Thermal form factor expansions for the correlation functions of the XXZ chain

Frank Göhmann
Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften

Firenze
4.5.2022

Outline of the talk

- Introduction: Dynamical two-point functions of quantum chains
- Thermal form-factor series (TFFS) for dynamical two-point functions
- TFFS for the two-point functions of the local magnetization and spin current operators of the XXZ chain in the massive antiferromagnetic regime - the low- T limit
- Summary and discussion

Outline of the talk

- Introduction: Dynamical two-point functions of quantum chains
- Thermal form-factor series (TFFS) for dynamical two-point functions
- TFFS for the two-point functions of the local magnetization and spin current operators of the XXZ chain in the massive antiferromagnetic regime - the low- T limit
- Summary and discussion
- Based on J. Math. Phys. 62 (2021) 041901, Phys. Rev. Lett. 126 (2021) 210602, and arXiv:2202.05304; joint work with C. BABENKO, K. K. Kozlowski, J. Sirker and J. Suzuki

StatMech (of quantum chains)

- Quantum chain:

$$
\begin{array}{ll}
\mathcal{H}_{L}=\left(\mathbb{C}^{d}\right)^{\otimes L} & \text { finite dimensio } \\
H_{L} \in \operatorname{End} \mathcal{H}_{L} & \text { Hamiltonian } \\
x_{j}=\mathrm{id}^{\otimes(j-1)} \otimes x \otimes \mathrm{id}^{\otimes(L-j)}, x \in \operatorname{End}\left(\mathbb{C}^{d}\right) & \text { local operator }
\end{array}
$$

StatMech (of quantum chains)

- Quantum chain:

$$
\begin{array}{ll}
\mathcal{H}_{L}=\left(\mathbb{C}^{d}\right)^{\otimes L} & \text { finite dimensional Hilbert space } \\
H_{L} \in \operatorname{End} \mathcal{H}_{L} & \text { Hamiltonian } \\
x_{j}=\mathrm{id}^{\otimes(j-1)} \otimes x \otimes \mathrm{id}^{\otimes(L-j)}, x \in \operatorname{End}\left(\mathbb{C}^{d}\right) & \text { local operator }
\end{array}
$$

- QStatMech:

$$
\begin{aligned}
& x_{j} \mapsto x_{j}(t)=\mathrm{e}^{\mathrm{i} H_{L} t} x_{j} \mathrm{e}^{-\mathrm{i} H_{L} t} \quad \text { Q: Heisenberg time evolution } \\
& \rho_{L}(T)[X]=\frac{\operatorname{tr}\left\{\mathrm{e}^{-H_{L} / T} x\right\}}{\operatorname{tr}\left\{\mathrm{e}^{-H_{L} / T}\right\}} \quad \text { StatMech: canonical density matrix }
\end{aligned}
$$

StatMech (of quantum chains)

- Quantum chain:

$$
\begin{array}{ll}
\mathcal{H}_{L}=\left(\mathbb{C}^{d}\right)^{\otimes L} & \text { finite dimensional Hilbert space } \\
H_{L} \in \operatorname{End} \mathcal{H}_{L} & \text { Hamiltonian } \\
x_{j}=\mathrm{id}^{\otimes(j-1)} \otimes x \otimes \mathrm{id}^{\otimes(L-j)}, x \in \operatorname{End}\left(\mathbb{C}^{d}\right) & \text { local operator }
\end{array}
$$

- QStatMech:

$$
\begin{aligned}
& x_{j} \mapsto x_{j}(t)=\mathrm{e}^{\mathrm{i} H_{L} t} x_{j} \mathrm{e}^{-\mathrm{i} H_{L} t} \quad \text { Q: Heisenberg time evolution } \\
& \rho_{L}(T)[X]=\frac{\operatorname{tr}\left\{\mathrm{e}^{-H_{L} / T} x\right\}}{\operatorname{tr}\left\{\mathrm{e}^{-H_{L} / T}\right\}} \quad \text { StatMech: canonical density matrix }
\end{aligned}
$$

- Linear response theory ('Kubo theory') connects the response of a large quantum system to time- $(=t)$-dependent perturbations (= experiments) with dynamical correlation functions at finite temperature T

$$
\left\langle x_{1}(t) y_{m+1}\right\rangle_{T}=\lim _{L \rightarrow \infty} \rho_{L}(T)\left[x_{1}(t) y_{m+1}\right]
$$

Interpretation of two point functions

Meaning of dynamical correlation functions (example $x=y^{\dagger}$)

$$
\left\langle y_{1}^{\dagger}(t) y_{m+1}\right\rangle=\sum_{n} p_{n}\left\langle y_{1} \mathrm{e}^{-\mathrm{i} H t} \varphi^{(n)}, \mathrm{e}^{-\mathrm{i} H t} y_{m+1} \varphi^{(n)}\right\rangle
$$

where (e.g.) $p_{n}=\mathrm{e}^{-\frac{E_{n}}{T}} / Z$

Interpretation of two point functions

Meaning of dynamical correlation functions (example $x=y^{\dagger}$)

$$
\left\langle y_{1}^{\dagger}(t) y_{m+1}\right\rangle=\sum_{n} p_{n}\left\langle y_{1} \mathrm{e}^{-\mathrm{i} H t} \varphi^{(n)}, \mathrm{e}^{-\mathrm{i} H t} y_{m+1} \varphi^{(n)}\right\rangle
$$

where (e.g.) $p_{n}=\mathrm{e}^{-\frac{E_{n}}{T}} / Z$

- rhs: Create local perturbation at site $m+1$ by means of y, then time evolve it for some time t
- Ihs: Wait for some time t, then create a local perturbation at site 1 by means of y

Interpretation of two point functions

Meaning of dynamical correlation functions (example $x=y^{\dagger}$)

$$
\left\langle y_{1}^{\dagger}(t) y_{m+1}\right\rangle=\sum_{n} p_{n}\left\langle y_{1} \mathrm{e}^{-\mathrm{i} H t} \varphi^{(n)}, \mathrm{e}^{-\mathrm{i} H t} y_{m+1} \varphi^{(n)}\right\rangle
$$

where (e.g.) $p_{n}=\mathrm{e}^{-\frac{E_{n}}{T}} / Z$

- rhs: Create local perturbation at site $m+1$ by means of y, then time evolve it for some time t
- Ihs: Wait for some time t, then create a local perturbation at site 1 by means of y
- $\langle\cdot, \cdot\rangle$: probability amplitude for observing a local perturbation y at site 1 and at time t, provided it was created at site $m+1$ time t ago - probability amplitude for the propagation of a perturabtion

Prime example of an integrable spin chain Hamiltonian

- The XXZ model

$$
\begin{gathered}
H_{L}(\Delta)=J \sum_{j=1}^{L}\left\{\sigma_{j-1}^{x} \sigma_{j}^{x}+\sigma_{j-1}^{y} \sigma_{j}^{y}+\Delta \sigma_{j-1}^{z} \sigma_{j}^{z}\right\}-\frac{h}{2} \sum_{j=1}^{L} \sigma_{j}^{z} \\
J>0, h \in \mathbb{R}, \Delta=\operatorname{ch}(\gamma) \in \mathbb{R}, q=\mathrm{e}^{-\gamma}
\end{gathered}
$$

Prime example of an integrable spin chain Hamiltonian

- The XXZ model

$$
\begin{gathered}
H_{L}(\Delta)=J \sum_{j=1}^{L}\left\{\sigma_{j-1}^{x} \sigma_{j}^{x}+\sigma_{j-1}^{y} \sigma_{j}^{y}+\Delta \sigma_{j-1}^{z} \sigma_{j}^{z}\right\}-\frac{h}{2} \sum_{j=1}^{L} \sigma_{j}^{z} \\
J>0, h \in \mathbb{R}, \Delta=\operatorname{ch}(\gamma) \in \mathbb{R}, q=\mathrm{e}^{-\gamma}
\end{gathered}
$$

- Main goal of my research: Calculate

$$
\left\langle\sigma_{1}^{z}(t) \sigma_{m+1}^{z}\right\rangle_{T}, \quad\left\langle\sigma_{1}^{-}(t) \sigma_{m+1}^{+}\right\rangle_{T}, \quad \ldots
$$

explicitly for all values of m, t, T and $\Delta, h!$

Prime example of an integrable spin chain Hamiltonian

- The XXZ model

$$
\begin{gathered}
H_{L}(\Delta)=J \sum_{j=1}^{L}\left\{\sigma_{j-1}^{x} \sigma_{j}^{x}+\sigma_{j-1}^{y} \sigma_{j}^{y}+\Delta \sigma_{j-1}^{z} \sigma_{j}^{z}\right\}-\frac{h}{2} \sum_{j=1}^{L} \sigma_{j}^{z} \\
J>0, h \in \mathbb{R}, \Delta=\operatorname{ch}(\gamma) \in \mathbb{R}, q=\mathrm{e}^{-\gamma}
\end{gathered}
$$

- Main goal of my research: Calculate

$$
\left\langle\sigma_{1}^{z}(t) \sigma_{m+1}^{z}\right\rangle_{T}, \quad\left\langle\sigma_{1}^{-}(t) \sigma_{m+1}^{+}\right\rangle_{T}, \quad \ldots
$$

explicitly for all values of m, t, T and Δ, h !

- State of the art: Dynamical correlation functions at finite temperature not known for any Yang-Baxter integrable lattice model, except for the XX model

$$
H_{X X}=H_{L}(0)
$$

Prime example of an integrable spin chain Hamiltonian

- The XXZ model

$$
H_{L}(\Delta)=J \sum_{j=1}^{L}\left\{\sigma_{j-1}^{x} \sigma_{j}^{x}+\sigma_{j-1}^{y} \sigma_{j}^{y}+\Delta \sigma_{j-1}^{z} \sigma_{j}^{z}\right\}-\frac{h}{2} \sum_{j=1}^{L} \sigma_{j}^{z}
$$

$$
J>0, h \in \mathbb{R}, \Delta=\operatorname{ch}(\gamma) \in \mathbb{R}, q=\mathrm{e}^{-\gamma}
$$

- Main goal of my research: Calculate

$$
\left\langle\sigma_{1}^{z}(t) \sigma_{m+1}^{z}\right\rangle_{T}, \quad\left\langle\sigma_{1}^{-}(t) \sigma_{m+1}^{+}\right\rangle_{T}, \quad \ldots
$$

explicitly for all values of m, t, T and Δ, h !

- State of the art: Dynamical correlation functions at finite temperature not known for any Yang-Baxter integrable lattice model, except for the XX model

$$
H_{X X}=H_{L}(0)
$$

- For the XX model the longitudinal two-point functions are

$$
\left\langle\sigma_{1}^{z}(t) \sigma_{m+1}^{z}\right\rangle_{T}-\left\langle\sigma_{1}^{z}\right\rangle_{T}^{2}=\left[\int_{-\pi}^{\pi} \frac{\mathrm{d} p}{\pi} \frac{\mathrm{e}^{\mathrm{i}(m p-t \varepsilon(p))}}{1+\mathrm{e}^{-\varepsilon(p) / T}}\right]\left[\int_{-\pi}^{\pi} \frac{\mathrm{d} p}{\pi} \frac{\mathrm{e}^{-\mathrm{i}(m p-t \varepsilon(p))}}{1+\mathrm{e}^{\varepsilon(p) / T}}\right]
$$

where $\varepsilon(p)=h-4 J \cos (p)$

Longitudinal correlation functions of XX model

- This simple expression can be analyzed numerically and asymptotically by means of the saddle point method

Real part of the connected longitudinal two-point function of the XX chain at $m=12, T=1, h=0.2$ and $J=1 / 4$ as a function of time

Dynamical two-point functions as a lattice path integral

Vertex model representation at finite Trotter number N

Quantum transfer matrix $t(\lambda)\left|\Psi_{n}\right\rangle=\Lambda_{n}(\lambda)\left|\Psi_{n}\right\rangle$ $\rho_{n}(\lambda)=\frac{\Lambda_{n}(\lambda)}{\Lambda_{0}(\lambda)}$

Double row transfer matrix $\sim \mathrm{e}^{-2 \mathrm{i} H t / N+\ldots}$

A graphical representation of the unnormalized finite Trotter number approximant to the dynamical two-point function [SAKAI 07], h_{R} 'energy scale', $t_{R}=-\mathrm{i} h_{R} t$

Double row transfer matrix versus quantum transfer matrix

DRTM

- $\overline{t_{\perp}}(-\lambda) t_{\perp}(\lambda)=\mathrm{e}^{2 \lambda H / h_{R}+\mathcal{O}\left(\lambda^{2}\right)}$ time translation
- PBCs in space direction \rightarrow BAEs: $p(\lambda)=\frac{2 \pi n}{L}+$ scattering
- H hermitian, real spectrum, gapped or gapless
- $\left\{\lambda_{j}\right\}$ Bethe roots, continously distributed for $L \rightarrow \infty$
- For $L \rightarrow \infty$ described by linear integral equations
- $t(0)$ 'space translation'
- PBCs in time direction \rightarrow BAEs:
$\varepsilon(\lambda)=(2 n-1) \mathrm{i} \pi T+$ scattering
- $t(0)$ non-hermitian, $\rho_{n}(0)=\mathrm{e}^{-\frac{1}{\xi_{n}}+\mathrm{i} \varphi_{n}}$, correlation length and phase
- $\left\{\lambda_{j}\right\}$ Bethe roots, continously distributed for $T \rightarrow 0$, at every finite T, a set with a single accumulation point
- Described by non-linear integral equations

Form factor series expansion in the thermodynamic limit

- Sets of consecutive integers are denoted $\llbracket j, k \rrbracket$, where $j, k \in \mathbb{Z}, j \leq k$. We consider dynamical correlation functions of two local operators

$$
x_{\llbracket 1, \ell \rrbracket}=x_{1}^{(1)} \cdots x_{\ell}^{(\ell)}, \quad Y_{\llbracket 1, r \rrbracket}=y_{1}^{(1)} \cdots y_{r}^{(r)}
$$

where $x^{(j)}, y^{(k)} \in \operatorname{End} \mathbb{C}^{d} . \ell$ and r are lengths of X and Y. We shall assume that these operators have fixed $U(1)$ charge (or 'spin') $s \in \mathbb{C}$,

$$
\left[\hat{\Phi}, X_{\llbracket 1, \ell \rrbracket}\right]=s(X) X_{\llbracket 1, \ell \rrbracket}, \quad\left[\hat{\Phi}, Y_{\llbracket 1, r \rrbracket}\right]=s(Y) Y_{\llbracket 1, r \rrbracket}
$$

Form factor series expansion in the thermodynamic limit

- Sets of consecutive integers are denoted $\llbracket j, k \rrbracket$, where $j, k \in \mathbb{Z}, j \leq k$. We consider dynamical correlation functions of two local operators

$$
x_{\llbracket 1, \ell \rrbracket}=x_{1}^{(1)} \cdots x_{\ell}^{(\ell)}, \quad Y_{\llbracket 1, r \rrbracket}=y_{1}^{(1)} \cdots y_{r}^{(r)}
$$

where $x^{(j)}, y^{(k)} \in$ End $\mathbb{C}^{d} \cdot \ell$ and r are lengths of X and Y. We shall assume that these operators have fixed $U(1)$ charge (or 'spin') $s \in \mathbb{C}$,

$$
\left[\hat{\phi}, X_{\llbracket 1, \ell \rrbracket}\right]=s(X) X_{\llbracket 1, \ell \rrbracket}, \quad\left[\hat{\phi}, Y_{\llbracket 1, r \rrbracket}\right]=s(Y) Y_{\llbracket 1, r \rrbracket}
$$

Theorem

$$
\begin{aligned}
& \left\langle X_{\llbracket 1, \ell \rrbracket}(t) Y_{\llbracket 1+m, r+m \rrbracket}\right\rangle_{T}=\mathrm{e}^{-\mathrm{i} h t s(X)} \\
& \quad \times \lim _{N \rightarrow \infty} \sum_{n} \frac{\left\langle\Psi_{0}\right| \prod_{k \in \llbracket 1, \ell]}^{\curvearrowright} \operatorname{tr}\left\{x^{(k)} T(0)\right\}\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle \Lambda_{n}^{\ell}(0)} \frac{\left\langle\Psi_{n}\right| \prod_{k \in \llbracket 1, r \rrbracket}^{\curvearrowright}}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle \Lambda_{0}^{r}(0)} \operatorname{tr}\left\{y^{(k)} T(0)\right\}\left|\Psi_{0}\right\rangle \\
&
\end{aligned}
$$

Explicit form factor series for $T=0, \Delta>1,|h|<h_{\ell}$

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antiferromagnetic massive regime at $T=0$ have the form-factor series representation

$$
\begin{aligned}
& \left\langle X_{\llbracket 1, \rrbracket \rrbracket}(t) Y_{\llbracket 1+m, r+m \rrbracket}\right\rangle= \\
& \qquad \sum_{\substack{\ell \in \mathbb{N} \\
k=0,1}} \frac{(-1)^{k m}}{(\ell!)^{2}} \int_{\mathcal{C}_{h}^{\ell}} \frac{\mathrm{d}^{\ell} u}{(2 \pi)^{\ell}} \int_{\mathcal{C}_{\rho}^{\ell}} \frac{\mathrm{d}^{\ell} v}{(2 \pi)^{\ell}} \mathcal{A}_{X Y}^{(2 \ell)}(U, \mathcal{V} \mid k) \mathrm{e}^{-\mathrm{i} \sum_{\lambda \in \mathcal{U} \ominus \mathcal{V}}(m p(\lambda)-t \varepsilon(\lambda))}
\end{aligned}
$$

with integration contours $\mathcal{C}_{h}=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\frac{\mathrm{i} \gamma}{2}+\mathrm{i} \delta$ and $\mathcal{C}_{p}=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]+\frac{\mathrm{i} \gamma}{2}+\mathrm{i}^{\prime}$, where $\delta, \delta^{\prime}>0$ are small

Explicit form factor series for $T=0, \Delta>1,|h|<h_{\ell}$

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antiferromagnetic massive regime at $T=0$ have the form-factor series representation

$$
\begin{aligned}
& \left\langle X_{\llbracket 1, \rrbracket \rrbracket}(t) Y_{\llbracket 1+m, r+m \rrbracket}\right\rangle= \\
& \quad \sum_{\substack{\ell \in \mathbb{N} \\
k=0,1}} \frac{(-1)^{k m}}{(\ell!)^{2}} \int_{\mathcal{C}_{h}^{\ell}} \frac{\mathrm{d}^{\ell} u}{(2 \pi)^{\ell}} \int_{\mathcal{C}_{p}^{\ell}} \frac{\mathrm{d}^{\ell} v}{(2 \pi)^{\ell}} \mathcal{A}_{X Y}^{(2 \ell)}(U, \mathcal{V} \mid k) \mathrm{e}^{-\mathrm{i} \sum_{\lambda \in \mathcal{U} \ominus \mathcal{V}}(m p(\lambda)-t \varepsilon(\lambda))}
\end{aligned}
$$

with integration contours $\mathcal{C}_{h}=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\frac{\mathrm{i} \gamma}{2}+\mathrm{i} \delta$ and $\mathcal{C}_{p}=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]+\frac{\mathrm{i} \gamma}{2}+\mathrm{i}^{\prime}$, where $\delta, \delta^{\prime}>0$ are small

Two cases worked out so far
(1) $X=Y=\sigma^{z}$, two-point function of local magnetization (C. Babenko, F. Göhmann, K. K. Kozlowski, J. Sirker, and J. Suzuki, Phys. Rev. Lett. 126, 210602 (2021)) $\rightarrow \mathcal{A}_{z z}^{(2 \ell)}$ spectral function
(2) $X=Y=\mathcal{J}=-2 \mathrm{i} J\left(\sigma^{-} \otimes \sigma^{+}-\sigma^{+} \otimes \sigma^{-}\right)$, correlation function of two magnetic current densities (with K. K. Kozlowski, J. Sirker, and J. Suzuki, Preprint) $\rightarrow \mathcal{A}_{\text {JI }}^{(2 \ell)}$ spin conductivity

Dispersion relation

In the antiferromagnetic massive regime the dispersion relation of the elementary excitation can be expressed explicitly in terms of theta functions

$$
\begin{aligned}
& p(\lambda)=\frac{\pi}{2}+\lambda-\mathrm{i} \ln \left(\frac{\vartheta_{4}\left(\lambda+\mathrm{i} \gamma / 2 \mid q^{2}\right)}{\vartheta_{4}\left(\lambda-\mathrm{i} \gamma / 2 \mid q^{2}\right)}\right) \\
& \varepsilon(\lambda)=-2 J \operatorname{sh}(\gamma) \vartheta_{3} \vartheta_{4} \frac{\vartheta_{3}(\lambda)}{\vartheta_{4}(\lambda)}
\end{aligned}
$$

Here p is the momentum and ε is the dressed energy (for $h=0$)

Interpretation: dispersion relation of holes

Amplitudes

- The integrands in each term of our form factor series are parameterized in terms of two sets $\mathcal{U}=\left\{u_{j}\right\}_{j=1}^{\ell}$ and $\mathcal{V}=\left\{v_{k}\right\}_{k=1}^{\ell}$ of 'hole and particle type' rapidity variables of equal cardinality ℓ. For sums and products over these variables we shall employ the short-hand notations

$$
\sum_{\lambda \in \mathcal{U} \ominus \mathcal{V}} f(\lambda)=\sum_{\lambda \in \mathcal{U}} f(\lambda)-\sum_{\lambda \in \mathcal{V}} f(\lambda), \quad \prod_{\lambda \in \mathcal{U} \ominus \mathcal{V}} f(\lambda)=\frac{\prod_{\lambda \in \mathcal{U}} f(\lambda)}{\prod_{\lambda \in \mathcal{V}} f(\lambda)}
$$

Amplitudes

- The integrands in each term of our form factor series are parameterized in terms of two sets $\mathcal{U}=\left\{u_{j}\right\}_{j=1}^{\ell}$ and $\mathcal{V}=\left\{v_{k}\right\}_{k=1}^{\ell}$ of 'hole and particle type' rapidity variables of equal cardinality ℓ. For sums and products over these variables we shall employ the short-hand notations

$$
\sum_{\lambda \in \mathcal{U} \ominus \mathcal{V}} f(\lambda)=\sum_{\lambda \in \mathcal{U}} f(\lambda)-\sum_{\lambda \in \mathcal{V}} f(\lambda), \quad \prod_{\lambda \in \mathcal{U} \ominus \mathcal{V}} f(\lambda)=\frac{\prod_{\lambda \in \mathcal{U}} f(\lambda)}{\prod_{\lambda \in \mathcal{V}} f(\lambda)}
$$

- The amplitudes factorize in a part which depends on the operators X and Y and a universal weight

$$
\mathcal{A}_{X Y}^{(2 \ell)}(\mathcal{U}, \mathcal{V} \mid k)=\mathcal{F}_{X Y}^{(2 \ell)}(\mathcal{U}, \mathcal{V} \mid k) W^{(2 \ell)}(\mathcal{U}, \mathcal{V} \mid k)
$$

Amplitudes

- The integrands in each term of our form factor series are parameterized in terms of two sets $\mathcal{U}=\left\{u_{j}\right\}_{j=1}^{\ell}$ and $\mathcal{V}=\left\{v_{k}\right\}_{k=1}^{\ell}$ of 'hole and particle type' rapidity variables of equal cardinality ℓ. For sums and products over these variables we shall employ the short-hand notations

$$
\sum_{\lambda \in \mathcal{U} \ominus \mathcal{V}} f(\lambda)=\sum_{\lambda \in \mathcal{U}} f(\lambda)-\sum_{\lambda \in \mathcal{V}} f(\lambda), \quad \prod_{\lambda \in \mathcal{U} \ominus \mathcal{V}} f(\lambda)=\frac{\prod_{\lambda \in \mathcal{U}} f(\lambda)}{\prod_{\lambda \in \mathcal{V}} f(\lambda)}
$$

- The amplitudes factorize in a part which depends on the operators X and Y and a universal weight

$$
\mathcal{A}_{X Y}^{(2 \ell)}(\mathcal{U}, \mathcal{V} \mid k)=\mathcal{F}_{X Y}^{(2 \ell)}(\mathcal{U}, \mathcal{V} \mid k) W^{(2 \ell)}(\mathcal{U}, \mathcal{V} \mid k)
$$

- For short operators like σ^{z} or \mathcal{J} the operator-dependent part is rather simple

$$
\begin{aligned}
& \mathcal{F}_{z Z}^{(2 \ell)}(\mathcal{U}, \mathcal{\nu} \mid k)=4 \sin ^{2}\left(\frac{1}{2}\left(\pi k+\sum_{\lambda \in \mathcal{U} \ominus \mathcal{V}} p(\lambda)\right)\right) \\
& \mathcal{F}_{\mathcal{J} \mathcal{J}}^{(2 \ell)}(\mathcal{U}, \mathcal{\nu} \mid k)=\frac{1}{4}\left(\sum_{\lambda \in \mathcal{U} \ominus \mathcal{V}} \varepsilon(\lambda)\right)^{2}
\end{aligned}
$$

and should be generally related to the theory of factorizing correlation functions (H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama 2006-10)

Universal weight

We introduce 'multiplicative spectral parameters' $H_{j}=\mathrm{e}^{2 \mathrm{ix} x_{j}}, P_{k}=\mathrm{e}^{2 \mathrm{i} y_{k}}$ and the following special basic hypergeometric series

$$
\begin{aligned}
\Phi_{1}\left(P_{k}, \alpha\right) & ={ }_{2 \ell} \Phi_{2 \ell-1}\left(\begin{array}{c}
q^{-2},\left\{q^{2} \frac{P_{k}}{P_{m}}\right\}_{m \neq k}^{\ell},\left\{\frac{P_{k}}{H_{m}}\right\}_{m}^{\ell} \\
\left.\left\{\frac{P_{k}}{P_{m}}\right\}_{m \neq k}^{\ell},\left\{q^{2} \frac{P_{k}}{H_{m}}\right\}_{m}^{\ell} ; q^{4}, q^{4+2 \alpha}\right) \\
\Phi_{2}\left(P_{k}, P_{j}, \alpha\right)
\end{array}\right)={ }_{2 \ell} \Phi_{2 \ell-1}\binom{q^{6}, q^{2} \frac{P_{j}}{P_{k}},\left\{q^{6} \frac{P_{j}}{P_{m}}\right\}_{m \neq k, j}^{\ell},\left\{q^{4} \frac{P_{j}}{H_{m}}\right\}_{m}^{\ell}}{\left.q^{8} \frac{P_{j}}{P_{k}},\left\{q^{4} \frac{P_{j}}{P_{m}}\right\}_{m \neq k, j}^{\ell},\left\{q^{6} \frac{P_{j}}{H_{m}}\right\}_{m}^{\ell}, q^{4+2 \alpha}\right)}
\end{aligned}
$$

Universal weight

We introduce 'multiplicative spectral parameters' $H_{j}=\mathrm{e}^{2 \mathrm{ix} x_{j}}, P_{k}=\mathrm{e}^{2 \mathrm{i} y_{k}}$ and the following special basic hypergeometric series

$$
\begin{aligned}
\Phi_{1}\left(P_{k}, \alpha\right) & ={ }_{2 \ell} \Phi_{2 \ell-1}\binom{q^{-2},\left\{q^{2} \frac{P_{k}}{P_{m}}\right\}_{m \neq k}^{\ell},\left\{\frac{P_{k}}{H_{m}}\right\}_{m}^{\ell} ; q^{4}, q^{4+2 \alpha}}{\left.\left\{\frac{P_{k}}{P_{m}}\right\}_{m \neq k}^{\ell},\left\{q^{2} \frac{P_{k}}{H_{m}}\right\}_{m}^{\ell}\right\}_{m}} \\
\Phi_{2}\left(P_{k}, P_{j}, \alpha\right) & ={ }_{2 \ell} \Phi_{2 \ell-1}\binom{q^{6}, q^{2} \frac{P_{j}}{P_{k}},\left\{q^{6} \frac{P_{j}}{P_{m}}\right\}_{m \neq k, j}^{\ell},\left\{q^{4} \frac{P_{j}}{H_{m}}\right\}_{m}^{\ell}}{\left.q^{8} \frac{P_{j}}{P_{k}},\left\{q^{4} \frac{P_{j}}{P_{m}}\right\}_{m \neq k, j}^{\ell},\left\{q^{6} \frac{P_{j}}{H_{m}}\right\}_{m}^{\ell}, q^{4+2 \alpha}\right)}
\end{aligned}
$$

We further define

$$
\Psi_{2}\left(P_{k}, P_{j}, \alpha\right)=q^{2 \alpha} r_{\ell}\left(P_{k}, P_{j}\right) \Phi_{2}\left(P_{k}, P_{j}, \alpha\right)
$$

where

$$
r_{\ell}\left(P_{k}, P_{j}\right)=\frac{q^{2}\left(1-q^{2}\right)^{2} \frac{P_{j}}{P_{k}}}{\left(1-\frac{P_{j}}{P_{k}}\right)\left(1-q^{4} \frac{P_{j}}{P_{k}}\right)}\left[\prod_{m=1}^{\ell} \frac{1-q^{2} \frac{P_{j}}{P_{m}}}{1-\frac{P_{j}}{P_{m}}}\right]\left[\prod_{m=1}^{\ell} \frac{1-\frac{P_{j}}{H_{m}}}{1-q^{2} \frac{P_{j}}{H_{m}}}\right]
$$

and introduce a 'conjugation' $\bar{f}\left(H_{j}, P_{k}, q^{\alpha}\right)=f\left(1 / H_{j}, 1 / P_{k}, q^{-\alpha}\right)$

Universal weight

The core part of our form factor densities, is a matrix \mathcal{M}

$$
\mathcal{M}_{i, j}=\delta_{i j}\left[\bar{\Phi}_{1}\left(P_{j}, 0\right)-\frac{\phi^{(-)}\left(y_{j}\right)}{\phi^{(+)}\left(y_{j}\right)} \phi_{1}\left(P_{j}, 0\right)\right]-\left(1-\delta_{i j}\right)\left[\bar{\Psi}_{2}\left(P_{j}, P_{i}, 0\right)-\frac{\phi^{(-)}\left(y_{i}\right)}{\phi^{(+)}\left(y_{i}\right)} \psi_{2}\left(P_{j}, P_{i}, 0\right)\right]
$$

where

$$
\phi^{(\pm)}(\lambda)=\mathrm{e}^{ \pm \mathrm{i} \Sigma} \prod_{\mu \in \mathcal{U} \ominus \mathcal{V}} \Gamma_{q^{4}}\left(\frac{1}{2} \pm \frac{\lambda-\mu}{2 i \gamma}\right) \Gamma_{q^{4}}\left(1 \mp \frac{\lambda-\mu}{2 i \gamma}\right), \quad \Sigma=-\frac{\pi k}{2}-\frac{1}{2} \sum_{\lambda \in \mathcal{U} \ominus \vartheta} \lambda
$$

Universal weight

The core part of our form factor densities, is a matrix \mathcal{M}

$$
\mathcal{M}_{i, j}=\delta_{i j}\left[\bar{\phi}_{1}\left(P_{j}, 0\right)-\frac{\phi^{(-)}\left(y_{j}\right)}{\phi^{(+)}\left(y_{j}\right)} \phi_{1}\left(P_{j}, 0\right)\right]-\left(1-\delta_{i j}\right)\left[\bar{\Psi}_{2}\left(P_{j}, P_{i}, 0\right)-\frac{\phi^{(-)}\left(y_{i}\right)}{\phi^{(+)}\left(y_{i}\right)} \psi_{2}\left(P_{j}, P_{i}, 0\right)\right]
$$

where

$$
\phi^{(\pm)}(\lambda)=\mathrm{e}^{ \pm \mathrm{i} \Sigma} \prod_{\mu \in \mathcal{U} \ominus \mathcal{V}} \Gamma_{q^{4}}\left(\frac{1}{2} \pm \frac{\lambda-\mu}{2 i \gamma}\right) \Gamma_{q^{4}}\left(1 \mp \frac{\lambda-\mu}{2 i \gamma}\right), \quad \Sigma=-\frac{\pi k}{2}-\frac{1}{2} \sum_{\lambda \in \mathcal{U} \ominus \vartheta} \lambda
$$

By $\hat{\mathcal{M}}$ we denote the matrix obtained from \mathcal{M} upon replacing $x_{j} \leftrightharpoons-y_{j}$. Finally

$$
\equiv(\lambda)=\frac{\Gamma_{q^{4}}\left(\frac{1}{2}+\frac{\lambda}{2 i \gamma}\right) G_{q^{4}}^{2}\left(1+\frac{\lambda}{2 i \gamma}\right)}{\Gamma_{q^{4}}\left(1+\frac{\lambda}{2 i \gamma}\right) G_{q^{4}}^{2}\left(\frac{1}{2}+\frac{\lambda}{2 i \gamma}\right)}
$$

Universal weight

The core part of our form factor densities, is a matrix \mathcal{M}

$$
\mathcal{M}_{i, j}=\delta_{i j}\left[\bar{\phi}_{1}\left(P_{j}, 0\right)-\frac{\phi^{(-)}\left(y_{j}\right)}{\phi^{(+)}\left(y_{j}\right)} \phi_{1}\left(P_{j}, 0\right)\right]-\left(1-\delta_{i j}\left[\bar{\Psi}_{2}\left(P_{j}, P_{i}, 0\right)-\frac{\phi^{(-)}\left(y_{i}\right)}{\phi^{(+)}\left(y_{i}\right)} \psi_{2}\left(P_{j}, P_{i}, 0\right)\right]\right.
$$

where

$$
\phi^{(\pm)}(\lambda)=\mathrm{e}^{ \pm \mathrm{i} \Sigma} \prod_{\mu \in \mathcal{U} \ominus \mathcal{V}} \Gamma_{q^{4}}\left(\frac{1}{2} \pm \frac{\lambda-\mu}{2 i \gamma}\right) \Gamma_{q^{4}}\left(1 \mp \frac{\lambda-\mu}{2 i \gamma}\right), \quad \Sigma=-\frac{\pi k}{2}-\frac{1}{2} \sum_{\lambda \in \mathcal{U} \ominus \vartheta} \lambda
$$

By $\hat{\mathcal{M}}$ we denote the matrix obtained from \mathcal{M} upon replacing $x_{j} \leftrightharpoons-y_{j}$. Finally

$$
\equiv(\lambda)=\frac{\Gamma_{q^{4}}\left(\frac{1}{2}+\frac{\lambda}{2 i \gamma}\right) G_{q^{4}}^{2}\left(1+\frac{\lambda}{2 i \gamma}\right)}{\Gamma_{q^{4}}\left(1+\frac{\lambda}{2 i \gamma}\right) G_{q^{4}}^{2}\left(\frac{1}{2}+\frac{\lambda}{2 i \gamma}\right)}
$$

Then the universal weight of the form factor amplitudes is

$$
w^{(2 \ell)}(\mathcal{U}, \mathcal{V} \mid k)=\left(\frac{\vartheta_{1}^{\prime}}{2 \vartheta_{1}(\Sigma)}\right)^{2}\left[\prod_{\lambda, \mu \in \mathcal{U} \ominus \mathcal{V}} \equiv(\lambda-\mu)\right] \operatorname{det}\{\mathcal{M}\} \operatorname{det}\{\hat{\mathcal{M}}\} \operatorname{det}\left(\frac{1}{\sin \left(u_{j}-v_{k}\right)}\right)^{2}
$$

Numerical efficiency

Real part of $\left\langle\sigma_{1}^{2}(t) \sigma_{3}^{2}\right\rangle-\left(\vartheta_{1}^{\prime} / \vartheta_{2}\right)^{2}$ for $\Delta=1.2$. Increasing number of terms of the series taken into account

Numerical efficiency

(a) $\left\langle\sigma_{1}^{z}(t) \sigma_{2}^{z}\right\rangle-(-1)^{m} \vartheta_{1}^{\prime 2} / \vartheta_{2}^{2}$ at long times for $\Delta=1.2$.
(b) Comparison of $\operatorname{Re}\left\langle\sigma_{1}^{z}(t) \sigma_{3}^{z}\right\rangle$ -$(-1)^{m} \vartheta_{1}^{\prime 2} / \vartheta_{2}^{2}$ obtained by using the form factor expansion (symbols) with the two-spinon asymptotics (line) for $\Delta=1.4$.

Numerical efficiency

(a) $\left\langle\sigma_{1}^{z}(t) \sigma_{2}^{z}\right\rangle-(-1)^{m} \vartheta_{1}^{\prime 2} / \vartheta_{2}^{2}$ at long times for $\Delta=1.2$.
(b) Comparison of $\operatorname{Re}\left\langle\sigma_{1}^{z}(t) \sigma_{3}^{z}\right\rangle$ -$(-1)^{m} \vartheta_{1}^{\prime 2} / \vartheta_{2}^{2}$ obtained by using the form factor expansion (symbols) with the two-spinon asymptotics (line) for $\Delta=1.4$.
$S^{z z}(q, \omega)$ for $\Delta=2$ and various wave numbers q

Spin transport

$$
\Delta=3, \ell=1
$$

$\Delta=3, \ell=1$

$\left\langle\mathcal{J}_{1}(t) \mathcal{J}\right\rangle$ for $\Delta=3,0<t J<5$ (left) $10<t J<24$ (right). We sum up to \mathcal{J}_{350}

Optical conductivity

Left panel: comparison of the analytic result and the direct Fourier transformation for $\ell=1$ and $\Delta=3$. For the latter we used $\left\langle\mathcal{J}_{1}(t) \mathcal{J}_{k+1}\right\rangle, 0 \leq k \leq 399$ and $0 \leq t J \leq 50$

Right panel: $\operatorname{Re} \sigma^{(2)}(\omega)$ for various Δ

Two-spinon optical conductivity

Recall the elliptic module k, the complementary module k^{\prime} and the complete elliptic integral K

$$
k=\vartheta_{2}^{2} / \vartheta_{3}^{2}, \quad k^{\prime}=\vartheta_{4}^{2} / \vartheta_{3}^{2}, \quad K=\pi \vartheta_{3}^{2} / 2
$$

Further introduce two functions

$$
r(\omega)=\frac{\pi}{K} \operatorname{arcsn}\left(\left.\frac{\sqrt{\left(h_{\ell} / k^{\prime}\right)^{2}-\omega^{2}}}{h_{\ell} k / k^{\prime}} \right\rvert\, k\right), B(z)=\frac{1}{G_{q^{4}}^{4}\left(\frac{1}{2}\right)} \prod_{\sigma= \pm} \frac{G_{q^{4}}\left(1+\frac{\sigma z}{2 i \gamma}\right) G_{q^{4}}\left(\frac{\sigma z}{2 i \gamma}\right)}{G_{q^{4}}\left(\frac{3}{2}+\frac{\sigma z}{2 i \gamma}\right) G_{q^{4}}\left(\frac{1}{2}+\frac{\sigma z}{2 i \gamma}\right)}
$$

where arcsn is the inverse of the Jacobi elliptic sn function

Two-spinon optical conductivity

Recall the elliptic module k, the complementary module k^{\prime} and the complete elliptic integral K

$$
k=\vartheta_{2}^{2} / \vartheta_{3}^{2}, \quad k^{\prime}=\vartheta_{4}^{2} / \vartheta_{3}^{2}, \quad K=\pi \vartheta_{3}^{2} / 2
$$

Further introduce two functions

$$
r(\omega)=\frac{\pi}{K} \operatorname{arcsn}\left(\left.\frac{\sqrt{\left(h_{\ell} / k^{\prime}\right)^{2}-\omega^{2}}}{h_{\ell} k / k^{\prime}} \right\rvert\, k\right), B(z)=\frac{1}{G_{q^{4}}^{4}\left(\frac{1}{2}\right)} \prod_{\sigma= \pm} \frac{G_{q^{4}}\left(1+\frac{\sigma z}{2 i \gamma}\right) G_{q^{4}}\left(\frac{\sigma z}{2 i \gamma}\right)}{G_{q^{4}}\left(\frac{3}{2}+\frac{\sigma z}{2 i \gamma}\right) G_{q^{4}}\left(\frac{1}{2}+\frac{\sigma z}{2 i \gamma}\right)}
$$

where arcsn is the inverse of the Jacobi elliptic sn function
Then the two-spinon contribution to the real part of the dynamical conductivity of the XXZ chain at zero temperature and in the antiferromagnetic massive regime can be represented as

$$
\operatorname{Re} \sigma^{(2)}(\omega)=\frac{q^{\frac{1}{2}} h_{\ell}^{2} k}{8 k^{\prime}} \frac{B(r(\omega))}{\Delta-\cos (r(\omega))} \frac{\vartheta_{3}^{2}}{\vartheta_{3}^{2}(r(\omega) / 2)} \frac{1}{\sqrt{\left(\left(h_{\ell} / k^{\prime}\right)^{2}-\omega^{2}\right)\left(\omega^{2}-h_{\ell}^{2}\right)}}
$$

where $\omega \in\left[h_{\ell}, h_{\ell} / k^{\prime}\right]$. Outside this interval it vanishes

Summary and outlook

(1) We have applied the thermal form factor approach to the dynamical two-point functions of the magnetization and of the spin current for the XXZ chain in the massive antiferromagnetic regime and in the low- T limit
(2) For $T \rightarrow 0$ we have obtained explicit expressions for the form factor amplitudes that contain only finite determinants
(3) The resulting TFFSs for the two-point functions are numerically highly efficient

Summary and outlook

(1) We have applied the thermal form factor approach to the dynamical two-point functions of the magnetization and of the spin current for the XXZ chain in the massive antiferromagnetic regime and in the low- T limit
(2) For $T \rightarrow 0$ we have obtained explicit expressions for the form factor amplitudes that contain only finite determinants
(3) The resulting TFFSs for the two-point functions are numerically highly efficient

Future work:
(1) Series for all spin-zero operators and relation with Fermionic basis of Boos et al., higher-spin operators
(2) Extend this work to the massless regime of XXZ
(3) Show convergence of the series and estimate the truncation error
(4) Obtain the isotropic limit and perform the long-time large-distance analysis of two-point functions of the XXX chain
(5) Perform a high- T analysis (for XX case cf. [GKS 20A])

