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Plan of the Talk:

• Introduction: what is it and why the interest? 

• How can it be computed? 

• Some of my contributions, with a focus on excited states
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Introduction
• The earliest papers where a measure of entanglement connected to symmetries is 

introduced are [A. Belin et al.’13; Caputa et al.’16] 

• More intense interest starts with the work [Xavier, Alcaráz & Sierra’18] and specially 
[Goldstein & Sela’18] where the terminology, symmetry resolved entanglement/
entropies is used for the first time.  

• A good introduction to the main ideas is provided by the abstract of Xavier’s paper: 

“The entanglement in a quantum system that possess an internal symmetry, characterized by the Sz-
magnetization or U(1)-charge, is distributed among different sectors. […] We find surprisingly that the 
entanglement entropy is equally distributed among the different magnetization sectors. Its value is given 
by the standard area law violating logarithmic term, that depends on the central charge c, minus a double 
logarithmic correction related to the zero temperature susceptibility. This result provides a new method 
to estimate simultaneously the central charge c and the critical exponents of U(1)-symmetric quantum 
chains.” 

• Interest in the SRE also comes from recent experimental work [Neven et al.’21; Vitale 
et al.’21] 5



Basic Definitions
•  As usual, the basic building block is a reduced density matrix 

in a bipartite system: 

in a pure state  
• Then, the standard measures can be defined: 

|Ψ⟩
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ρA = TrĀ( |Ψ⟩⟨Ψ | )

Sn =
TrA(ρn

A)
1 − n S = − TrA(ρA log ρA)

Rényi Entropies Von Neumann Entropy

n → 1



Interpretations, Fields and Geometry
• It is well-known that the trace  

admits a geometric interpretation as a partition 
function on an n-sheeted Riemann surface, where 
sheets are cyclicly connected along a branch cut of 
length (A) (in 1+1D) 

• This Riemann surface in turn represents the 
space-time manifold associated to a replica theory, 
consisting on n copies of the original model 

• In such a theory, the partition function above can 
be identified with a two-point function of 
symmetry fields  [Calabrese & 
Cardy’04; Cardy, O. C.-A. & Doyon’08]

𝒵n/𝒵n
1 = TrAρn

A

ℓ

𝒯n, �̃�n = 𝒯†
n
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𝒵n

𝒵n
1

∝ n⟨Ψ |𝒯n(0)�̃�n(ℓ) |Ψ⟩n



Symmetries
• If we have an internal symmetry and a local symmetry charge 

, such that , then we have that , 
where  then 

•  ,  are block-diagonal matrices 

•  is the symmetry resolved partition 
function

Q [Q, ρ] = 0 [ρA, QA] = 0
Q = QA + QĀ

ρA ρn
A

𝒵n(q) = TrA(ℙqρn
A)
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Sn(q) =
1

1 − n
log

𝒵n(q)
𝒵1(q)n

S(q) = lim
n→1

Sn(q)

Symmetry Resolved Entanglement Entropy

S = ∑
q

p(q)S(q)

−∑
q

p(q)log p(q)



How do we compute SREEs?
• A systematic approach based on 

composite twist fields was proposed 
by [Goldstein and Sela’18] 

• The idea is that the quantities 
, known as charged moments 

can be obtained from correlation 
functions of (composite) twist 
fields.  

• Then, the SREE follows from the 
Fourier transform, either continuous 
or discrete (depending on the type 
of symmetry)

Zn(α)
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𝒵n(q) = ∫
1
2

− 1
2

Zn(α)e−2πiαqdα

Partition Function vs  
Charged Moments (for U(1) Symmetry)



(Equal-Time) Exchange Relations for Standard 
Branch Point Twist Fields on Replica Theories 

φi(x)𝒯n(y) = 𝒯n(y)φi+1(x) x > y

φi(x)𝒯n(y) = 𝒯n(y)φi(x) x < y
i = 1,…, n i ≡ n + i

rT

(  )

(  ) (0) T
~

ϕ

ϕ
i

+1i

x

x (  )𝒯n(0) �̃�n(L)



φi(x)𝒯α
n(y) = e2πiα𝒯α

n(y)φi+1(x) x > y

φi(x)𝒯α
n(y) = 𝒯α

n(y)φi(x) x < y i = 1,…, n i ≡ n + i

• If the internal symmetry is U(1) such as 
for complex free theories [Horváth, 
Capizzi & Calabrese’21] or for the sine-
Gordon model [Horváth, Calabrese & 
O.C.-A.’21]

Zn(α) ∝ n⟨Ψ |𝒯α
n (0)�̃�α

n (L) |Ψ⟩n

(Equal-Time) Exchange Relations for Composite 
Branch Point Twist Fields on Replica Theories 
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Composite Twist Fields

𝒯α
n (y) ∝ lim

x→y
|x − y |2Δα(1− 1

n )
n

∑
j=1

𝒯n(y)𝒱j
α(x) ,

• Formally, these composite fields can be defined in CFT as

• That is, the leading field in the OPE of the standard BPTF and the U(1) field 
 acting on copy .  

• The conformal dimensions of such fields were first obtained in the context 
of entanglement [O.C.-A., Doyon & Levi’11; Levi’12;Bianchini et al’14]  and later 
again in [Goldstein & Sela’18] for the case of two symmetry fields.

𝒱j
α j

Δα
n = Δn +

Δα

n

• Matrix elements can be computed via a generalised form 
factor program proposed in [Horváth & Calabrese’20] 

• This has been done for a large number of examples…



Main Ideas/Results
• Using IQFT techniques the form factors of fields  can be computed and the 

two-point function obtain through a form factor expansion 

• This is complicated (as usual) but even more so for the SREEs because they are 
related to the Fourier Transform of this function. 

• In many examples, the only term that can be analysed in detail is the zeroth order of 
this expansion, that is the disconnected part of the two-point function: .  

• In massive 1+1D QFT we know that  and one can often argue that 
the leading contribution to the Fourier Transform comes from .

𝒯α
n , �̃�α

n

⟨𝒯α
n⟩2

⟨𝒯α
n⟩ = v(α; n)m2Δα

n

α ∼ 0
13

⟨0 |𝒯α
n(0)�̃�α

n(ℓ) |0⟩ ∼
∞

∑
p=0

N

∑
μp=1

∫ dθ1…dθp |Fα
p (θμ1

, …, θμp
; n) |2 e−∑p

j=1 mμjℓ cosh θμj



Leading Order
• Then a Saddle-Point analysis gives the sort of result Xavier et al. anticipated. 

For instance, in the sine-Gordon model (which has continuous U(1) symmetry):   

• Whereas, for a theory with a discrete symmetry (like the  Potts model) we 
have: 

• Here, the Fourier transform is discrete so the sum can actually be carried out 
exactly but one still approximates the two-point functions involved….

ℤ3
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Excited States
• I will now discuss some recent work where we computed the SREE 

for a certain type of excited states.  

• We want to look at states of massive QFT where there is a finite 
number of excitations above a (generally non-trivial) ground state. 

 

• We will compute the charged moments and then the SREEs for 
such states in free complex theories (which have U(1) symmetry). 

• We will consider a 1+1D system in the following scaling limit: 

 

|Ψ⟩n = |θ1…θk⟩ ⊗ … ⊗ |θ1…θk⟩
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ℓ

L

ℓ, L → ∞,
ℓ
L

= r ∈ [0,1]



• Recently we did a lot of work trying to understand the entanglement entropy of 
these states in free QFTs, magnon and certain qubit-based states [O. C.-A., De 
Fazio, Doyon & Szécsényi’18-19].  

• There is also a lot of work by [Zhang & Rajabpour’20-22], especially for spin chains. 

• These works showed that, once the ground state contribution is subtracted, the 
entropy that remains is a simple function of , the number of excitations and their 
statistics. For example: 

• And similarly for states of more excitations…

r
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Entanglement Entropy of Excited States

ΔS1
n =

log(rn + (1 − r)n)
1 − n

ΔS1
1 = − r log r − (1 − r)log(1 − r)

For a state of one excitation
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Computation Techniques/Probabilistic Arguments
• There are many different ways of obtaining these formulae:  

1. semiclassical/probabilistic arguments,  

2. a QFT computation based on form factors,  

3. computing the entanglement of magnon states in interacting theories, 

4. from simple qubit states ( )  

5. in free theories (in any dimension, with  appropriately redefined),  

6. in highly excited states of CFT [Capizzi, Ruggiero & Calabrese’20] 

• The only important assumption is that the excitations are localised. This can be 

achieved in different ways:  (gapped systems) or  (CFT).  

• The semiclassical viewpoint was known well before our work and has recently been 
extended [Mussardo & Viti’21]. 

|Ψ⟩ = r |01⟩ + 1 − r |10⟩

r

ξ ≪ ℓ, L
2π
P

≪ ℓ, L
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Charged Moments for Excited States
• These techniques extend seamlessly to the SREE with the caveat that the natural 

generalisation of the FF formulae now gives the ratio of the charged moments.
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M1+1+(r; α) = (e2πiαrn + (1 − r)n)2

For a state of two excitations of the same 
charge but different momenta

MΨ(r; α) =
ZΨ(r; α)
Z0(r; α)

In general



Symmetry Resolved Entanglement Entropies
• A particularly nice feature of these states is that (unlike most other cases)  one can 

actually write exact formulae for the SREEs.  

• It is easy to argue why this is the case for massive QFT but it is a rather general 
result. 

• To compute the SREEs of the excited state, we need to isolate the charged moments of 
the excited state only. So we need the product . 

• This seems simple, but because we are taking a scaling limit  we need to take 
care that this limit is finite (separately) for   and  . 

• In massive QFT it is easy to show that the infinite volume limit in the ground state 
isthe VEV of the composite twist field, and this is a function of  but independent of . 

• The Fourier Transform can be computed exactly and the SREE can be expressed in 
terms of entropies and partition functions in the ground state.

Z0
n(r; α)MΨ(r; α)

ℓ, L → ∞
Z0

n(r; α) ZΨ
n (r; α)

α r
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Example
• The SR partition function for a state of one 

excitation of charge  is: 

 

              

• So the SREE is simply: 

 

ϵ

𝒵1ϵ

n (r; q) = ∫
1
2

− 1
2

Z0
n(α)(e2πiϵαrn + (1 − r)n)e−2πiαqdα

= 𝒵0
n(q − ϵ)rn + 𝒵0

n(q)(1 − r)n

S1ϵ

n (r; q) =
1

1 − n
log

𝒵1ϵ

n (r; q)
𝒵1ϵ

1 (r; q)n

=
1

1 − n
log

𝒵0
n(q − ϵ)rn + 𝒵0

n(q)(1 − r)n

[𝒵0
1(q − ϵ)r + 𝒵0

1(q)(1 − r)]n
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• The partition functions can 
be related back to the SREE 
of the ground state.  

• Other states are more 
complicated but in essence, 
the same idea holds. 

• For qubit and magnon states 
the ground state is trivial 
and a l l these formulae 
become explicit functions of 
polynomials in , which admit 
interesting probabilistic 
interpretations 
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Conclusion
• In this talk I reviewed the definition and some properties of the symmetry resolved 

entanglement entropies. 

• I have tried to give an idea of how these may be computed for IQFTs and how an 
approach based on quantum fields can be useful in this context. 

• In general, it is technically quite difficult to obtain analytical results for this quantity 
(sG, Potts), but the excited states that we have studied recently provide a very nice 
example where a lot can be done analytically. 

• For these special states the SREEs can be fully expressed in terms of the entropies of 
the ground state, so the more complex the entanglement structure of GS is, the more 
complex the contribution from excited states will be.  

• An immediate follow up problem are the SR versions of other entanglement measures. 

• More generally, we would like to understand the structure of higher order corrections 
in integrable QFT.  
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