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Introduction

StatMech (of quantum chains)

Quantum chain:

HL =
(
Cd
)⊗L finite dimensional Hilbert space

HL ∈ EndHL Hamiltonian

xj = id⊗(j−1)⊗x⊗ id⊗(L−j), x ∈ End
(
Cd
)

local operator

QStatMech:

xj 7→ xj (t) = eiHLt xj e−iHLt Q: Heisenberg time evolution

ρL(T )[X ] =
tr
{

e−HL/T X
}

tr
{

e−HL/T} StatMech: canonical density matrix

Linear response theory (‘Kubo theory’) connects the response of a large quantum
system to time-(= t)-dependent perturbations (= experiments) with dynamical
correlation functions at finite temperature T

〈x1(t)ym+1〉T = lim
L→∞

ρL(T )[x1(t)ym+1]
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Introduction

Interpretation of two point functions

Meaning of dynamical correlation functions (example x = y†)〈
y†

1 (t)ym+1
〉

= ∑
n

pn
〈
y1 e−iHt

ϕ
(n),e−iHt ym+1ϕ

(n)
〉

where (e.g.) pn = e−
En
T /Z

rhs: Create local perturbation at site m + 1 by means of y , then time evolve
it for some time t

lhs: Wait for some time t , then create a local perturbation at site 1 by means
of y

〈·, ·〉 : probability amplitude for observing a local perturbation y at site 1 and
at time t , provided it was created at site m + 1 time t ago — probability
amplitude for the propagation of a perturabtion
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Introduction

Prime example of an integrable spin chain Hamiltonian

The XXZ model

HL(∆) = J
L

∑
j=1

{
σ

x
j−1σ

x
j + σ

y
j−1σ

y
j + ∆σ

z
j−1σ

z
j
}
− h

2

L

∑
j=1

σ
z
j

J > 0, h ∈ R, ∆ = ch(γ) ∈ R, q = e−γ

Main goal of my research: Calculate〈
σ

z
1(t)σ

z
m+1

〉
T ,

〈
σ
−
1 (t)σ

+
m+1

〉
T , . . .

explicitly for all values of m, t , T and ∆, h!

State of the art: Dynamical correlation functions at finite temperature not known
for any Yang-Baxter integrable lattice model, except for the XX model

HXX = HL(0)

For the XX model the longitudinal two-point functions are

〈
σ

z
1(t)σ

z
m+1

〉
T −

〈
σ

z
1
〉2

T =

[∫
π

−π

dp
π

ei(mp−tε(p))

1 + e−ε(p)/T

][∫
π

−π

dp
π

e−i(mp−tε(p))

1 + eε(p)/T

]
where ε(p) = h−4J cos(p)
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Introduction

Longitudinal correlation functions of XX model

This simple expression can be analyzed numerically and asymptotically by means
of the saddle point method

0 5 10 15 20 25 30 35

0

5 · 10−2

0.1

0.15

t

R
e
C
(1
2,
t|1

,0
.2
)

timelike
spacelike

Real part of the connected longitudinal two-point function of the XX chain at
m = 12, T = 1, h = 0.2 and J = 1/4 as a function of time
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Thermal form factor series

Dynamical two-point functions as a lattice path integral

Vertex model representation at finite Trotter number N

1

1

−(tR + hR/T )/N

(tR + hR/T )/N

−(tR + hR/T )/N
(tR + hR/T )/N

tR/N
−tR/N

tR/N
−tR/N

m + 1

Y

X
N

2N

L

eαϕ̂/T Quantum
transfer matrix

t(λ)|Ψn〉= Λn(λ)|Ψn〉
ρn(λ) = Λn(λ)

Λ0(λ)

Double row
transfer matrix

∼ e−2iHt/N+...

A graphical representation of the unnormalized finite Trotter number approximant to the
dynamical two-point function [SAKAI 07], hR ‘energy scale’, tR =−ihR t
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Thermal form factor series

Double row transfer matrix versus quantum transfer matrix

DRTM

t⊥(−λ)t⊥(λ) = e2λH/hR+O(λ2) time
translation

PBCs in space direction→ BAEs:
p(λ) = 2πn

L + scattering

H hermitian, real spectrum, gapped
or gapless

{λj} Bethe roots, continously
distributed for L→ ∞

For L→ ∞ described by linear
integral equations

QTM

t(0) ‘space translation’

PBCs in time direction→ BAEs:
ε(λ) = (2n−1)iπT + scattering

t(0) non-hermitian,

ρn(0) = e
− 1

ξn
+iϕn , correlation length

and phase

{λj} Bethe roots, continously
distributed for T → 0, at every finite
T , a set with a single accumulation
point

Described by non-linear integral
equations

Frank Göhmann XXZ dynamical 4.5.2022 8 / 20



Thermal form factor series

Form factor series expansion in the thermodynamic limit

Sets of consecutive integers are denoted Jj,kK, where j,k ∈ Z, j ≤ k . We consider
dynamical correlation functions of two local operators

XJ1,`K = x(1)
1 · · ·x

(`)
` , YJ1,rK = y(1)

1 · · ·y
(r)
r

where x(j),y(k) ∈ EndCd . ` and r are lengths of X and Y . We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s ∈ C,

[Φ̂,XJ1,`K] = s(X)XJ1,`K , [Φ̂,YJ1,rK] = s(Y )YJ1,rK

Theorem

〈
XJ1,`K(t)YJ1+m,r+mK

〉
T = e−iht s(X)

× lim
N→∞

∑
n

〈Ψ0|∏y
k∈J1,`K tr{x(k)T (0)}|Ψn〉
〈Ψ0|Ψ0〉Λ`

n(0)

〈Ψn|∏y
k∈J1,rK tr{y(k)T (0)}|Ψ0〉
〈Ψn|Ψn〉Λr

0(0)

×ρn(0)m
(

ρn
( tR

N

)
ρn
(
− tR

N

)) N
2
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XXZ massive, low-T

Explicit form factor series for T = 0, ∆ > 1, |h|< h`

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antifer-
romagnetic massive regime at T = 0 have the form-factor series representation〈

XJ1,lK(t)YJ1+m,r+mK
〉

=

∑
`∈N

k=0,1

(−1)km

(`!)2

∫
C`

h

d`u
(2π)`

∫
C`

p

d`v
(2π)`

A
(2`)
XY (U,V|k)e−i∑λ∈U	V(mp(λ)−tε(λ))

with integration contours Ch = [− π

2 ,
π

2 ]− iγ
2 + iδ and Cp = [− π

2 ,
π

2 ] + iγ
2 + iδ′, where

δ,δ′ > 0 are small

Two cases worked out so far
1 X = Y = σz , two-point function of local magnetization (C. Babenko, F. Göhmann, K.

K. Kozlowski, J. Sirker, and J. Suzuki, Phys. Rev. Lett. 126, 210602 (2021))

→A
(2`)
zz spectral function

2 X = Y = J =−2iJ(σ−⊗σ+−σ+⊗σ−), correlation function of two magnetic
current densities (with K. K. Kozlowski, J. Sirker, and J. Suzuki, Preprint)

→A
(2`)
JJ spin conductivity
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XXZ massive, low-T

Dispersion relation

In the antiferromagnetic massive regime
the dispersion relation of the elementary
excitation can be expressed explicitly in
terms of theta functions

p(λ) =
π

2
+ λ− i ln

(
ϑ4(λ + iγ/2|q2)

ϑ4(λ− iγ/2|q2)

)

ε(λ) =−2J sh(γ)ϑ3ϑ4
ϑ3(λ)

ϑ4(λ)

Here p is the momentum and ε is the
dressed energy (for h = 0)

Interpretation: dispersion relation of holes

−1 0 1
−8

−6

−4

−2

0

2

4

6

8

p

ε(
p
)

∆ = 1.5
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XXZ massive, low-T

Amplitudes

The integrands in each term of our form factor series are parameterized in terms of
two sets U = {uj}`j=1 and V = {vk}`k=1 of ‘hole and particle type’ rapidity variables
of equal cardinality `. For sums and products over these variables we shall employ
the short-hand notations

∑
λ∈U	V

f (λ) = ∑
λ∈U

f (λ)− ∑
λ∈V

f (λ) , ∏
λ∈U	V

f (λ) =
∏λ∈U f (λ)

∏λ∈V f (λ)

The amplitudes factorize in a part which depends on the operators X and Y and a
universal weight

A
(2`)
XY (U,V|k) = F

(2`)
XY (U,V|k)W (2`)(U,V|k)

For short operators like σz or J the operator-dependent part is rather simple

F
(2`)
zz (U,V|k)= 4sin2

(
1
2

(
πk + ∑λ∈U	V p(λ)

))
F

(2`)
JJ (U,V|k)= 1

4

(
∑λ∈U	V ε(λ)

)2

and should be generally related to the theory of factorizing correlation functions
(H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama 2006-10)
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XXZ massive, low-T

Universal weight

We introduce ‘multiplicative spectral parameters’ Hj = e2ixj , Pk = e2iyk and the following
special basic hypergeometric series

Φ1(Pk ,α) = 2`Φ2`−1

(
q−2,{q2 Pk

Pm
}`m 6=k ,{ Pk

Hm
}`m

{ Pk
Pm
}`m 6=k ,{q2 Pk

Hm
}`m

;q4,q4+2α

)

Φ2(Pk ,Pj ,α) = 2`Φ2`−1

(
q6,q2 Pj

Pk
,{q6 Pj

Pm
}`m 6=k ,j ,{q4 Pj

Hm
}`m

q8 Pj
Pk
,{q4 Pj

Pm
}`m 6=k ,j ,{q6 Pj

Hm
}`m

;q4,q4+2α

)

We further define
Ψ2(Pk ,Pj ,α) = q2αr`(Pk ,Pj )Φ2(Pk ,Pj ,α)

where

r`(Pk ,Pj ) =
q2(1−q2)2 Pj

Pk

(1− Pj
Pk

)(1−q4 Pj
Pk

)

[
`

∏
m=1

m 6=j,k

1−q2 Pj
Pm

1− Pj
Pm

][
`

∏
m=1

1− Pj
Hm

1−q2 Pj
Hm

]

and introduce a ‘conjugation’ f (Hj ,Pk ,qα) = f (1/Hj ,1/Pk ,q−α)
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XXZ massive, low-T

Universal weight

We introduce ‘multiplicative spectral parameters’ Hj = e2ixj , Pk = e2iyk and the following
special basic hypergeometric series

Φ1(Pk ,α) = 2`Φ2`−1

(
q−2,{q2 Pk

Pm
}`m 6=k ,{ Pk

Hm
}`m

{ Pk
Pm
}`m 6=k ,{q2 Pk

Hm
}`m

;q4,q4+2α

)

Φ2(Pk ,Pj ,α) = 2`Φ2`−1

(
q6,q2 Pj

Pk
,{q6 Pj

Pm
}`m 6=k ,j ,{q4 Pj

Hm
}`m

q8 Pj
Pk
,{q4 Pj

Pm
}`m 6=k ,j ,{q6 Pj

Hm
}`m

;q4,q4+2α

)

We further define
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XXZ massive, low-T

Universal weight

The core part of our form factor densities, is a matrix M

Mi,j = δij

[
Φ1(Pj ,0)− φ(−)(yj )

φ(+)(yj )
Φ1(Pj ,0)

]
− (1−δij )

[
Ψ2(Pj ,Pi ,0)− φ(−)(yi )

φ(+)(yi )
Ψ2(Pj ,Pi ,0)

]
where

φ
(±)(λ) = e±iΣ

∏
µ∈U	V

Γq4

( 1
2 ±

λ−µ
2iγ
)
Γq4

(
1∓ λ−µ

2iγ
)
, Σ =−πk

2
− 1

2 ∑
λ∈U	V

λ

By M̂ we denote the matrix obtained from M upon replacing xj �−yj . Finally

Ξ(λ) =
Γq4

( 1
2 + λ

2iγ
)
G2

q4

(
1 + λ

2iγ
)

Γq4

(
1 + λ

2iγ
)
G2

q4

( 1
2 + λ

2iγ
)

Then the universal weight of the form factor amplitudes is

W (2`)(U,V|k) =

(
ϑ′1

2ϑ1(Σ)

)2[
∏

λ,µ∈U	V
Ξ(λ−µ)

]
det
`
{M}det

`
{M̂}det

`

(
1

sin(uj − vk )

)2
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XXZ massive, low-T

Numerical efficiency
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XXZ massive, low-T

Numerical efficiency
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XXZ massive, low-T

Spin transport
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XXZ massive, low-T

Optical conductivity
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XXZ massive, low-T

Two-spinon optical conductivity

Recall the elliptic module k , the complementary module k ′ and the complete elliptic integral K

k = ϑ
2
2/ϑ

2
3 , k ′ = ϑ

2
4/ϑ

2
3 , K = πϑ

2
3/2 .

Further introduce two functions

r(ω) =
π

K
arcsn

(√
(h`/k ′)2−ω2

h`k/k ′

∣∣∣∣k) ,B(z) =
1

G4
q4

( 1
2

) ∏
σ=±

Gq4

(
1 + σz

2iγ
)
Gq4

(
σz
2iγ
)

Gq4

( 3
2 + σz

2iγ
)
Gq4

( 1
2 + σz

2iγ
)

where arcsn is the inverse of the Jacobi elliptic sn function

Then the two-spinon contribution to the real part of the dynamical conductivity of the XXZ chain
at zero temperature and in the antiferromagnetic massive regime can be represented as

Reσ
(2)(ω) =

q
1
2 h2

` k

8k ′
B
(
r(ω)

)
∆− cos

(
r(ω)

) ϑ2
3

ϑ2
3

(
r(ω)/2

) 1√(
(h`/k ′)2−ω2

)(
ω2−h2

`

)
where ω ∈ [h`,h`/k ′]. Outside this interval it vanishes
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Summary and outlook

Summary and outlook

1 We have applied the thermal form factor approach to the dynamical two-point
functions of the magnetization and of the spin current for the XXZ chain in
the massive antiferromagnetic regime and in the low-T limit

2 For T → 0 we have obtained explicit expressions for the form factor
amplitudes that contain only finite determinants

3 The resulting TFFSs for the two-point functions are numerically highly
efficient

Future work:
1 Series for all spin-zero operators and relation with Fermionic basis of Boos et

al., higher-spin operators
2 Extend this work to the massless regime of XXZ
3 Show convergence of the series and estimate the truncation error
4 Obtain the isotropic limit and perform the long-time large-distance analysis of

two-point functions of the XXX chain
5 Perform a high-T analysis (for XX case cf. [GKS 20A])
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