Quantum exclusion processes

Fabian Essler (Oxford)

work with Lorenzo Piroli (ENS Paris), Jacob Robertson (Oxford)

EDSPC Engineering and Physical Sciences Research Council

Classical exclusion processes and integrable spin chains

Lattice model of hard-core particles
"Configurations" $\boldsymbol{\tau}=\left(\tau_{1}, \ldots, \tau_{L}\right)$; $\tau_{j}=0,1$: site j empty/occupied
Prob. distr. of having config. τ at time $\mathrm{t}: \mathrm{P}(\tau, t)$

Stochastic dynamics:

Master equation:

$$
P(\boldsymbol{\tau}, t+d t)=P(\boldsymbol{\tau}, t)+\left[\sum_{\boldsymbol{\sigma} \neq \boldsymbol{\tau}} M(\boldsymbol{\sigma}, \boldsymbol{\tau}) P(\boldsymbol{\sigma}, t)-M(\boldsymbol{\tau}, \boldsymbol{\sigma}) P(\boldsymbol{\tau}, t)\right] d t
$$

Mapping to a non-hermitian "spin-chain":

- Configurations $\tau=\left(\tau_{1}, \ldots, \tau_{\llcorner }\right) \rightarrow$ basis states $\mid \tau_{\left.1, \ldots, \tau_{L}\right\rangle}$
- Probability distr. $\mathrm{P}(\tau, \boldsymbol{t}) \rightarrow$ State $|P(t)\rangle=\sum_{\tau} P(\tau, t)\left|\tau_{1}, \ldots, \tau_{N}\right\rangle$
- Master eqn. \rightarrow imaginary time Schrödinger eqn

$$
\frac{d}{d t}|P(t)\rangle=\mathscr{L}|P(t)\rangle
$$

$$
\begin{aligned}
\mathscr{L} & =\sum_{j=1}^{L} q \sigma_{j}^{+} \sigma_{j+1}^{-}+p \sigma_{j}^{-} \sigma_{j+1}^{+}-\frac{p+q}{4}\left[\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right] \quad \text { non-hermitian } \\
& S \mathscr{L} S^{-1}=\text { XXZ spin-1/2 chain }
\end{aligned}
$$

Huge body of work since 1990ies

Master equations for open quantum systems

Hamiltonian

$$
H=H_{S}+H_{E}+H_{\mathrm{int}}
$$

density matrix $\quad \rho(t)=e^{-i H t} \rho(0) e^{i H t}$
reduced DM $\quad \rho_{S}(t)=\operatorname{Tr}_{E}[\rho(t)]$

Goal: determine e.g. $\operatorname{Tr}\left[\rho s(t) \mathrm{Os}_{s}(x)\right]$
$\mathrm{O}_{s}(x)=$ local operator acting on system

Difficult in general...

Simplifying assumptions

1. Environment is Markovian
\rightarrow can neglect retardation when integrating out environment
2. Effect on system on environment is negligible
3. Initial density matrix is factorised $\rho(0)=\rho_{E}(0) \otimes \rho_{S}(0)$

Can average over environment degrees of freedom

Lindblad equation for reduced density matrix

$$
\frac{d}{d t} \rho_{S}(t)=i\left[H_{S}, \rho_{S}(t)\right]+\sum_{a=1}^{M} \gamma_{a}\left(L_{a} \rho_{S}(t) L_{a}^{\dagger}-\frac{1}{2}\left\{L_{a}^{\dagger} L_{a}, \rho_{S}(t)\right\}\right)
$$

rates
"jump operators" describe coupling of system to environment

If correlation length in environment is short compared to lattice spacing \& system/environment are homogeneous

$$
\frac{d}{d t} \rho_{S}(t)=i\left[H_{S}, \rho_{S}(t)\right]+\gamma \sum_{j=1}^{M}\left(L_{j} \rho_{S}(t) L_{j}^{\dagger}-\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho_{S}(t)\right\}\right)
$$

Now follow the classical case and write this as an imaginary time Schrödinger equation

"Superoperator formalism"

$\left.\rho=\sum_{n, m=1}^{\operatorname{dim} \mathcal{H}}\langle n| \rho|m\rangle|m\rangle\langle n| \cdots \quad|\rho\rangle=\sum_{n, m}\langle n| \rho|m\rangle|m\rangle|n\rangle\right\rangle$
density matrix
state
Now define superoperators acting on these states.

Superoperators arising from operators acting from the left:

$$
\left.\mathcal{O} \rho \rightarrow \mathcal{O}|\rho\rangle \equiv \sum_{n, m}\langle n| \rho|m\rangle(\mathcal{O}|m\rangle)|n\rangle\right\rangle
$$

Superoperators arising from operators acting from the right:

$$
\left.\rho \mathcal{O} \rightarrow \widetilde{\mathscr{O}}|\rho\rangle \equiv \sum_{n, m}\langle n| \rho|m\rangle|m\rangle(\widetilde{\mathcal{O}}|n\rangle\rangle\right) \quad\left\langle n^{\prime}\right| \widetilde{\mathcal{O}}|n\rangle=\langle n| \mathcal{O}\left|n^{\prime}\right\rangle
$$

for bosonic ops

Lindblad eqn becomes

$$
\frac{\partial}{\partial t}|\rho\rangle=\mathscr{L}|\rho\rangle
$$

$$
\mathscr{L}=-i H+i \widetilde{H}+\sum_{a} \gamma_{a}\left[L_{a} \widetilde{L}_{a}^{\dagger}-\frac{1}{2}\left(L_{a}^{\dagger} L_{a}+\widetilde{L}_{a} \widetilde{L}_{a}^{\dagger}\right)\right]
$$

There are Lindblad equations for which \mathscr{L} is the (nonhermitian) Hamiltonian of a quantum integrable model!

Medvedyeva, Essler \& Prosen '16
Rowlands \& Lamacraft '18, Shibata \& Katsura '19
Essler\& Ziolkowska '20, Essler\& Piroli '21, Robertson \& Essler '21
Buca et al '20, Nakagawa, Kawakami \& Ueda '20
de Leeuw, Paletta \& Pozsgay '21 ...

$$
H=\sum_{j} \sigma_{j}^{+} \sigma_{j+1}^{-}+\sigma_{j}^{-} \sigma_{j+1}^{+} \quad L_{j}=\sqrt{\frac{u}{2}} \sigma_{j}^{z}
$$

After a Jordan-Wigner transformation Lindbladian becomes

$$
\mathscr{L}=-i \sum_{j, \sigma} c_{j, \sigma}^{\dagger} c_{j+1, \sigma}+c_{j+1, \sigma}^{\dagger} c_{j, \sigma}+4 u \sum_{j}\left(n_{j, \uparrow}-\frac{1}{2}\right)\left(n_{j, \downarrow}-\frac{1}{2}\right)
$$

imaginary \dagger Hubbard model

N.B. The i does not affect integrability but dramatically changes the BAE.

Are there quantum versions of exclusion processes?

And if so, are they integrable?

"Quantum ASEP"

spin-1/2 chain coupled to "quantum noise"

environment= "quantum BM"
spins-1/2

Time-dep. Hamiltonian $\quad H(t)=\sum_{j=1}^{L} \kappa_{j}(t) \sigma_{j}^{+} \sigma_{j+1}^{-}+\bar{\kappa}_{j}(t) \sigma_{j}^{-} \sigma_{j+1}^{+}$
spin-flips induced by Markovian (quantum) environment

$$
\begin{array}{ll}
\mathbb{E}\left[\kappa_{j}(t)\right]=0 & \mathbb{E}\left[\kappa_{j}(t) \bar{\kappa}_{k}\left(t^{\prime}\right)\right]=J_{1} \delta_{j, k} \delta\left(t-t^{\prime}\right) \\
\mathbb{E}\left[\bar{\kappa}_{j}(t)\right]=0 & \mathbb{E}\left[\bar{\kappa}_{j}(t) \kappa_{k}\left(t^{\prime}\right)\right]=J_{2} \delta_{j, k} \delta\left(t-t^{\prime}\right)
\end{array}
$$

Time evolution of the full density matrix

$$
\rho(t)=U\left(t, t_{0}\right) \rho\left(t_{0}\right) U^{\dagger}\left(t, t_{0}\right) \quad U\left(t, t_{0}\right)=T e^{-i \int_{t_{0}}^{t} d s H(s)}
$$

Bernard, Essler, Hruza\& Medenjak `21

Time evolution of the reduced density matrix of the system

$$
\frac{d}{d t} \rho_{S}(t)=\frac{d}{d t} \mathbb{E}[\rho(t)]=\mathscr{L}\left[\rho_{S}(t)\right]
$$

$\mathscr{L}\left[\rho_{S}\right]=\sum_{j=1}^{L} J_{2} \ell_{j}^{(2)} \rho_{S} \ell_{j}^{(2)^{\dagger}}+J_{1} \ell_{j}^{(1)} \rho_{S} \ell_{j}^{(1)^{\dagger}}-\frac{1}{2}\left\{J_{1} \ell_{j}^{(1)^{\dagger}} \ell_{j}^{(1)}+J_{2} \ell_{j}^{(2)^{\dagger}} \ell_{j}^{(2)}, \rho_{S}\right\}$
$\ell_{j}^{(1)}=\sigma_{j}^{-} \sigma_{j+1}^{+}, \quad \ell_{j}^{(2)}=\sigma_{j}^{+} \sigma_{j+1}^{-} \quad$ "jump operators"

Quantum-ASEP in the super-operator formalism

Vectorization

$$
|n\rangle\langle m| \Rightarrow|n\rangle|m\rangle\rangle
$$

$$
\begin{aligned}
& \left.|\uparrow\rangle_{j j}\langle\uparrow| \Rightarrow|\uparrow\rangle_{j}|\uparrow\rangle\right\rangle_{j} \equiv|1\rangle_{j} \\
& \left.|\downarrow\rangle_{j j}\langle\uparrow| \Rightarrow|\downarrow\rangle_{j}|\uparrow\rangle\right\rangle_{j} \equiv|2\rangle_{j} \\
& \left.|\uparrow\rangle_{j j}\langle\downarrow| \Rightarrow|\uparrow\rangle_{j}|\downarrow\rangle\right\rangle_{j} \equiv|3\rangle_{j} \\
& \left.|\downarrow\rangle_{j}\langle\downarrow| \Rightarrow|\downarrow\rangle_{j}|\downarrow\rangle\right\rangle_{j} \equiv|4\rangle_{j}
\end{aligned}
$$

Basis of super-operators: $\quad E_{j}^{a b} \equiv|a\rangle_{j}{ }_{j}\langle b|, \quad a, b \in\{1,2,3,4\}$

Lindblad equation:

$$
\frac{d\left|\rho_{S}(t)\right\rangle}{d t}=\mathscr{L}\left|\rho_{S}(t)\right\rangle
$$

where the Lindbladian is

$$
\begin{aligned}
\mathscr{L} & =\sum_{j} J_{1} E_{j}^{14} E_{j+1}^{41}+J_{2} E_{j}^{41} E_{j+1}^{14}-J_{1} E_{j}^{44} E_{j+1}^{11}-J_{2} E_{j}^{11} E_{j+1}^{44} \\
& -\frac{1}{2} \sum_{j}\left(E_{j}^{22}+E_{j}^{33}\right)\left(J_{1} E_{j+1}^{11}+J_{2} E_{j+1}^{44}\right)+\left(E_{j+1}^{22}+E_{j+1}^{33}\right)\left(J_{2} E_{j}^{11}+J_{1} E_{j}^{44}\right) \\
& +\frac{J_{1}+J_{2}}{4} \sum_{j}\left(E_{j}^{22} E_{j+1}^{33}+E_{j}^{33} E_{j+1}^{22}\right) .
\end{aligned}
$$

Integrable?

"Operator space fragmentation"

\mathscr{L} has an extensive number of strictly local conservation laws

$$
\left[\mathscr{L}, E_{j}^{22}\right]=0=\left[\mathscr{L}, E_{j}^{33}\right]
$$

$$
j=1, . ., L
$$

$\rightarrow \mathscr{L}$ is block-diagonal
sites in states $|2\rangle,|3\rangle$ are frozen under dynamics \rightarrow static "defects"

Simplest block: no defects

$$
\mathscr{L}_{\mathrm{ASEP}}=\sum_{j=1}^{L}\left[J_{1} \sigma_{j}^{+} \sigma_{j+1}^{-}+J_{2} \sigma_{j}^{-} \sigma_{j+1}^{+}+\frac{J_{1}+J_{2}}{4}\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right] .
$$

Classical ASEP!

Sectors with defects: consider $|\Psi(t)\rangle=e^{\mathscr{L} t}|\Psi(0)\rangle$ where

$$
\left.|\Psi(0)\rangle=\left|\psi_{\left[1, \ell_{1}-1\right]}\right\rangle \otimes|2\rangle_{\ell_{1}} \otimes\left|\psi_{\left[\ell_{1}+1, \ell_{2}-1\right]}\right\rangle \otimes|3\rangle_{\ell_{2}} \otimes \psi_{\left[\ell_{2}+1, L-1\right]}\right\rangle \otimes|2\rangle_{L}
$$

Lindbladian is block-diagonal: $\mathscr{L} \rightarrow \mathscr{L}_{\left[1, \ell_{1}-1\right]}+\mathscr{L}_{\left[\ell_{1}+1, \ell_{2}-1\right]}+\mathscr{L}_{\left[\ell_{2}+1, L-1\right]}$
$S^{-1} \mathscr{L}_{[m, n]} S=-\sqrt{\frac{J_{1} J_{2}}{2}}\left(2 \Delta+\sum_{j=m}^{n-1}\left[\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right]\right)$

$$
2 \Delta=\sqrt{\frac{J_{1}}{J_{2}}}+\sqrt{\frac{J_{2}}{J_{1}}}
$$

open Heisenberg spin-1/2 chain!
\rightarrow can use integrability methods to determine spectrum of \mathscr{L}
At late times QASP reduces to ASEP!

$$
\left.|\rho(t)\rangle=\sum_{\alpha} \rho_{\alpha \boldsymbol{\alpha}} e^{\mathscr{L}_{\text {ASPP }}}|\boldsymbol{\alpha}\rangle|\boldsymbol{\alpha}\rangle\right\rangle+\mathcal{O}\left(e^{-\max \left(J_{1}, J_{2}\right) t / 2}\right)
$$

"Dynamics becomes classical".
$\operatorname{Tr}\left[\rho(t) \sigma_{j_{1}}^{z} \ldots \sigma_{j_{n}}^{z}\right]$
dynamics as in classical ASEP (approach stationary values)
$\operatorname{Tr}\left[\rho(t) \sigma_{j_{1}}^{+} \sigma_{j_{2}}^{-} \sigma_{j_{3}}^{z} \ldots \sigma_{j_{n}}^{z}\right]=\mathcal{O}\left(e^{-\max \left(J_{1}, J_{2}\right) t / 2}\right)$
"quantum" correlations decay exponentially to zero (more $\sigma_{m}^{ \pm}$lead to faster decay)

Can we calculate "quantum" correlation functions?
$\operatorname{Tr}\left[\rho(t) \sigma_{1}^{+} \sigma_{\ell}^{-}\right]=\langle\boldsymbol{\phi}| e^{\mathscr{L}_{[2, \ell-1]^{t}}} e^{\mathscr{L}_{[\ell+1, L]} t}|\rho(0)\rangle$
where $\langle\boldsymbol{\phi}|={ }_{1}\langle 2| \otimes_{j=2}^{\ell-1}\left[{ }_{j}\langle 1|+{ }_{j}\langle 4|\right] \otimes_{\ell}\langle 3| \otimes_{j=\ell+1}^{L}\left[{ }_{j}\langle 1|+{ }_{j}\langle 4|\right]$

Not known how to calculate this even for unentangled $|\rho(0)\rangle$.
cf. Piroli, Pozsgay\& Vernier '18
"Loschmidt amplitude" $\langle\rho(0)| e^{H_{x x z}{ }^{t}}|\rho(0)\rangle$

Building block: $\langle\boldsymbol{\Phi}| e^{\mathscr{L}_{[1, e]}{ }^{t}}|\boldsymbol{\rho}\rangle \quad \rightarrow$ 2-boundary QTM

A more complicated simpler problem Robertson \& Essler ' 21

Consider Lindblad equation for spin-1/2 with four jump operators

$$
L_{j}^{(1)}=\left(L_{j}^{(2)}\right)^{\dagger}=\sigma_{j}^{+} \sigma_{j+1}^{-} \quad L_{j}^{(3)}=\left(L_{j}^{(4)}\right)^{\dagger}=\sigma_{j}^{+} \sigma_{j+1}^{+}
$$

Quantum-ASEP
additional couplings to environment

Lindbladian:

$\mathscr{L}=\mathscr{L}_{Q A S E P}+\sum_{j} J_{3} E_{j}^{14} E_{j+1}^{14}+J_{4} E_{j}^{41} E_{j+1}^{41}-\sum_{j} J_{3} E_{j}^{44} E_{j+1}^{44}+J_{4} E_{j}^{11} E_{j+1}^{11}$

$$
\begin{aligned}
& -\frac{1}{2} \sum_{j}\left(E_{j}^{22}+E_{j}^{33}\right)\left(J_{4} E_{j+1}^{11}+J_{3} E_{j+1}^{44}\right)+\left(E_{j+1}^{22}+E_{j+1}^{33}\right)\left(J_{4} E_{j}^{11}+J_{3} E_{j}^{44}\right) \\
& -\frac{J_{3}+J_{4}}{2}\left(E_{j}^{22} E_{j+1}^{33}+E_{j}^{33} E_{j+1}^{22}\right)
\end{aligned}
$$

Exhibits operator-space fragmentation

$$
\begin{aligned}
& {\left[\mathscr{L}, E_{j}^{22}\right]=0=\left[\mathscr{L}, E_{j}^{33}\right]} \\
& \mathrm{j}=1, ., \mathrm{L}
\end{aligned}
$$

Observation: if $J_{1}+J_{2}=J_{3}+J_{4}$ then $\mathscr{L}_{[1, \ell]}$ can be mapped to a non-Hermitian open free-fermion chain

$$
\begin{aligned}
\mathscr{L}_{[1, \ell]}= & -\frac{J_{1}+J_{2}}{2}(\ell+1)-\mu \sum_{j=1}^{\ell}\left(2 c_{j}^{\dagger} c_{j}-1\right) \\
& \left.+\sum_{j=1}^{\ell-1}\left\{J_{1} c_{j+1}^{\dagger} c_{j}+J_{2} c_{j}^{\dagger} c_{j+1}-J_{3} c_{j} c_{j+1}-J_{4} c_{j+1}^{\dagger} c_{j}^{\dagger}\right)\right\}
\end{aligned}
$$

$$
c_{j}=\prod_{n=1}^{j-1}\left(E_{j}^{11}-E_{j}^{44}\right) E_{j}^{41}, \quad\left\{c_{j}, c_{k}^{\dagger}\right\}=\delta_{j, k}
$$

Can use (non-standard) free-fermion techniques to determine correlation functions.

Summary

1. Certain quantum master equations can be related to Yang-Baxter integrable models in interesting ways.
2. Spectral properties can be analysed using integrability.
3. Calculation of observables requires new methods.
