p ; \rho}\left(I(u), Q_{1}\right)-4(1-\tau) N}{2^{4 / 3} N^{1 / 3}} .
$$

Define $Y_{N}^{\rho}=\mathcal{L}_{N}^{s t, \rho}\left(M_{1}, 1\right)-\mathcal{L}_{N}^{s t, \rho}(0, \tau)$ analogously

Proof: first order correction of the covariance

We need to estimate

$$
\operatorname{Var}\left(X_{N}\right)-\operatorname{Var}\left(Y_{N}^{\rho}\right)
$$

© LOCALIZATION

Define the random variables

$$
\begin{aligned}
X_{N, M} & =\max _{0 \leq u \leq M}\left[\mathcal{L}_{N}^{p p}(u, \tau)+\mathcal{L}_{N}^{\rho}\left(u, \tau ; M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)\right], \\
X_{N, M} & =\max _{u>M}\left[\mathcal{L}_{N}^{p p}(u, \tau)+\mathcal{L}_{N}^{\rho}\left(u, \tau ; M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)\right]
\end{aligned}
$$

and similarly $Y_{N, M}^{\rho}, Y_{N, M c}^{\rho}$ for $\mathcal{L}_{N}^{s t, \rho}$. Then, $X_{N}=\max \left\{X_{N, M}, X_{N, M^{C}}\right\}$.

Proposition

For all $\tilde{M}>0$, set $M=(1-\tau)^{2 / 3} \tilde{M}$. Then, uniformly in N,

$$
\begin{aligned}
& \operatorname{Var}\left(X_{N}\right)=\operatorname{Var}\left(X_{N, M}\right)+\mathcal{O}\left(e^{-c \tilde{M}}\right) \\
& \operatorname{Var}\left(Y_{N}^{\rho}\right)=\operatorname{Var}\left(Y_{N, M}^{\rho}\right)+\mathcal{O}\left(e^{-c \tilde{M}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{E}\left(X_{N}\right)=\mathbb{E}\left(X_{N, M}\right)+\mathcal{O}\left(e^{-c \tilde{M}}\right) \\
& \mathbb{E}\left(Y_{N}^{\rho}\right)=\mathbb{E}\left(Y_{N, M}^{\rho}\right)+\mathcal{O}\left(e^{-c \tilde{M}}\right)
\end{aligned}
$$

Proof: first order correction of the covariance

We need to estimate

$$
\operatorname{Var}\left(X_{N}\right)-\operatorname{Var}\left(Y_{N}^{\rho}\right)
$$

© LOCALIZATION

Define the random variables

$$
\begin{aligned}
X_{N, M} & =\max _{0 \leq u \leq M}\left[\mathcal{L}_{N}^{p p}(u, \tau)+\mathcal{L}_{N}^{\rho}\left(u, \tau ; M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)\right], \\
X_{N, M^{C}} & =\max _{u>M}\left[\mathcal{L}_{N}^{p p}(u, \tau)+\mathcal{L}_{N}^{\rho}\left(u, \tau ; M_{1}, 1\right)-\mathcal{L}_{N}^{p p}(0, \tau)\right]
\end{aligned}
$$

and similarly $Y_{N, M}^{\rho}, Y_{N, M^{c}}^{\rho}$ for $\mathcal{L}_{N}^{s t, \rho}$. Then, $X_{N}=\max \left\{X_{N, M}, X_{N, M^{C}}\right\}$.

Key ingredients:

- Bound on the localization of the geodesic

$$
\mathbb{P}\left(X_{N, M}<X_{N, M^{C}}\right)=\mathbb{P}\left(\pi^{p P}\left(Q_{1}\right) \nprec I(M)\right) \leq C e^{-c M^{3} /(1-\tau)^{2}}=C e^{-c \tilde{M}^{3}} .
$$

- $X_{N, M} \geq \mathcal{L}_{N}^{p p}(I(0))+\mathcal{L}_{N}^{\rho}\left(I(0), Q_{1}\right)-\mathcal{L}_{N}^{p p}\left(I\left(M_{\tau}\right)\right)$, where all the random variables have (at least) exponential upper and lower tails

Proof: first order correction of the covariance

(2 COMPARISON WITH THE STATIONARY CASE
Let $\rho_{+}=\rho=\frac{1}{2}+\delta 2^{-4 / 3} N^{-1 / 3}$ and $\rho_{-}=\frac{1}{2}+(\delta-\kappa) 2^{-4 / 3} N^{-1 / 3}$.

- For all $0 \leq u_{1}<u_{2} \leq M$,

$$
L^{\rho}-\left(I\left(u_{2}\right)\right)-L^{\rho-}\left(I\left(u_{1}\right)\right) \leq L^{p p}\left(I\left(u_{2}\right)\right)-L^{p P}\left(I\left(u_{1}\right)\right) \leq L^{\rho}\left(I\left(u_{2}\right)\right)-L^{\rho}\left(I\left(u_{1}\right)\right),
$$

on the event

$$
\Omega_{\text {cross }}=\left\{\pi^{\rho-}\left(I\left(u_{2}\right)\right) \cap \pi^{p p}\left(I\left(u_{1}\right)\right) \cap \mathcal{B} \neq \emptyset\right\}
$$

- We decompose

$$
X_{N, M}=X_{N, M} \mathbb{1}_{\Omega_{\text {cross }}}+X_{N, M} \mathbb{1}_{\Omega_{\text {cross }}^{c}}
$$

(and similarly for $Y_{N, M}^{\rho}$)

- We have

$$
Y_{N, M}^{\rho-} \mathbb{1}_{\Omega_{\text {cross }}} \leq X_{N, M} \mathbb{1}_{\Omega_{\text {cross }}} \leq Y_{N, M}^{\rho} \mathbb{1}_{\Omega_{\text {cross }}}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left(Y_{N, M}^{\rho}>s\right)-\mathbb{P}\left(\Omega_{\text {cross }}^{C}\right) \leq \mathbb{P}\left(X_{N, M}>s\right) \leq \mathbb{P}\left(Y_{N, M}^{\rho-}>s\right)+\mathbb{P}\left(\Omega_{\text {cross }}^{C}\right) \\
& \mathbb{P}\left(Y_{N, M}^{\rho-} \leq s\right)-\mathbb{P}\left(\Omega_{\text {cross }}^{C}\right) \leq \mathbb{P}\left(X_{N, M} \leq s\right) \leq \mathbb{P}\left(Y_{N, M}^{\rho} \leq s\right)+\mathbb{P}\left(\Omega_{\text {cross }}^{C}\right)
\end{aligned}
$$

Proof: first order correction of the covariance

(3) COUPLING BETWEEN STATIONARY LPPs

- We have

$$
\mathcal{L}_{N}^{s t, \rho_{-}}(u, \tau)-\mathcal{L}_{N}^{s t, \rho_{-}}(0, \tau)=\frac{1}{2^{4 / 3} N^{1 / 3}} \sum_{i=1}^{u(2 N)^{2 / 3}}\left(\tilde{X}_{i}-\tilde{Y}_{i}\right)
$$

where

$$
\tilde{X}_{i} \sim \operatorname{Exp}\left(1-\rho_{-}\right), \quad \tilde{Y}_{i} \sim \operatorname{Exp}\left(\rho_{-}\right)
$$

are independent random variables, and

$$
\mathcal{L}_{N}^{s t, \rho}(u, \tau)-\mathcal{L}_{N}^{s t, \rho}(0, \tau)=\frac{1}{2^{4 / 3} N^{1 / 3}} \sum_{i=1}^{u(2 N)^{2 / 3}}\left(X_{i}-Y_{i}\right)
$$

where

$$
X_{i} \sim \operatorname{Exp}(1-\rho), \quad Y_{i} \sim \operatorname{Exp}(\rho)
$$

are independent random variables

Proof: first order correction of the covariance

3 COUPLING BETWEEN STATIONARY LPPs

- With the coupling $\omega_{i, i}^{\rho_{-}} \geq \omega_{i, i}^{\rho}, \omega_{i, 0}^{\rho_{-}} \leq \omega_{i, 0}^{\rho}$

$$
\tilde{X}_{i}-\tilde{Y}_{i} \leq X_{i}-Y_{i}
$$

- Thus,

$$
\begin{equation*}
\mathcal{L}_{N}^{s t, \rho_{-}}(u, \tau)-\mathcal{L}_{N}^{s t, \rho_{-}}(0, \tau) \stackrel{(d)}{=} \mathcal{L}_{N}^{s t, \rho}(u, \tau)-\mathcal{L}_{N}^{s t, \rho}(0, \tau)-R(u) \tag{*}
\end{equation*}
$$

with

$$
R(u)=\frac{1}{2^{4 / 3} N^{1 / 3}} \sum_{i=1}^{u(2 N)^{2 / 3}}\left(P_{i}+Q_{i}\right)
$$

where P_{i} and Q_{i} are independent and have explicit laws and $\mathbb{E}[R(u)]=2 u \kappa+\mathcal{O}\left(u \kappa^{3} N^{-2 / 3}\right)$

- The terms on the r.h.s of $(*)$ are not independent! But $R(u)$ goes to 0 as $N \rightarrow \infty$

First order correction of the covariance

© CONCLUSION

- Putting together the localization result and the previous estimates and taking $\kappa=\tilde{M}=1 /(1-\tau)^{\theta / 2}$, with $0<\theta<1 / 3$,

$$
\left|\operatorname{Var}\left(X_{N}\right)-\operatorname{Var}\left(Y_{N}^{\rho}\right)\right| \leq C(1-\tau)^{2 / 3-\theta} \mathbb{E}\left(\left|Y_{N}^{\rho}\right|\right)
$$

as $\tau \rightarrow 1$

- Observing that $\mathbb{E}\left(\left|Y_{N}^{\rho}\right|\right)=\mathcal{O}\left((1-\tau)^{1 / 3}\right)$ and taking $N \rightarrow \infty$, the proof is completed

Thank you

for your attention!

