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Asymmetric simple exclusion process

Consider an ASEP on the infinite lattice Z
q 1 q 1

The ASEP is

a continuous time Markov process
integrable
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Time-evolution

The probability satisfies the time-evolution equation

d
dt P(ν; t) =

∑
λ̸=ν

W(λ → ν)P (λ; t) −
∑
µ̸=ν

W(ν → µ)P(ν; t)

The totally asymmetric version (TASEP) is obtained by setting q = 0.

Theorem (Schütz (1997), Tracy and Widom (2008))

Given initial µ and final conditions ν the transition probability on Z is given by

PTASEP
t (µ → ν) =

∮
0

n∏
i=1

dzi

2πi
∑
π∈Sn

(−1)|π|
n∏

i=1

(
1 − zi

1 − zπi

)i

e(z−1
i −1)tzνi

πi z
−µi −1
i

which satisfies the time-evolution with initial condition

PTASEP
0 (µ → ν) =

n∏
i=1

δνi ,µi .
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Theorem (Schütz (1997), Tracy and Widom (2008))

Given initial µ and final conditions ν the transition probability on Z is given by

PTASEP
t (µ → ν) =

∮
0

n∏
i=1

dzi

2πi
∑
π∈Sn

(−1)|π|
n∏

i=1

(
1 − zi

1 − zπi

)i

e(z−1
i −1)tzνi

πi z
−µi −1
i

which satisfies the time-evolution with initial condition

PTASEP
0 (µ → ν) =

n∏
i=1

δνi ,µi .

5 / 23



TASEP crossing probability

We choose the step initial condition µi = i

Define probability of n particles crossing a wall at position s ∈ N as

Pcross(s) = P(s ≤ ν1 < ν2 < · · · < νn).

x

t

s
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Limiting behaviour of TASEP

We may find this probability as a Fredholm determinant

Pcross(s) = det(1 − Kn(x , y))ℓ2(N),

where

Kn(x , y) =
n−1∑
k=0

ϕk(x)ψk(y).

The functions ϕk , ψk are defined as contour integrals

ϕk(x) =
∮

1

dη
2πi

ηk−x e−ηt

(η − 1)k+1 , ψk(y) =
∮

0

dζ
2πi

(ζ − 1)keζt

ζk−y+2 .

We change k = vt − κt1/3 for κ > 0 and through a steepest decent
analysis we find

lim
t→∞

f1(t)ϕvt−κt1/3
(
ξ1t1/3) = Ai(κ+ ξ1),

lim
t→∞

f2(t)ψvt−κt1/3
(
ξ2t1/3) = Ai(κ+ ξ2),

which converge uniformly for some unimportant functions f1, f2.
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Limiting behaviour of TASEP

With the change k = vt − κt1/3 and n = vt as t → ∞

Kn(x , y) =
n−1∑
k=0

ϕk(x)ψk(y) ∼
∫ ∞

0
Ai(κ+ ξ1) Ai(κ+ ξ2)dκ =: KAiry(ξ1, ξ2)

This function satisfies

det(1 − KAiry(ξ1, ξ2))L2(R≥α) = F2(α)

where F2 is the Tracy-Widom distribution of the largest eigenvalue for the
Gaussian unitary ensemble (GUE).
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Limiting behaviour of TASEP

Theorem (Johansson, 2000)

For the step initial condition, when setting n = vt, we obtain the limit

lim
t→∞

P
(
ν1(t) − vt

c0t1/3 ≥ α

)
= F2(α),

for some constant c0.

The TASEP lies within the KPZ universality class for the case of step
initial condition.

There are very few rigorous similar results for models with distinguishable
particles. Our work provides a starting point for their asymptotic analysis.
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Six-vertex model

We start with a square lattice and draw paths between vertices
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Six-vertex model weights

We are allowed to have the following vertex Configurations with
Boltzmann weights

1 a1 1 − a1

1 a2 1 − a2

The classical partition function can be computed by summing over
connected path configurations

Z =
∑

Ω

a#
1 (1 − a1)#a#

2 (1 − a2)#.
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Six-vertex model weights

Introduce a small parameter ϵ > 0

Set a2 = 0 and a1 = ϵ which gives the weights as

1 ϵ 1 − ϵ

1 0 1
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Reduction to TASEP

t/ϵ rows

take ϵ → 0

ν

t

TASEP space-time
diagram
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Reduction to TASEP

The TASEP transition probability can be realised as the partition function
of the stochastic six-vertex model.

Proposition

lim
ϵ→0

P6VM[µ → ν − (t/ϵ)n]
∣∣
ℓ=t/ϵ,a1=ϵ,a2=0

= PTASEP
t (µ → ν)
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Multi-species TASEP

We investigate a multi-species version of the TASEP.

We have many distinguishable particle species, where higher particle
species have priority over lower species.

1 1 2 1 3 2

We aim to recover transition probabilities for the r -TASEP from a vertex
model.
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Higher Rank Stochastic Vertex Model

We also consider a multi-coloured higher rank version of the stochastic six
vertex model with Uq

(
ŝln+1

)
symmetry.

It will have a partition function with appropriate weights represented by

1

2

...

· · ·n − 1n

We can also reduce the multi-coloured partition function to the rainbow
TASEP.
This rainbow TASEP can be partially symmetrized into the form of a
general r -species TASEP.

Pr -TASEP
t (µ → ν)
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The Two-species Model

The simplest multi-species model is the 2-TASEP

We wish to study total crossing events of the 2-TASEP

initial state µ

totally crossed final state ν
t

2 2 2 1 1 1 1

We consider n total particles with m of them being type 2.
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2-TASEP Crossing Probability

The 2-TASEP transition probability simplifies under total crossing events.

Proposition

P2-TASEP
t (µ → ν) =

∮ m∏
i=1

dzi

2πi

n−m∏
j=1

dwj

2πi

×
m∏

i=1

e(z−1
i −1)t

(1 − zi)n−m

n−m∏
i=1

e(w−1
i −1)t

m∏
i=1

n−m∏
j=1

(wj − zi)

×det
(

zνn−m+j −µi −1
i (1 − zi)i−j

)
1≤i,j≤m

det
(

wνj −µm+i −1
i (1 − wi)i−j

)
1≤i,j≤n−m

This result generalises to r -species using the vertex model approach.
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2-TASEP Crossing Probability

ν

t

Bernoulli distributed
with density ρ

fixed position

2 2 2 1 1 1
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2-TASEP Crossing Probability

Proposition
The Bernoulli crossing probability is given by

PB-cross
t (s1, s2) = ρm

m!

∮
0,1,1−ρ

m∏
i=1

dzi

2πi
∏
i ̸=j

(zj − zi)
m∏

i=1

e(zi −1)tz−s2−m+1
i

(zi − 1)n(zi − 1 + ρ)

×
∮

0,1

n−m∏
i=1

dwi

2πi

m∏
i=1

n−m∏
j=1

(zi − wj)
n−m∏
i=1

−e(wi −1)tw−s1−m
i

(1 − wi)n−m−i+1

× det
(
w j−1

i − wn−m+s1−s2−1
i

)
1≤i,j≤n−m

.
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2-TASEP Crossing Probability

What if we take s1 < −m?

ν

t

s1

2 2 2 1 1 1

Since the type 1 particles move backwards when overtaken, all possible
total crossing configurations contribute towards PB-cross

t (s1, s2).
21 / 23



2-TASEP Crossing Probability

Proposition
When s1 ≤ −m the (n − m)-fold integral over type 1 particles collapses into 1
integral

PB-cross
t (s1, s2) = ρm

∮
0

dw
2πi

e(w−1)twn−2m−s2−1

w − 1

× det
(∮

0,1,1−ρ

dz
2πi

e(z−1)tz i+j−s2−m−1

(z − 1)m+1(z − 1 + ρ) (w − z)
)

1≤i,j≤m

.
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Final Thoughts

The initial TASEP results in this talk exist in an extended form with
left-hopping included (general ASEP).

The focus of future work will investigate the KPZ style asymptotic analysis
of multi-coloured models.

This has only been investigated in very limited circumstances.

Recent work (Nejjar, 2020) investigates the asymptotics with one
second-class particle, which we expect to recover.

These multi-species transition probabilities are useful for constructing
higher-rank stochastic dualities and their expectations (work in progress).
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