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Last passage percolation (LPP)

» O, E point in Z2
> w;; independent r.v.’s, i,j € Z

» Directed path m composed of — and 1 s.t. w(0) = O and 7(n) = E

P Last passage time: L = max w.
passag OmE= max_ > W
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Half-space last passage percolation

» LPP in the half-quadrant of Z2

Exp(1), i>j+1
o
M\ Bple), =

» Equivalent to LPP on the full quadrant
with weights symmetric w.r.t. the diagonal
Wi,j = Wi

Hammersley LPP in half-space
Baik—Rains ‘01
Sasamoto—Imamura ‘04

Symmetrized LPP with geometric weights
Baik—Rains '01

and exponential weights

Baik—Barraquand—Corwin—Suidan ‘18

(0,0)e—e



Point-to-point LPP in half space

Let LPP be the point-to-point LPP with weights

wgf’o =0,

W ~ Exp(p), fori€N,
wl‘.j’a =0, for i € N,

i .

wih ~ Exp(1),  for (i,j) € B.




Stationary LPP in half space

Let LS5 be the stationary LPP with weights

wh o =0,

w?, ~ Exp(p), for i € N,
50~Exp(1—p) for i € N,
wp; ~ Exp(1), for (i,j) € B.
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Scaling limits of half space LPP
Let p = % +a= % +62=4/3N~1/3 and consider the end-points

Q1= (N + M (2N)?3 N — My (2N)?/3), My = (1 —7)?/3N

Q- = (TN + M (2N)?/3 7N — M, (2N)*/3), M, = (1—1)*/*M

We know that (Baik—Barraquand—Corwin—Suidan '18)

LPP(Q1) — 4N N—oo

LR (M, 1) 1= = ot AP (My) — M2,
LPP(Q-) — 47N n

and (Betea—Ferrari-O. '22)

L6P(Qy) — 4N
4(?1)1 . N*>OO Ast hS(Ml)
24/3NY/ (TN, TN).

L (Qr) — 47N Nooo /3 gstshs
24/3\1/3 =5 Y A /3(M )-

ﬁsl\;’p(M]_, 1) :

Ly (Mr,7) =

(N,N).




Time-time covariance

We study the covariance of the process at two times
1 1
Cov (Ly(Mr,T), Ly(My, 1)) =5 Var(Ly(My, 1)) + 5 Var(Ly(M-, 7))

1
- EVar(ETV(MT,T) — Ly(My, 1))

Previous results in full space

» Two-time and multi-time distribution for geometric LPP

Johansson '19, Johansson—-Rahman '21

» Experimental results on turbulent liquid crystals and numerical simulation of Eden
model
Takeuchi-Sano '12, De Nardis—Le Doussal-Takeuchi '17

> Conjecture on the behavior of the covariance of the limit processes for 7 — 1 (and
7 — 0) based on heuristic arguments for point-to-point, deterministic and
stationary random-line-to-point LPPs with points on the diagonal

Ferrari-Spohn '16



Time-time covariance in full space

Experiments on turbulent liquid crystals by Takeuchi-Sano ‘12

Ci(t, to) = Cov(h(x, t), h(x, tp))
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Time-time covariance in full space

Universal behavior for macroscopically close times

Let L} (M-, T) be the rescaled LPP starting from a point, a deterministic or a random
collection of points

Theorem (Ferrari-O. ‘18)
AsT —1,

im Var(£3, (M-, )= L3,(My, 1)) = Var (g“af(u —7)"23(My — MT))> +O(1—7)1"°

for any § > 0.

&5t (w) is distributed according to the Baik—Rains distribution with parameter w



Time-time covariance in half space

Exact formula for stationary LPP with end-points on the diagonal

Theorem (Ferrari-0. '22)

Let p=1+627%3N=/3 and My = M, = 0. Then,

1 2/3
Jim Cov(£37(0,1), £5(0,7)) =7 Var(A5""(0)) + "= Var(A515,(0))

(1— 7)2/3

- Var(.Af;(’lhiT)l 13(0)).

To prove it, we derive the identity

max {V2B(v) +2vs + AP (v) - v} @ sth5(0).



Time-time covariance in half space

Universal behavior for point-to-point LPP as 7 — 1

Theorem (Ferrari-0. '22)
Let p = % +62=4/3N=1/3 and M, = 0. Then, for any 0 < 6 < 1/3, there exists a
constant C such that

lim |Var(CAP(My, 1) — £5P(0,7)) — Var(Ly? (M1, 1) — £3°(0,7))| < C(1 — )=

N— oo

asT — 1.

As a corollary, when My = M. =0

1 2/3
Jim_ Cov(£3P(0,1), £57(0,7)) =3 Var(AZ(0)) + " Var(A%, ,(0))

1— 2/3 st hs B
- O Ve (0) + 01— 1))



Comparison inequalities

Upper bound on point-to-point LPP

Proposition
Let p4+ > p. Consider the stationary LPP with parameter p4 and the point-to-point
model with parameter p. Then, for all p <X q,

LPP(q) — LPP(p) < L+ (q) — L7 (p).

Lower bound on point-to-point LPP

Proposition
Let p_ = % + (6 — ,'<)2*4/3N*1/3 with k > 0. Let p =< q and define the crossing event

Qcross = {7Tp7 (q) n pr(p) nB # @}
Under the event Qcross,

LP=(q) — L?= (p) < LPP(q) — LPP(p).

Bound on the crossing event: There exist C, c > 0 such that, for all N,

P(QC,.) < Ce—<(n—9)",

Cross



Localization of the geodesics

Consider the end-point @ = (N + My(2N)2/3, N — M;(2N)?/3) and let
I(u) = (TN + u(2N)?3 7N — u(2N)?/3), 7€ (0,1)
Define L as L5 but with w;i,j = 0 in the red region

Theorem (Ferrari-0. '22)

Let Ly = {(i,j)li —j = M(2N)?/3}. For all M > My + 9, with
M = O(NY/3/1n(N)), uniformly for all N large enough,

P(nPP(Q) N Ly = 0) > 1 — Ce—(M—M)*

This follows from

Proposition (Ferrari-0. '22)

There exist constants C,c > 0 such that
P(rPP(Q1) < I(M)) > P(n”(Q1) < I(M))
> P(#(Q1) < I(M)) > 1 — Ce—<(M=M)*/(1=7)

uniformly for all N large enough.



Proof: first order correction of the covariance

Theorem (Ferrari-O. '22)

Let p = % +6274/3N1/3 and M, = 0. Then, for any 0 < 0 < 1/3, there exists a
constant C such that

Jim Var(LEP(My, 1) — LBP(0, 7)) — Var(L3P (M, 1) — £3p7(0,7))| < C(1 — 7)1~°
asT—1

» Observe that, as 7 — 1,
lim E(ICy*(My,1) - £5°(0,7)]) = O((1 — 7)*/?)
N— oo

Jim Var(L3y* (M1, 1) — L37(0,7)) = O((1 — 7)?/3)

Let /(u) = (TN + u(2N)?/3, 7N — u(2N)?/3) and define
Xy = [lﬁlp(l\/l;l7 1) — L;’Vp(O,T) = Tﬁé‘[ﬁﬁlp(”’ )+ E’K,(u,‘r; My, 1) — £7\Ip(0,7'))]7
where
LPPie(I(u), Q) —4(1 = 1)N
24/3N1/3 )
Define Y§ = L3"?(My,1) — £3;°(0,7) analogously

Ly (u,m; My, 1) =



Proof: first order correction of the covariance

We need to estimate
Var(Xy) — Var(Yy)

© LOCALIZATION
Define the random variables
Xn.m = Og;gM[z:’;,"(u, ) + L4 (u, 7 My, 1) — LR (0, 7)],

Xy mc = lrl'n>a’\>/<’[£ﬁ,p(u,7') + L4 (u, 7 My, 1) — LRP(0,7)]

and similarly Y§) ,,. Yi yc for Li’;’p. Then, Xy = max{Xn,m, Xy pc}-

Proposition
For all M > 0, set M = (1- 7)2/31\71. Then, uniformly in N,
Var(Xy) = Var(Xy,m) + O(e_CM)
Var(Yf) = Var(YL ,,) + O(e=M)
and -
E(Xn) = E(Xy,m) + O(e™M)
E(YR) = E(Y{ ) + O™ )



Proof: first order correction of the covariance

We need to estimate
Var(Xy) — Var(Yy)

© LOCALIZATION
Define the random variables
XNJV’ = Oglaé(M[‘C’ﬁlp(uvT) + LZ(U, 75 M17 1) - E’I:/p(ov T)]v

Xy mc = rr;aﬁ[ﬁﬁlp(u,'r) + L:",i/(u7 T M, 1) — ﬁﬁ;’(o, 7))

and similarly Yf ,,, Yy ye for ESIJ”J. Then, Xy = max{Xy,m, Xy pc}-

Key ingredients:

» Bound on the localization of the geodesic
P(Xu,m < Xy, pc) = P(nPP(Q1) A I(M)) < Ce™M*/A=7)" = ce=e,

> Xy,m > L7 (1(0)) 4+ £4(1(0), Qu) — LY (1(M7)), where all the random variables
have (at least) exponential upper and lower tails



Proof: first order correction of the covariance
® COMPARISON WITH THE STATIONARY CASE

Let pr =p = % +62743N"1/3 and p_ = % + (6 — r)2743N-L/3,
> Forall 0 <u <up <M,

LP=(I(u2)) — LP= (I(wn)) < LPP(I(u2)) — LPP(I(u1)) < LP(I(u2)) — LP(1(u1)),

on the event

Qcross = {mP= (I(u2)) N7PP(I(u1)) N B £ 0}

» We decompose
Xnm = Xn,mLages, + Xn,mloc

cross

(and similarly for Yy ,,)
»> We have
Y,C]AHQCIOSS S XNJMHQCIOSS S YIG’MHQCIOSS
and
P(Y > 8) = P(QG0ss) < P(X,m > 8) S P(Y[ 7y > ) + P(Q0ss)
P(Y i < 8) = P(Q50ss) < P(Xnm < 5) <PV, < 5) +B(Q

Cross Cross



Proof: first order correction of the covariance

©® COUPLING BETWEEN STATIONARY LPPs

> We have

2/3
st st.p_ _ 1 A
Ly (u,m) =Ly (O,T)*W Z (Xi —Yi)

i=

where . .
Xi~ Exp(1—p-), Y~ Exp(p-)

are independent random variables, and

1 u(2N)?/3

L3P (u,m) = L35P(0,7) = FANTE > (Xi—Y)
i=1

where
Xi~ Exp(1—p), Yi~ Exp(p)

are independent random variables



Proof: first order correction of the covariance

® COUPLING BETWEEN STATIONARY LPPs

> With the coupling w/; > w?

it

p— p
Wig Swig

Xi—-Yi<Xi—v

» Thus,
(

L5 (1) — £ (0,7) DL £ (u,7) — £37(0,7) — R(u), ()

with
u(2N)2/3

1
R(U):W ; (Pi + @),

where P; and Q; are independent and have explicit laws and
E[R(u)] = 2uk + O(us3N—2/3)

» The terms on the r.h.s of (%) are not independent!

But R(u) goes to 0 as N — oo



First order correction of the covariance

6 CONCLUSION

> Putting together the localization result and the previous estimates and taking
k=M=1/(1-7)%2 with 0 <6 < 1/3,

| Var(Xn) — Var(Yg)| < C(1 —7)**~°E(|Y{])

asT— 1

> Observing that E(|Yx]) = O((1— 7)1/3) and taking N — oo, the proof is completed



Thank you
for your attention!



