Nested paths in 2D percolation

Bernard Nienhuis
Institute Lorentz, Leiden, Netherlands

GGI - May 2022

Joint work with Youjin Deng, Jesper Jacobsen, Yu-Feng Song

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering
inf.	percolare	filter

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering
inf.	percolare	filter
1s	percolo	color

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering
inf.	percolare	filter
1s	percolo	color
2s	percolas	$?$

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering
inf.	percolare	filter
$1 s$	percolo	color
$2 s$	percolas	$?$
$3 s$	percolat	filter

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering
inf.	percolare	filter
1s	percolo	color
2s	percolas	$?$
3s	percolat	filter
1 p	percolamus	to honor

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering
inf.	percolare	filter
$1 s$	percolo	color
$2 s$	percolas	$?$
$3 s$	percolat	filter
$1 p$	percolamus	to honor
$2 p$	percolatis	filter through
$3 p$	percolant	filter through

An exercise in Google Translate

type	Latin	English
noun	percolatio	filtering
inf.	percolare	filter
$1 s$	percolo	color
$2 s$	percolas	$?$
$3 s$	percolat	filter
$1 p$	percolamus	to honor
$2 p$	percolatis	filter through
$3 p$	percolant	filter through

Everything is visual

On percolation

- Percolation: permeability depending on microscopic porosity
- random mixture of open and closed material
- on some characteristic microscopic scale

On percolation

- Percolation: permeability depending on microscopic porosity
- random mixture of open and closed material
- on some characteristic microscopic scale
- In models: complete absence of interactions.
- Sharp (but continuous) transition between permeable and impermeable phase of a macroscopic sample.
- In any dimension >1.

On percolation

- Percolation: permeability depending on microscopic porosity
- random mixture of open and closed material
- on some characteristic microscopic scale
- In models: complete absence of interactions.
- Sharp (but continuous) transition between permeable and impermeable phase of a macroscopic sample.
- In any dimension >1. (Classical in $D>6$)

On percolation

- Percolation: permeability depending on microscopic porosity
- random mixture of open and closed material
- on some characteristic microscopic scale
- In models: complete absence of interactions.
- Sharp (but continuous) transition between permeable and impermeable phase of a macroscopic sample.
- In any dimension >1. (Classical in $D>6$)

This talk

- Focus on point operators at the phase transition in 2D
- and on their critical exponents (conformal weights)
- Rehearse some known families of operators
- Introduce a new family \& study its properties

A two-point function: Insertion of two point-operators

A two-point function:
The probability that, say N, domain wall connect both points.
2-point functions decay as a power of the distance d : $d^{-2 X_{W M}(N)}$

The one-point function of this operator measures the probability that N domain walls run from the center (operator insertion point) to the boundary.

The one-point function of this operator measures the probability that N domain walls run from the center (operator insertion point) to the boundary.

This configurations contributes to the case $N=4$.

Naturally N is always even.

The symmetry between open en closed elements in this model, permits the introduction of anti-cyclic closure, thus allowing odd N.

The symmetry between open en closed elements in this model, permits the introduction of anti-cyclic closure, thus allowing odd N.

One-point functions decay with the disk radius $r: r^{-X_{w M}(N)}$

The exponent $X_{\mathrm{WM}}(N)$ is known as the watermelon exponent suggested by the cartoon of the two-point diagrams.

The value:

$$
X_{\mathrm{WM}}(N)=\frac{N^{2}-1}{12}
$$

Another operator relates to closed domain walls (loops), not terminating at the insertion point, but encircling it.

Another operator relates to closed domain walls (loops), not terminating at the insertion point, but encircling it.

We again find power law behavior, not in the probability, P_{N}, of finding N such loops but in its generating function.

In this example three domain walls surround the center of the disk．

In this example three domain walls surround the center of the disk.

The generating function

$$
W_{z}=\sum_{n} P_{n} z^{n}
$$

depends on the disk radius as

$$
W_{z}(r) \propto r^{-X_{\mathrm{NL}}(z)}
$$

In this example three domain walls surround the center of the disk.

The generating function

$$
W_{z}=\sum_{n} P_{n} z^{n}
$$

depends on the disk radius as

$$
W_{z}(r) \propto r^{-X_{N L}(z)}
$$

n l for nested loops

In the two-point function the relevant loops separate the two points.

In the two-point function the relevant loops separate the two points.
They surround only one of the two.

In the two-point function the relevant loops separate the two points.
They surround only one of the two.
But the loops surrounding both, are not counted (i.e. given weight z).

In analogy with the watermelon we could select a cuisine name: open oyster exponent, but we favored nested loops.

In analogy with the watermelon we could select a cuisine name: open oyster exponent, but we favored nested loops. The exponent is

$$
X_{N L}(z)=\frac{3}{4} \phi^{2}-\frac{1}{12} \quad \text { where } \quad z=2 \cos \phi \pi
$$

In analogy with the watermelon we could select a cuisine name: open oyster exponent, but we favored nested loops. The exponent is

$$
X_{\mathrm{NL}}(z)=\frac{3}{4} \phi^{2}-\frac{1}{12} \quad \text { where } \quad z=2 \cos \phi \pi
$$

For $\phi=\frac{\pi}{3}$, the weight $z=1$, and the exponent $X_{N L}(1)=0$ as expected.

In analogy with the watermelon we could select a cuisine name: open oyster exponent, but we favored nested loops. The exponent is

$$
X_{\mathrm{NL}}(z)=\frac{3}{4} \phi^{2}-\frac{1}{12} \quad \text { where } \quad z=2 \cos \phi \pi
$$

For $\phi=\frac{\pi}{3}$, the weight $z=1$, and the exponent $X_{\mathrm{NL}}(1)=0$ as expected.
For $\phi=\frac{\pi}{2}, z=0$, only configurations allowed without loops around center. The exponent $X_{\mathrm{NL}}(0)=\frac{5}{48}$

In analogy with the watermelon we could select a cuisine name: open oyster exponent, but we favored nested loops. The exponent is

$$
X_{\mathrm{NL}}(z)=\frac{3}{4} \phi^{2}-\frac{1}{12} \quad \text { where } \quad z=2 \cos \phi \pi
$$

For $\phi=\frac{\pi}{3}$, the weight $z=1$, and the exponent $X_{\mathrm{NL}}(1)=0$ as expected.
For $\phi=\frac{\pi}{2}, z=0$, only configurations allowed without loops around center. The exponent $X_{\text {NL }}(0)=\frac{5}{48}$
$z=0$ selects configurations with at least one path (between insertion points) over hexagons of the same color.

In this example there is indeed a path from the center to the boundary over blue hexagons.

Many different paths are possible.

In this example there is indeed a path from the center to the boundary over blue hexagons.

Many different paths are possible.

But, in this case, only two non-overlapping paths at the same time

This exponent has been named Monochromatic Arm exponent, $X_{\mathrm{MA}}(N)$ Its value is not known analytically, except for $N=1$.

But especially $X_{\text {MA }}(2)$ is well studied, usually called the backbone exponent, from its relation to the percolating cluster without its singly connected elements.

This exponent has been named Monochromatic Arm exponent, $X_{\mathrm{MA}}(N)$ Its value is not known analytically, except for $N=1$.

But especially $X_{\mathrm{MA}}(2)$ is well studied, usually called the backbone exponent, from its relation to the percolating cluster without its singly connected elements.

N	$X_{\mathrm{MA}}(N)$	$\left(1+4 N^{2}\right) / 48$
1	$5 / 48$	0.10417
2	0.35435	0.35417
3	0.7707	0.77083
4	1.36	1.35417

This exponent has been named Monochromatic Arm exponent, $X_{\mathrm{MA}}(N)$ Its value is not known analytically, except for $N=1$.

But especially $X_{\text {MA }}(2)$ is well studied, usually called the backbone exponent, from its relation to the percolating cluster without its singly connected elements.

Some values:

N	$X_{\mathrm{MA}}(N)$	$\left(1+4 N^{2}\right) / 48$
1	$5 / 48$	0.10417
2	0.35435	0.35417
3	0.7707	0.77083
4	1.36	1.35417

The proposal in the third column is due to Beffara and Nolin, 2009. It agrees tantalizingly well with the listed numerics

This exponent has been named Monochromatic Arm exponent, $X_{\mathrm{MA}}(N)$ Its value is not known analytically, except for $N=1$.

But especially $X_{\text {MA }}(2)$ is well studied, usually called the backbone exponent, from its relation to the percolating cluster without its singly connected elements.

Some values:

N	$X_{\mathrm{MA}}(N)$	$\left(1+4 N^{2}\right) / 48$
1	$5 / 48$	0.10417
2	0.35435	0.35417
3	0.7707	0.77083
4	1.36	1.35417

The proposal in the third column is due to Beffara and Nolin, 2009. It agrees tantalizingly well with the listed numerics (by the same authors),
but disagrees with the best estimates of
$X_{\mathrm{MA}}(2)=0.3569 \pm 0.0006$ (Jacobsen, Zinn-Justin, 2002)
$X_{\text {MA }}(2)=0.3566 \pm 0.0001$ (Xu, Wang, Zhou, Garoni, Deng, 2014)

A digression on "monochromatic"

What happens if the monochromatic restriction is relaxed:

Abstract

A digression on "monochromatic" What happens if the monochromatic restriction is relaxed: The probability cannot decrease \Rightarrow the exponent cannot increase.

A digression on "monochromatic"

What happens if the monochromatic restriction is relaxed: The probability cannot decrease \Rightarrow the exponent cannot increase. Indeed it is known that the Bichromatic Arm exponent is equal to the watermelon exponent: $X_{\mathrm{BA}}(N)=X_{\mathrm{WM}}(N)$

A digression on "monochromatic"

What happens if the monochromatic restriction is relaxed:
The probability cannot decrease \Rightarrow the exponent cannot increase. Indeed it is known that the Bichromatic Arm exponent is equal to the watermelon exponent: $X_{\mathrm{BA}}(N)=X_{\mathrm{WM}}(N)$

Somewhat counter-intuitively: $\mathbb{P}\left(\mathrm{S}^{+}\right)>\mathbb{P}\left(\mathrm{B}^{3}\right)$

A digression on "monochromatic"

What happens if the monochromatic restriction is relaxed:
The probability cannot decrease \Rightarrow the exponent cannot increase. Indeed it is known that the Bichromatic Arm exponent is equal to the watermelon exponent: $X_{\mathrm{BA}}(N)=X_{\mathrm{WM}}(N)$

Somewhat counter-intuitively: $\left.\mathbb{P}\left(\infty^{\infty}\right)>\mathbb{P}()^{\infty}\right)$

Since $X_{\mathrm{MA}}(N)<X_{\mathrm{WM}}(N+1)$ (rigorously), an extra arm of the other color is an event of (asymptotically) zero probability: all arms belong to the same cluster, with probability approaching 1.

A digression on "monochromatic"

What happens if the monochromatic restriction is relaxed:
The probability cannot decrease \Rightarrow the exponent cannot increase. Indeed it is known that the Bichromatic Arm exponent is equal to the watermelon exponent: $X_{\mathrm{BA}}(N)=X_{\mathrm{WM}}(N)$

Somewhat counter-intuitively: $\left.\left.\mathbb{P}()^{*}\right)>\mathbb{P}()^{3}\right)$

Since $X_{\mathrm{MA}}(N)<X_{\mathrm{WM}}(N+1)$ (rigorously), an extra arm of the other color is an event of (asymptotically) zero probability: all arms belong to the same cluster, with probability approaching 1.

Proof that $X_{\mathrm{BA}}(N)=X_{\mathrm{WM}}(N)$ claimed by Aizenman, Duplantier \& Aharony PRL 1999.

We studied domain walls connecting distant points, as well as separating them.
Why not do the same with percolation paths?
It is natural to expect that this gives another family of universal percolation exponents.

Conventions: (for 1-point fn.)

Count possible paths surrounding the center

All in one cluster connecting the center to the boundary.

To test universality we do the same with bond percolation.

The opposite clusters are now on dual lattice.
non-overlapping now means no edge in common
different paths may pass the same site

labels: STr for site percolation on the triangular lattice $B S q$ for bond percolation on the square lattice.

In analogy with the exonent $X_{\mathrm{NL}}(z)=\frac{3}{4} \phi^{2}-\frac{1}{12}$ for $z=2 \cos (\phi \pi)$, we also plot $X_{\mathrm{NP}}(z)$ versus ϕ^{2}.

To test universality we did the computation for a few more lattices.

In an attempt to guess $X_{N P}(z)$, we assumed it is a simple function of ϕ^{2}.

In an attempt to guess $X_{N P}(z)$, we assumed it is a simple function of ϕ^{2}.
What do we know?

In an attempt to guess $X_{N P}(z)$, we assumed it is a simple function of ϕ^{2}.

What do we know?

$z=0$ Forbidding paths around the center, while demanding a path from the center to the boundary, effectively enforces two bichromatic paths from the center to the boundary.

$$
X_{N P}(0)=X_{B A}(2)=X_{W M}(2)=1 / 4
$$

In an attempt to guess $X_{\mathrm{NP}}(z)$, we assumed it is a simple function of ϕ^{2}.

What do we know?

$z=0$ Forbidding paths around the center, while demanding a path from the center to the boundary, effectively enforces two bichromatic paths from the center to the boundary. $X_{\mathrm{NP}}(0)=X_{\mathrm{BA}}(2)=X_{\mathrm{WM}}(2)=1 / 4$
$z=1$ Ignoring paths around the center, while demanding a path from the center to the boundary:
$X_{\mathrm{NP}}(1)=X_{\mathrm{MA}}(1)=X_{\mathrm{NL}}(0)=5 / 48$

In an attempt to guess $X_{N P}(z)$, we assumed it is a simple function of ϕ^{2}.
What do we know?
$z=0$ Forbidding paths around the center, while demanding a path from the center to the boundary, effectively enforces two bichromatic paths from the center to the boundary. $X_{\mathrm{NP}}(0)=X_{\mathrm{BA}}(2)=X_{\mathrm{WM}}(2)=1 / 4$
$z=1$ lgnoring paths around the center, while demanding a path from the center to the boundary:
$X_{\mathrm{NP}}(1)=X_{\mathrm{MA}}(1)=X_{\mathrm{NL}}(0)=5 / 48$

And what do we see?

In an attempt to guess $X_{N P}(z)$, we assumed it is a simple function of ϕ^{2}.

What do we know?

$z=0$ Forbidding paths around the center, while demanding a path from the center to the boundary, effectively enforces two bichromatic paths from the center to the boundary. $X_{\mathrm{NP}}(0)=X_{\mathrm{BA}}(2)=X_{\mathrm{WM}}(2)=1 / 4$
$z=1$ lgnoring paths around the center, while demanding a path from the center to the boundary:
$X_{\mathrm{NP}}(1)=X_{\mathrm{MA}}(1)=X_{\mathrm{NL}}(0)=5 / 48$

And what do we see?

$z \rightarrow \infty$ An asymptotic slope of $3 / 4$, equal to that of $X_{N L}(z)$.

In an attempt to guess $X_{N P}(z)$, we assumed it is a simple function of ϕ^{2}.

What do we know?

$z=0$ Forbidding paths around the center, while demanding a path from the center to the boundary, effectively enforces two bichromatic paths from the center to the boundary. $X_{\mathrm{NP}}(0)=X_{\mathrm{BA}}(2)=X_{\mathrm{WM}}(2)=1 / 4$
$z=1$ Ignoring paths around the center, while demanding a path from the center to the boundary:
$X_{\mathrm{NP}}(1)=X_{\mathrm{MA}}(1)=X_{\mathrm{NL}}(0)=5 / 48$

And what do we see?

$z \rightarrow \infty$ An asymptotic slope of $3 / 4$, equal to that of $X_{\mathrm{NL}}(z)$.
$z=2 \operatorname{Or} \phi=0$. Strong suggestion that $X_{N P}(2)=0$. (proof later)

In an attempt to guess $X_{N P}(z)$, we assumed it is a simple function of ϕ^{2}.

What do we know?

$z=0$ Forbidding paths around the center, while demanding a path from the center to the boundary, effectively enforces two bichromatic paths from the center to the boundary.
$X_{\mathrm{NP}}(0)=X_{\mathrm{BA}}(2)=X_{\mathrm{WM}}(2)=1 / 4$
$z=1$ Ignoring paths around the center, while demanding a path from the center to the boundary:
$X_{\mathrm{NP}}(1)=X_{\mathrm{MA}}(1)=X_{\mathrm{NL}}(0)=5 / 48$

And what do we see?

$z \rightarrow \infty$ An asymptotic slope of $3 / 4$, equal to that of $X_{\mathrm{NL}}(z)$.
$z=2 \operatorname{Or} \phi=0$. Strong suggestion that $X_{N P}(2)=0$. (proof later)
$z<-1$ Some singularity, perhaps a pole?

z	ϕ	X_{NP}	
1	$1 / 3$	$1 / 4$	Proposal:
0	$1 / 2$	$5 / 48$	
∞	i ∞	$-3 / 4 \phi^{2}$	$X_{\mathrm{NP}}(z)=\frac{3}{4} \phi^{2}-\frac{a \phi^{2}}{\phi^{2}-b}$
2	0	0	

The rational function is chosen to agree with the numerical observations (lines 3-5 of table).

z	ϕ	X_{NP}	
1	$1 / 3$	$1 / 4$	Proposal:
0	$1 / 2$	$5 / 48$	
∞	i ∞	$-3 / 4 \phi^{2}$	$X_{N P}(z)=\frac{3}{4} \phi^{2}-\frac{a \phi^{2}}{\phi^{2}-b}$
2	0	0	

The rational function is chosen to agree with the numerical observations (lines 3-5 of table).
To make it agree with the first two lines, $a=5 / 48$ and $b=2 / 3$.

$$
X_{N P}(z)=\frac{3}{4} \phi^{2}-\frac{5}{48} \frac{\phi^{2}}{\phi^{2}-2 / 3}
$$

z	ϕ	X_{NP}	
1	$1 / 3$	$1 / 4$	Proposal:
0	$1 / 2$	$5 / 48$	
∞	i ∞	$-3 / 4 \phi^{2}$	$X_{N P}(z)=\frac{3}{4} \phi^{2}-\frac{a \phi^{2}}{\phi^{2}-b}$
2	0	0	

The rational function is chosen to agree with the numerical observations (lines 3-5 of table).
To make it agree with the first two lines, $a=5 / 48$ and $b=2 / 3$.

$$
X_{N P}(z)=\frac{3}{4} \phi^{2}-\frac{5}{48} \frac{\phi^{2}}{\phi^{2}-2 / 3}
$$

Formula looks credible, ageement with numerics is excellent, but I offer not even a trace of understanding.
The pole, and its position $(\phi=\sqrt{2 / 3})$ are a challenge to our faith.

What remains is the status of $X_{N P}(2)=0$.

What remains is the status of $X_{N P}(2)=0$. First the data:

What remains is the status of $X_{N P}(2)=0$. First the data:

For $S T r$ up to diagonal $L=7, W_{2}(L)=1$ exactly, for larger L, data are consistent with $W_{2}(L)=1$.

Now the proof

Now the proof

- Consider any configuration in STr percolation

Now the proof

- Consider any configuration in STr percolation

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of bichromatic nested paths.

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of bichromatic nested paths.
- Draw their unique innermost version given the interior ones

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of bichromatic nested paths.
- Draw their unique innermost version given the interior ones

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of bichromatic nested paths.
- Draw their unique innermost version given the interior ones
- Define P_{n} : the color-flip of the n-th path and its interior

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of ℓ bichromatic nested paths.
- Draw their unique innermost version given the interior ones
- Define P_{n} : the color-flip of the n-th path and its interior

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of ℓ bichromatic nested paths.
- Draw their unique innermost version given the interior ones
- Define P_{n} : the color-flip of the n-th path and its interior
- Consider the collection of 2^{ℓ} configurations generated by $\left\{P_{n}\right\}_{n=1}^{\ell}$

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of ℓ bichromatic nested paths.
- Draw their unique innermost version given the interior ones
- Define P_{n} : the color-flip of the n-th path and its interior
- Consider the collection of 2^{ℓ} configurations generated by $\left\{P_{n}\right\}_{n=1}^{\ell}$
- One of the 2^{ℓ} has ℓ open paths

Now the proof

- Consider any configuration in STr percolation
- Consider the maximal set of ℓ bichromatic nested paths.
- Draw their unique innermost version given the interior ones
- Define P_{n} : the color-flip of the n-th path and its interior
- Consider the collection of 2^{ℓ} configurations generated by $\left\{P_{n}\right\}_{n=1}^{\ell}$
- One of the 2^{ℓ} has ℓ open paths
- Only this one contributes to W_{z}
 but with a multiplier z^{ℓ}.
- Therefore $W_{2}=1$

Summary \& outlook

- WM, NL, MA operators complemented with NP.
- $X_{N P}(z)=\frac{3}{4} \phi^{2}-\frac{5}{48} \frac{\phi^{2}}{\phi^{2}-2 / 3}$
- proof that $X_{N P}(2)=0$, or even that $W_{2}(L)=1$
- Beffara \& Nolins proposal for $X_{\mathrm{MA}}(N)=\frac{4 N^{2}+1}{48}$.
- statistics on \# nested paths can be derived and is tested.
- Generalization to Potts models, Kasteleyn Fortuin clusters is well underway.

