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Introduction

Outline of the talk

o Introduction: Dynamical two-point functions of quantum chains
o Thermal form-factor series (TFFS) for dynamical two-point functions

o TFFS for the two-point functions of the local magnetization and spin current
operators of the XXZ chain in the massive antiferromagnetic regime — the
low-T limit

o Summary and discussion
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o Quantum chain:
H, = (C9) L finite dimensional Hilbert space
H; € EndH; Hamiltonian
x =id®U D ex@id?(), x € End(C?)  local operator



o Quantum chain:
K, = ((Cd)®L finite dimensional Hilbert space
H; € EndH; Hamiltonian
x =id®U D ex@id?(), x € End(C?)  local operator

o QStatMech:

xj =+ x;(t) = et x;e 1MLt Q: Heisenberg time evolution

erfe H/Tx

pL(T)[)(] - o { H/T}

StatMech: canonical density matrix



Introduction

StatMech (of quantum chains)

o Quantum chain:
H, = ((Cd)®L finite dimensional Hilbert space
H € EndH;, Hamiltonian
x = id®U") @x®id®(), x € End(C?) local operator

o QStatMech:

x> x;(t) = elftl x;e 1Mt Q: Heisenberg time evolution

—H/Ty
p(T[X]= ttrr{{Z"’L/T}} StatMech: canonical density matrix

o Linear response theory (‘Kubo theory’) connects the response of a large quantum
system to time-(= t)-dependent perturbations (= experiments) with dynamical
correlation functions at finite temperature T

(X1 ()yYm1)T = JmPL(T)[M (t)ym+1]
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Meaning of dynamical correlation functions (example x = y¥)

Y Oymir) =Y oo (yre ol eHy1o(M)
n

where (e.g.) pn = e 7 /Z



Introduction

Interpretation of two point functions

Meaning of dynamical correlation functions (example x = yT)
i i .
Y (OWmir) = X po(yr e Mgl ey 0
n
En
where (e.g.) ph=e" T /Z
o rhs: Create local perturbation at site m-+ 1 by means of y, then time evolve

it for some time t

o lhs: Wait for some time t, then create a local perturbation at site 1 by means
of y
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Introduction

Interpretation of two point functions

Meaning of dynamical correlation functions (example x = y')

YT (OYmi1) =Y pn(yre Mol ey, 1olM)
n
where (e.g.) pn = e /Z

o rhs: Create local perturbation at site m+ 1 by means of y, then time evolve
it for some time ¢

o lhs: Wait for some time t, then create a local perturbation at site 1 by means
of y

o (,-) : probability amplitude for observing a local perturbation y at site 1 and
at time t, provided it was created at site m+- 1 time t ago — probability
amplitude for the propagation of a perturabtion
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o The XXZ model
L y z z h S Z
H(8) =J Y {0} 0] +0] 0] + Acf o7} — Z; i
=1 =

J>0,heR, A=ch(y)eR,g=e"



o The XXZ model
L hL
H(B) = Y {o] 10] +0] ;0] +Acf yof} 3 ) o]
J=1 J=1
J>0,heR, A=ch(y)eR,g=e"
o Main goal of my research: Calculate
<Gf(t)0fn+1 >T ) <0.1_(t)0-;+1 >T )

explicitly for all values of m, t, T and A, h!



Introduction

Prime example of an integrable spin chain Hamiltonian

o The XXZ model
L h L
H(A) =J ) {of 10] +0[ 0] + Ac] 40f} — 5} of
j=1 j=1
J>0,heR, A=ch(y)eR,g=e""

o Main goal of my research: Calculate

(o5 (t)omi1)7> (oF (t)G;H )7

explicitly for all values of m, t, T and A, h!

o State of the art: Dynamical correlation functions at finite temperature not known
for any Yang-Baxter integrable lattice model, except for the XX model

Hxx = H.(0)
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Introduction

Prime example of an integrable spin chain Hamiltonian

@ The XXZ model
L h&
HU(B) =J Y {0} 1] +0] 1] +A0f 0]}~ 7 ) of
= =

J>0,heR, A=ch(y)eR,g=¢e"
o Main goal of my research: Calculate
(65 ()051) 7 (07 ()Ohit) 7

explicitly for all values of m, t, T and A, h!

o State of the art: Dynamical correlation functions at finite temperature not known
for any Yang-Baxter integrable lattice model, except for the XX model

Hxx = H.(0)
o For the XX model the longitudinal two-point functions are

z z N2 T dp ei(mp—te(p)) T dp e—i(mp—te(p))
<61(t)6m+1>7*<61>r— [/—n?H—e_W /—K;W

where g(p) = h—4J cos(p)
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Introduction

Longitudinal correlation functions of XX model

o This simple expression can be analyzed numerically and asymptotically by means
of the saddle point method

0.15 T T
» timelike
« spacelike
0.1} ° N
—~ ~
~ 3
S
=
N
g ool A
& J/
0
| | | | | | |
0 5 10 15 20 25 30 35

t

Real part of the connected longitudinal two-point function of the XX chain at
m=12, T=1,h=0.2and J = 1/4 as a function of time
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Thermal form factor series

Dynamical two-point functions as a lattice path integral

Vertex model representation at finite Trotter number N

ord | I t7 — Quanum

2N 1 5 ~(tn+he/T)/N transfer matrix
e DRt (0) W) = An(W)] W)

As(A)
Cnehymyn P(M) = R0
(tp + hr/T)/N

N — i m—
Tl —te/N

B /L’/ Double row

transfer matrix
~ e—21Ht/N+...

A graphical representation of the unnormalized finite Trotter number approximant to the
dynamical two-point function [SAKAI 07], hg ‘energy scale’, tg = —ihgt
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Thermal form factor series

Double row transfer matrix versus quantum transfer matrix

DRTM
o TL(=A)t, (A) = eM/hatO(V) time
translation

o PBCs in space direction — BAEs:
p(L) = Z + scattering

o H hermitian, real spectrum, gapped
or gapless

o {A;} Bethe roots, continously
distributed for L — oo

o For L — oo described by linear
integral equations

Frank Géhmann

QTM

t(0) ‘space translation’
PBCs in time direction — BAEs:
g(A) = (2n—1)inT + scattering
t(0) non-hermitian,

JE
pn(0) = e & % correlation length
and phase
{A;} Bethe roots, continously
distributed for T — 0, at every finite
T, a set with a single accumulation
point
Described by non-linear integral
equations
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Thermal form factor series

Form factor series expansion in the thermodynamic limit

o Sets of consecutive integers are denoted [j, k], where j, k € Z, j < k. We consider
dynamical correlation functions of two local operators

L N N A

where x), y(k) € EndC?. ¢ and r are lengths of X and Y. We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s € C,

[®, X011 = sCOXprags [, Ypa ] = s(Y) V1.1

Frank Géhmann XXZ dynamical 4.5.2022 9/20



Thermal form factor series

Form factor series expansion in the thermodynamic limit

o Sets of consecutive integers are denoted [j, k], where j, k € Z, j < k. We consider
dynamical correlation functions of two local operators

X =M., Y[ =iyl

where x), y(k) € EndC?. ¢ and r are lengths of X and Y. We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s € C,

(&, Xp1.9] = sCOX1as [ Y] = s(Y) Y

Theorem
<X|I1 ,Zﬂ (t) Y|I1 +m.f+m]]>-l— _ e_ihts(X)
< e v (VoITTg q trix O T} W) (Wl T} Vo)
o (VolVa)A5(0) (W W) A5 (0)

x pn(o)m(pi'&(_t’@;(;))g
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XXZ massive, low-T

Explicit form factor series for T=0, A > 1, |h| < hy

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antifer-
romagnetic massive regime at T = 0 have the form-factor series representation

Xpn O Y[t mrsm]) =

—)km gty o dlv y i _

L 7 oy o oy 550 (VR )
P

k=0,1

with integration contours Cp =[5, 3] — %’ +idand Cp =[-3,3]+ %’ +i8’, where
8,8’ > 0 are small
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XXZ massive, low-T

Explicit form factor series for T=0, A > 1, |h| < hy

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antifer-
romagnetic massive regime at T = 0 have the form-factor series representation

Xpn O Y[t mrsm]) =

—)km gty o dly y i _

L 7 oy o oy 550 (VR )
P

k=0,1

with integration contours Cp =[5, 3] — %’ +idand Cp =[-3,3]+ %’ +i8’, where
8,8’ > 0 are small

Two cases worked out so far

@ X =Y =0o?, two-point function of local magnetization (C. Babenko, F. Géhmann, K.
K. Kozlowski, J. Sirker, and J. Suzuki, Phys. Rev. Lett. 126, 210602 (2021))

— Agk) spectral function

@ X=Y=J=-2iJ(c”®6T —oT" ®0c"), correlation function of two magnetic
current densities (with K. K. Kozlowski, J. Sirker, and J. Suzuki, Preprint)

— A%’) spin conductivity
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XXZ massive, low-T

Dispersion relation

8 T -
A=15
6 [ -
In the antiferromagnetic massive regime r ]
the dispersion relation of the elementary 41 .
excitation can be expressed explicitly in H .
terms of theta functions 9l _
T [ da(h+iv/2|97) I ]
}\4 - = Jr}\,*lln (7 = a
P =5 D(h—17/2]eP) 3 o
93(A)

g(A) = —2Jsh(y)0394 —2r i
) (D504 52 5 |
Here p is the momentum and € is the —4 a
dressed energy (for h=0) H .
Interpretation: dispersion relation of holes —6r h

S 0 1
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XXZ massive, low-T

Amplitudes

o The integrands in each term of our form factor series are parameterized in terms of
two sets U = {u,-}f=1 and V = {vk}f(z1 of ‘hole and particle type’ rapidity variables
of equal cardinality £. For sums and products over these variables we shall employ
the short-hand notations

B _ [heu /()
Y =Y -y ), I fm*%

AEUSY AeU A€V AEUSV [Ire

Frank Géhmann XXZ dynamical 4.5.2022 12/20



XXZ massive, low-T

Amplitudes

o The integrands in each term of our form factor series are parameterized in terms of
two sets U = {u,-}j’r/=1 and V = {vk}ﬁ:1 of ‘hole and particle type’ rapidity variables
of equal cardinality £. For sums and products over these variables we shall employ
the short-hand notations

Y =Y -y, T fm:mL;&;

AEUSY AeU A€V AEUSV [Irev

o The amplitudes factorize in a part which depends on the operators X and Y and a
universal weight

AZD k) = 75 (U, VIK)
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XXZ massive, low-T

Amplitudes

o The integrands in each term of our form factor series are parameterized in terms of
two sets U = {u,-}j’r/=1 and V = {vk}ﬁ:1 of ‘hole and particle type’ rapidity variables
of equal cardinality £. For sums and products over these variables we shall employ
the short-hand notations

- B _ [heufV)
L =Y -, I ==

reUSY AU AEV AEUSYV

o The amplitudes factorize in a part which depends on the operators X and Y and a
universal weight

AG) (W VIK) =55 (W, Vlk)
o For short operators like 6% or J the operator-dependent part is rather simple
2/ .
FEV (U, Vik)= 4sin? (3 (tk + Lacucv (1)) )

) 2
75 W VI0= § (Trcucve®)

and should be generally related to the theory of factorizing correlation functions
(H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama 2006-10)
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We introduce ‘multiplicative spectral parameters’ H; = €2, Py = €% and the following
special basic hypergeometric series

a2 {q?fe #k’{Hm}l 4 at20
{Pm T ST

{q6 Pm m;ék]’{q4 H,n}é g q4+2a>
’{q4Pm 75;(,7{(7 Hm}é

&1(Pk, ) = 0Py (

. H
O (P, Pj,0) = 2¢Pop_1 (



XXZ massive, low-T

Universal weight

We introduce ‘multiplicative spectral parameters’ H; = €2, Py = €% and the following
special basic hypergeometric series

—2 {qz Pk k7{ }/
q>1("3/(7(X’) = 254)2[—1 ( m# 2 Pk Vi 'q4_‘q4+20t
{Pm m;&k?{q }

2P (6P 4 Py
.5 {d° 5 Ad g m
Do (Pk, Pj,01) = 2¢Pop—1 ( 8';5 . p/ m;ﬁk/ 5 pl ¢ 4, gtte
{q m;ﬁk/?{q }
We further define
Vo (Px, Py, &) = ¢**ry( Pk, Py)®a(Px, P, )
where

Pm

2(1— 2P C1—rBT e 122
Prp) = 0 [H i ang’";j]
Hmn

(1- &)1~ P’ m=t, m=11—
m:

and introduce a ‘conjugation’ f(H;, Px,q*) = f(1/H;,1/Px,q~%)
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The core part of our form factor densities, is a matrix M

— )7 ;
30553 [81(8.0)- S5 01 (8,0)] 189 (e 2.0~ S et 0
where
i - - Tk 1
¥ =" [ TG e (1F5). T=-5 -5 ¥ &
HeUSY reUSY



XXZ massive, low-T

Universal weight

The core part of our form factor densities, is a matrix M

_ )y _ )y,
Mij = 8;| ®1(P;,0) — $(+)82; ¢1(P]’70):| —(1-9;) {\VQ(F’,-?P,-p) - $(+)82; V2 (P}, P;,0)

where

i k1
0 = [T TeG=a)Te(1F5), T=-% -5 L &
HeuUsy reUSY

By M we denote the matrix obtained from M upon replacing x; = —y;. Finally

q“( 217)624 (1 + 217)
(14 2h) G2 (3 + 25)

:)\‘ r
=M=
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XXZ massive, low-T

Universal weight

The core part of our form factor densities, is a matrix M

_ )y _ )y,
Mij = 8;| ®1(P;,0) — $(+)82; ¢1(P]’70):| —(1-9;) {\VQ(F’,-?P,-p) - $(+)82; V2 (P}, P;,0)

where

: Tk 1
00 =" ] TG+ )Te(155). T=-% -5 ¥ &
HeuUsy reUSY

By M we denote the matrix obtained from M upon replacing x; = —y;. Finally
2
q“( 217)6 4 (1 + 217)
1 A
(1+ 217)654 (z+32)
Then the universal weight of the form factor amplitudes is

W(Zé)(u7Vk):(2ﬁ?é):)>2|: H E(x—y)}d?t{M}d?t{ﬁ[}d?t(w)z

AueUSY

:)\‘ r
=M=
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Numerical efficiency

XXZ massive, low-T

./'Q'C T T T T T T
L)
03F4° —(DMRG | -
i ° II ]
0.2k B I] + Iz _
= o I +1L +1
IS 1 ThTh
<01 2"
@] S,
\ e
of VAR
\34/.
0.1t L ‘\:/I P T | ]
0 1 15 2 25 3
Jt
S
Q
ED Ok 1 1 1
AO.I T T T T
o o
I 10 i5 20
Jt
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XXZ dynamical

Real part of (6%(1)03) — (¥ /92)?
for A = 1.2. Increasing number of
terms of the series taken into ac-
count

Real part of (of(t)o% ) —
(9 /92)2(=1)" for A =1.2
different values of m

and
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XXZ massive, low-T

Numerical efficiency

T T T T

— real part 1
— imaginary part

(a) (o%(t)o3) — (—1)™d2/92 at long
times for A =1.2.

(b) Comparison of Re(c%(t)o3) —
(—=1)™9/2 /93 obtained by using the
form factor expansion (symbols) with
the two-spinon asymptotics (line) for
A =14

& ¥ ¢ % "’ ¢ ° 1
100 102 104 It 106 108 110
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XXZ massive, low-T

Numerical efficiency

3 ; i
4x10 — real part
= — imaginary part

(a) (o%(t)o3) — (—1)™d2/92 at long
times for A =1.2.

(b) Comparison of Re(c%(t)o3) —
(—=1)™9/2 /93 obtained by using the
form factor expansion (symbols) with
the two-spinon asymptotics (line) for
A =14

7

oL [T 2F T,
— q=n/2 3 — 1, (x100)
— q=m/4 e =

T |=g=m8 5| ¢

S, (q,®)

2z

S§%(q,w) for A = 2 and various wave
numbers q
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A=310=1 o A=30=1
2 T T T 6 T T T
——  real
—  real 4 —— imaginary
1 —— imaginary -

(1(1)7(0))

tJ tJ

(31(t)d) for A =3,0 < tJ <5 (left) 10 < tJ < 24 (right). We sum up to Jsso




A=310=1 =1

0.25
02l direct FT i 1.5 —A=15 g
’ ——analytic formula — A=2
o — — A=3
) a
§) )
Q 0.1} B ©
~ ~
0.5 B
51072 g
0 . 0
0 5 10 15 20 25 0 5 10 15 20 25
w/J w/J

Left panel: comparison of the analytic result and the direct Fourier transformation for
¢=1and A =3. For the latter we used (J1(t)Jk+1), 0 < k <399 and 0 < tJ < 50

Right panel: Rec(® () for various A




XXZ massive, low-T

Two-spinon optical conductivity

Recall the elliptic module k, the complementary module k" and the complete elliptic integral K
=03/03, K =03/05, K=mnvj/2.

Further introduce two functions

T he/k')? — @?
r(®w) = — arcsn %
K hok [k

1 Gg (1+ 57) G (55)
k ’B = 6z 6z
)82 e GrEe e

where arcsn is the inverse of the Jacobi elliptic sn function
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XXZ massive, low-T

Two-spinon optical conductivity

Recall the elliptic module k, the complementary module k" and the complete elliptic integral K
=03/03, K =03/05, K=mnvj/2.

Further introduce two functions

hy/k')2 — @2
r(o) = T resn % k
K hok /k

>7B(Z): U Gy (14 55) G (55)

Gl (%) o=t G (3 + 85) G (3 + 57)

where arcsn is the inverse of the Jacobi elliptic sn function

Then the two-spinon contribution to the real part of the dynamical conductivity of the XXZ chain
at zero temperature and in the antiferromagnetic massive regime can be represented as

aztk  B(r(o)) 03 1
8k’ A —cos(r(w)) 95(r(w)/2) \/((h//k’)z — ?) (w2 — 2)

where ® € [hy, hy/k']. Outside this interval it vanishes

Rec® () =
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Summary and outlook

Summary and outlook

@ We have applied the thermal form factor approach to the dynamical two-point
functions of the magnetization and of the spin current for the XXZ chain in
the massive antiferromagnetic regime and in the low-T limit

@ For T — 0 we have obtained explicit expressions for the form factor
amplitudes that contain only finite determinants

@ The resulting TFFSs for the two-point functions are numerically highly
efficient
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Summary and outlook

Summary and outlook

@ We have applied the thermal form factor approach to the dynamical two-point
functions of the magnetization and of the spin current for the XXZ chain in
the massive antiferromagnetic regime and in the low-T limit

@ For T — 0 we have obtained explicit expressions for the form factor
amplitudes that contain only finite determinants

@ The resulting TFFSs for the two-point functions are numerically highly
efficient

Future work:

@ Series for all spin-zero operators and relation with Fermionic basis of Boos et
al., higher-spin operators

@ Extend this work to the massless regime of XXZ
@ Show convergence of the series and estimate the truncation error
(€

Obtain the isotropic limit and perform the long-time large-distance analysis of
two-point functions of the XXX chain

® Perform a high-T analysis (for XX case cf. [GKS 20A])
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