KULEUVEN

Matrix valued orthogonality and random tilings

Arno Kuijlaars
KU Leuven, Belgium
Randomness, Integrability and Universality, GGI Firenze, Italy, 2 May 2022

1 Random tilings of a hexagon

An $A B C$-hexagon can be covered by three types of lozenges.
$\square \triangleleft \square$

1 Weights on tiles

A weighting on tiles produces a weight on tilings \mathcal{T}

$$
W(\mathcal{T})=\prod_{T \in \mathcal{T}} w(T)
$$

Probability of a tiling is

$$
\operatorname{Prob}(\mathcal{T})=\frac{W(\mathcal{T})}{Z}, \quad Z=\sum_{\mathcal{T}^{\prime}} W\left(\mathcal{T}^{\prime}\right)
$$

1 Weights on tiles

A weighting on tiles produces a weight on tilings \mathcal{T}

$$
W(\mathcal{T})=\prod_{T \in \mathcal{T}} w(T)
$$

Probability of a tiling is

$$
\operatorname{Prob}(\mathcal{T})=\frac{W(\mathcal{T})}{Z}, \quad Z=\sum_{\mathcal{T}^{\prime}} W\left(\mathcal{T}^{\prime}\right)
$$

Weighting is periodic with periods $p \geq 1$ and $q \geq 1$ if

$$
w_{\square}(x, y)=w_{\square}(x+p, y+q), \quad x, y \in \mathbb{Z}
$$

and similarly for $w_{\emptyset}(x, y)$ and $w_{\swarrow}(x, y)$

1 Frozen and disordered regions

Pattern as $n \rightarrow \infty$ with frozen regions and disordered regions
(a.k.a. rough phase).

Picture for $p=1$ and $q=2$.

1 Higher periods and smooth region

Picture for $p=2$ and $q=3$ due to Christophe Charlier

Correlations decay exponentially in the new smooth region
Kenyon, Okounkov, Sheffield (2006)
Analogous model: domino tilings of Aztec diamond with periodic weights

Chhita, Johansson (2016)
Berggren, Duits (2020)

2 Determinantal point process

The positions of the lozenges in a random tiling are determinantal with a correlation kernel K

- This means that

$$
\begin{aligned}
& \mathbb{P}\left[\begin{array}{l}
\text { there is a } \square \text { or } \downarrow \text { lozenge at each } \\
\text { position }\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
\end{array}\right] \\
& =\operatorname{det}\left[K\left(\left(x_{j}, y_{j}\right),\left(x_{k}, y_{k}\right)\right)\right]_{j, k=1}^{n}
\end{aligned}
$$

2 Determinantal point process

The positions of the lozenges in a random tiling are determinantal with a correlation kernel K

- This means that

$$
\begin{aligned}
& \mathbb{P}\left[\begin{array}{l}
\text { there is a } \square \text { or } \vee \text { lozenge at each } \\
\text { position }\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
\end{array}\right] \\
& \quad=\operatorname{det}\left[K\left(\left(x_{j}, y_{j}\right),\left(x_{k}, y_{k}\right)\right)\right]_{j, k=1}^{n}
\end{aligned}
$$

Formula for K comes from either

- dimer model interpretation and inverse Kasteleyn matrix, Kenyon (1997, 2009), Chhita, Johansson (2016)
- or nonintersecting lattice paths and Lindström-Gessel-Viennot lemma

- Lozenge \square is horizontal step on a path,
- Lozenge \checkmark is a diagonal step on a path,
- Lozenge \square is not on any path; assume $w_{\square}(x, y)=1$ without loss of generality.

2 Transition matrices

For each integer $0 \leq x<B+C$ we have a transition matrix

$$
T_{x}\left(y, y^{\prime}\right)= \begin{cases}w_{\square}(x, y), & \text { if } y^{\prime}=y \\ w_{\emptyset}(x, y), & \text { if } y^{\prime}=y+1, \\ 0, & \text { otherwise with }\left(y, y^{\prime}\right) \in \mathbb{Z}^{2}\end{cases}
$$

2 Transition matrices

For each integer $0 \leq x<B+C$ we have a transition matrix

$$
T_{x}\left(y, y^{\prime}\right)= \begin{cases}w_{\square}(x, y), & \text { if } y^{\prime}=y \\ w^{\prime}(x, y), & \text { if } y^{\prime}=y+1 \\ 0, & \text { otherwise with }\left(y, y^{\prime}\right) \in \mathbb{Z}^{2}\end{cases}
$$

In case of periodic weighting

- $T_{x}=T_{x+p}$ is block Toeplitz with blocks of size $q \times q$,
- The matrix symbol of T_{x} is

$$
A_{x}(z)=\left[T_{x}\left(y, y^{\prime}\right)\right]_{y, y^{\prime}=0}^{q-1}+z\left[T_{x}\left(y, y^{\prime}+q\right)\right]_{y, y^{\prime}=0}^{q-1}
$$

with $z \in \mathbb{C}$.

2 Double contour integral formula

Suppose $A=q N, C=q M, B+C=p L$.
Theorem (Duits, Kuijlaars (2021))
$K((p x, q y),(p x, q y))$ is equal to the $(0,0)$ entry of the matrix

$$
\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma} A^{L-x}(w) R_{N}(w, z) A^{x}(z) \frac{w^{y}}{z^{y+1} w^{M+N}} d z d w
$$

with $A(z)=A_{0}(z) A_{1}(z) \cdots A_{p-1}(z)$

- R_{N} is the reproducing kernel for the matrix weight

$$
W(z)=\frac{A^{L}(z)}{z^{M+N}}
$$

on closed contour γ around 0 .

2 Full formula

Theorem

Let $0 \leq j, j^{\prime} \leq p-1$ and $0 \leq k, k^{\prime} \leq q-1$. Then

$$
K\left((p x+j, q y+k),\left(p x^{\prime}+j^{\prime}, q y^{\prime}+k^{\prime}\right)\right)
$$

is equal to $\left(k, k^{\prime}\right)$ entry of

$$
\begin{array}{r}
\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma}\left(\prod_{l=p x^{\prime}+j^{\prime}}^{p L-1} A_{l}(w)\right) R_{N}(w, z)\left(\prod_{l=0}^{p x+j-1} A_{l}(z)\right) \frac{w^{y^{\prime}} d z d w}{z^{y+1} w^{M+N}} \\
\left.-\frac{\chi_{p x+j>p x^{\prime}+j^{\prime}}^{2 \pi i}}{2 \pi} \oint_{\gamma} \prod_{l=p x^{\prime}+j^{\prime}}^{p x+j-1} A_{l}(z)\right) z^{y^{\prime}-y} \frac{d z}{z}
\end{array}
$$

3 Matrix valued orthogonality

- $W(z)=\frac{A(z)^{L}}{z^{M+N}}$ is $q \times q$ matrix valued function on contour γ
- $P_{n}(z)=z^{n} I_{q}+\cdots$ is monic matrix valued polynomial of degree n

3 Matrix valued orthogonality

- $W(z)=\frac{A(z)^{L}}{z^{M+N}}$ is $q \times q$ matrix valued function on contour γ
- $P_{n}(z)=z^{n} I_{q}+\cdots$ is monic matrix valued polynomial of degree n
- P_{n} is matrix valued orthogonal polynomial (MVOP) if

$$
\frac{1}{2 \pi i} \oint_{\gamma} P_{n}(z) W(z) z^{k} d z=H_{n} \delta_{k, n}, \quad k=0,1, \ldots, n
$$

with invertible H_{n}

3 Reproducing kernel

Reproducing kernel $R_{N}(w, z)$ is polynomial of degree $\leq N-1$ in both variables such that

$$
\frac{1}{2 \pi i} \oint_{\gamma} P(w) \frac{A^{L}(w)}{w^{M+N}} R_{N}(w, z) d w=P(z)
$$

for matrix valued polynomial P of degree $\leq N-1$.

3 Reproducing kernel

Reproducing kernel $R_{N}(w, z)$ is polynomial of degree $\leq N-1$ in both variables such that

$$
\frac{1}{2 \pi i} \oint_{\gamma} P(w) \frac{A^{L}(w)}{w^{M+N}} R_{N}(w, z) d w=P(z)
$$

for matrix valued polynomial P of degree $\leq N-1$.

- If MVOP of all degrees $\leq N$ exist then

$$
R_{N}(w, z)=\sum_{n=0}^{N-1} P_{n}^{T}(w) H_{n}^{-1} P_{n}(z)
$$

3 Riemann Hilbert problem

P_{N} and R_{N} are characterized by a matrix-valued Riemann-Hilbert problem of size $2 q \times 2 q$

- $Y: \mathbb{C} \backslash \gamma \rightarrow \mathbb{C}^{2 q \times 2 q}$ is analytic with jump

$$
\begin{gathered}
Y_{+}(z)=Y_{-}(z)\left(\begin{array}{cc}
I_{q} & W(z) \\
0 & I_{q}
\end{array}\right), \quad z \in \gamma, \\
\text { and } Y(z)=\left(I_{2 q}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}
z^{N} I_{q} & 0 \\
0 & z^{-N} I_{q}
\end{array}\right) \text { as } z \rightarrow \infty .
\end{gathered}
$$

Grünbaum, de la Iglesia, Martínez-Finkelshtein (2011)
Cassatella-Contra, Mañas (2012)

- Generalization of Fokas, Its, Kitaev (1992) RH problem for orthogonal polynomials

3 Solution of RH problem

- $Y: \mathbb{C} \backslash \gamma \rightarrow \mathbb{C}^{2 q \times 2 q}$ is analytic with jump

$$
\begin{aligned}
& \qquad Y_{+}(z)=Y_{-}(z)\left(\begin{array}{cc}
I_{q} & W(z) \\
0 & I_{q}
\end{array}\right), \quad z \in \gamma, \\
& \text { and } Y(z)=\left(I_{2 q}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}
z^{N} I_{q} & 0 \\
0 & z^{-N} I_{q}
\end{array}\right) \text { as } z \rightarrow \infty . \\
& \text { Unique solution is } Y(z)=\left(\begin{array}{cc}
P_{N}(z) & * \\
* & *
\end{array}\right)
\end{aligned}
$$

Reproducing kernel is

$$
R_{N}(w, z)=\frac{1}{w-z}\left(\begin{array}{ll}
0 & I_{q}
\end{array}\right) Y^{-1}(w) Y(z)\binom{I_{q}}{0}
$$

Plan for asymptotic analysis

- Apply Deift-Zhou method of steepest descent to RH problem where $N, M, L \rightarrow \infty$. Deift, Zhou (1993)
- Find asymptotics for P_{N} and for

$$
R_{N}(w, z)=\frac{1}{w-z}\left(\begin{array}{ll}
0 & I_{q}
\end{array}\right) Y^{-1}(w) Y(z)\binom{I_{q}}{0}
$$

- Use this for asymptotic analysis of

$$
\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma} A^{L-x}(w) R_{N}(w, z) A^{x}(z) \frac{w^{y} d z d w}{z^{y+1} w^{M+N}}
$$

and similar double integrals

- Identify frozen, rough and smooth regimes, and their boundary curves.

4 Orthogonality on a Riemann surface

Case $W(z)=\frac{A(z)^{L}}{z^{M+N}}$ on contour γ around 0 .

- Riemann surface associated with

$$
\mathcal{R}: \quad \operatorname{det}\left(\lambda I_{q}-A(z)\right)=0
$$

Proposition (Imprecise formulation ...)
Each row of P_{N} corresponds to a meromorphic function on \mathcal{R} that has orthogonality properties with respect to scalar weight

$$
\frac{\lambda^{L}}{z^{M+N}}
$$

4 Example with $p=3$ and $q=2$

$$
\begin{gathered}
A_{0}(z)=A_{1}(z)=\left(\begin{array}{ll}
1 & 1 \\
z & 1
\end{array}\right), \quad A_{2}(z)=\left(\begin{array}{ll}
1 & a \\
z & 1
\end{array}\right) \\
A(z)=A_{0}(z) A_{1}(z) A_{2}(z)=\left(\begin{array}{cc}
3 z+1 & a z+a+2 \\
z^{2}+3 z & (2 a+1) z+1
\end{array}\right)
\end{gathered}
$$

- Eigenvalues of $A(z)$ are (with $x_{1}=-\frac{3}{a}, x_{2}=-a-2$)

$$
\lambda_{1,2}(z)=(a+2) z+1 \pm \sqrt{a z\left(z-x_{1}\right)\left(z-x_{2}\right)}
$$

- Riemann surface $w^{2}=z\left(z-x_{1}\right)\left(z-x_{2}\right)$ has genus one if $a \neq 1$

4 Example with $p=3$ and $q=2$
$Y \mapsto X$ of RH problem

$$
X(z)=Y(z)\left(\begin{array}{cc}
E(z) & 0 \\
0 & E(z)
\end{array}\right)
$$

where $A(z)=E(z) \Lambda(z) E(z)^{-1}$ with $\Lambda(z)=\left(\begin{array}{cc}\lambda_{1}(z) & 0 \\ 0 & \lambda_{2}(z)\end{array}\right)$

- Jump conditions for X

$$
\begin{aligned}
& X_{+}(z)=X_{-}(z)\left(\begin{array}{cc}
I_{2} & \frac{\Lambda(z)^{L}}{z^{M+N}} I_{2} \\
0 & I_{2}
\end{array}\right) \text { on } \gamma \\
& X_{+}(z)=X_{-}(z)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right) \text { on }\left(-\infty, x_{1}\right] \cup\left[x_{2}, 0\right]
\end{aligned}
$$

with $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

4 Example with $p=2$ and $q=3$

$$
\begin{aligned}
X_{+}(z) & =X_{-}(z)\left(\begin{array}{cc}
I_{2} & \frac{\Lambda(z)^{L}}{z^{M+N}} \\
0 & I_{2}
\end{array}\right) \text { on } \gamma, \\
X_{+}(z) & =X_{-}(z)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right) \text { on }\left(-\infty, x_{1}\right] \cup\left[x_{2}, 0\right], \\
X(z) & =\left(I_{4}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}
z^{N} E(z) & 0 \\
0 & z^{-N} E(z)
\end{array}\right) \quad \text { as } z \rightarrow \infty .
\end{aligned}
$$

- Entries $X_{j 1}, X_{j 2}$ give a meromorphic function f_{j} on \mathcal{R} with a pole at infinity of order $\approx 2 N$.

4 Example with $p=2$ and $q=3$

$$
\begin{aligned}
X_{+}(z) & =X_{-}(z)\left(\begin{array}{cc}
I_{2} & \frac{\Lambda(z)^{L}}{z^{M+N}} \\
0 & I_{2}
\end{array}\right) \text { on } \gamma, \\
X_{+}(z) & =X_{-}(z)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right) \text { on }\left(-\infty, x_{1}\right] \cup\left[x_{2}, 0\right], \\
X(z) & =\left(I_{4}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}
z^{N} E(z) & 0 \\
0 & z^{-N} E(z)
\end{array}\right) \quad \text { as } z \rightarrow \infty .
\end{aligned}
$$

- Entries $X_{j 1}, X_{j 2}$ give a meromorphic function f_{j} on \mathcal{R} with a pole at infinity of order $\approx 2 N$.
- Entries $X_{j 3}, X_{j 4}$ give a holomorphic function ϕ_{j} on $\mathcal{R} \backslash\left(\gamma_{1} \cup \gamma_{2}\right)$ with a zero at infinity of order $\approx 2 N$.

4 Example with $p=2$ and $q=3$
Jump condition $X_{+}(z)=X_{-}(z)\left(\begin{array}{cc}I_{2} & \frac{\Lambda(z)^{L}}{z^{M N+N}} \\ 0 & I_{2}\end{array}\right)$ implies

$$
\phi_{j,+}=\phi_{j,-}+f_{j} \frac{\lambda^{L}}{z^{M+N}}, \quad z \in \gamma_{1} \cup \gamma_{2} .
$$

- This leads to orthogonality

$$
\oint_{\gamma_{1} \cup \gamma_{2}} f_{j} \frac{\lambda^{L}}{z^{M+N}} \omega=0
$$

for large class of holomorphic differentials ω on $\mathcal{R} \backslash\{\infty\}$ with a pole at infinity of order at most $\approx 2 N$.

- Where are the zeros of f_{j} ?

5 Pictures of zeros

Zeros tend to accumulate along certain contours.

- Plots are for zeros of $\operatorname{det} P_{n}$.

5 Zeros

If $p=q=2$ then the Riemann surface has genus zero and the MVOP becomes scalar orthogonality in the complex plane.

Groot, Kuijlaars (2021)

5 Zeros

If $p=q=2$ then the Riemann surface has genus zero and the MVOP becomes scalar orthogonality in the complex plane. Groot, Kuijlaars (2021)

- Limiting behavior of zeros can be found using notions of logarithmic potential theory and equilibrium measures in external fields
- The contour γ is not fixed; the right contour needs to have a symmetry property and is called an S-curve.
- The S-curve is a trajectory of a quadratic differential. Martínez-Finkelshtein, Rakhmanov (2011)

5 Higher genus case

- In higher genus case, we need potential theory with bipolar Green's kernel that is adapted to the Riemann surface.
- We need the analogues of equilibrium measures, S-curves, and quadratic differentials, ...

Bertola, Groot, Kuijlaars (coming soon)

Thank you for your attention.

