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Classical exclusion processes and integrable spin chains

Lattice model of hard-core particles

“Configurations" =(τ1,..., τL); 


Prob. distr. of having config.  at time t: P( ,t)

τ
τ τ
=0,1: site j empty/occupiedτj

Stochastic dynamics:

Exact Spectral Gaps of the Asymmetric Exclusion Process with Open Boundaries 2

The partially asymmetric simple exclusion process (PASEP) [1, 2] is a model
describing the asymmetric diffusion of hard-core particles along a one-dimensional
chain with L sites. Over the last decade it has become one of the most studied
models of non-equilibrium statistical mechanics, see [3, 4] for recent reviews. This is
due to its close relationship to growth phenomena and the KPZ equation [5], its use
as a microscopic model for driven diffusive systems [6] and shock formation [7], its
applicability to molecular diffusion in zeolites [8], biopolymers [9–11], traffic flow [12]
and other one-dimensional complex systems [13].

At large times the PASEP exhibits a relaxation towards a non-equilibrium
stationary state. An interesting feature of the PASEP is the presence of boundary
induced phase transitions [14]. In particular, in an open system with two boundaries
at which particles are injected and extracted with given rates, the bulk behaviour in
the stationary state is strongly dependent on the injection and extraction rates. Over
the last decade many stationary state properties of the PASEP with open boundaries
have been determined exactly [3, 4, 15, 16, 19–22].

On the other hand, much less is known about its dynamics. This is in contrast
to the PASEP on a ring for which exact results using Bethe’s ansatz have been
available for a long time [23–25]. For open boundaries there have been several
studies of dynamical properties based mainly on numerical and phenomenological
methods [26–30]. Very recently a real-space renormalization group approach was
introduced, which allows for the determination of the dynamical exponents [31].

In this work, elaborating on [32], we employ Bethe’s ansatz to obtain exact results
for the approach to stationarity at large times in the PASEP with open boundaries.
Upon varying the boundary rates, we find crossovers in massive regions, with dynamic
exponents z = 0, and between massive and scaling regions with diffusive (z = 2) and
KPZ (z = 3/2) behaviour.
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Figure 1. Transition rates for the partially asymmetric exclusion process.

The dynamical rules of the PASEP are as follows. At any given time t each site is
either occupied by a particle or empty and the system evolves subject to the following
rules. In the bulk of the system (i = 2, . . . , L− 1) a particle attempts to hop one site
to the right with rate p and one site to the left with rate q. The hop is prohibited if
the neighbouring site is occupied. On the first and last sites these rules are modified.
If site i = 1 is empty, a particle may enter the system with rate α. If on the other hand
site 1 is occupied by a particle, the latter will leave the system with rate γ. Similarly,
at i = L particles are injected and extracted with rates δ and β respectively.

With every site i we associate a Boolean variable τi, indicating whether a particle
is present (τi = 1) or not (τi = 0). Let |0〉 and |1〉 denote the standard basis vectors in
C2. A state of the system at time t is then characterized by the probability distribution

|P (t)〉 =
∑

τ

P (τ |t)|τ 〉, (0.1)

P(τ, t + dt) = P(τ, t) + [∑
σ≠τ

M(σ, τ)P(σ, t) − M(τ, σ)P(τ, t)]dt

Master equation:
excluded



● Configurations =(τ1,..., τL) ➝ basis states |τ1,...,τL〉

● Probability distr. P( ,t) →  State


● Master eqn. → imaginary time Schrödinger eqn

τ
τ

(Alcaraz, Droz, 

Henkel& Rittenberg ‘94)Mapping to a non-hermitian “spin-chain”:

Gwa&Spohn, Derrida, …

|P(t)⟩ = ∑
τ

P(τ, t) |τ1, …, τN⟩

d
dt

|P(t)⟩ = ℒ |P(t)⟩

ℒ =
L

∑
j=1

qσ+
j σ−

j+1 + pσ−
j σ+

j+1 −
p + q

4 [σz
j σz

j+1 − 1]
=XXZ spin-1/2 chainSℒS−1

Huge body of work since 1990ies

non-hermitian 



Master equations for open quantum systems

•    •    •    •    •    •    •

  •    •    •    •    •    •    •   

“System” e.g. spin chain

“environment”
interaction

⇢S(t) = TrE [⇢(t)]

H = HS +HE +Hint

⇢(t) = e�iHt⇢(0)eiHt

Hamiltonian

density matrix

reduced DM

Goal: determine e.g. Tr[ρS(t) ΟS(x)] ΟS(x) = local operator 
acting on system

Difficult in general…



Simplifying assumptions

1. Environment is Markovian

➝ can neglect retardation when integrating out environment

2. Effect on system on environment is negligible

3. Initial density matrix is factorised ρ(0) = ρE(0) ⊗ ρS(0)

Can average over environment degrees of freedom 



Lindblad equation for reduced density matrix 

d
dt

ρS(t) = i[HS, ρS(t)] +
M

∑
a=1

γa (LaρS(t)L†
a −

1
2

{L†
aLa, ρS(t)})

“jump operators”
describe coupling of 

system to environment

rates

Lindblad ’76

Gorini et at ‘76

If correlation length in environment is short compared to lattice 
spacing & system/environment are homogeneous

d
dt

ρS(t) = i[HS, ρS(t)] + γ
M

∑
j=1

(LjρS(t)L†
j −

1
2

{L†
j Lj, ρS(t)})

Linear!



Now follow the classical case and write this as an imaginary time 
Schrödinger equation
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The imaginary-u Hubbard model (8) exhibits an SO(4) symmetry [14, 18, 19]. The generators of the constituent
⌘-pairing SU(2) algebra are ⌘z =

P
j nj," + nj,# � 1, ⌘+ =
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†
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important role in the following.

Steady State.– The NESS is characterized by the condition L⇢ = 0. In the sector L = N = 2M , where L is the
total number of sites, it is easy to read o↵ the NESS in the Hubbard model representation

|NESSi =
�
⌘†
�M |0i, (11)

where |0i is the fermion vacuum defined by cj,�|0i = 0. Given that HHubb|0i = 0, the ⌘-pairing symmetry implies that
the state (10) has zero eigenvalue as well and therefore is a steady state. ⌘-pairing states like (10) attracted attention

state

Superoperators arising from operators acting from the left:

“Superoperator formalism”

|ρ⟩ = ∑
n,m

⟨n |ρ |m⟩ |m⟩ |n⟩⟩

𝒪ρ → 𝒪 |ρ⟩ ≡ ∑
n,m

⟨n |ρ |m⟩ (𝒪 |m⟩) |n⟩⟩

ρ𝒪 → �̃� |ρ⟩ ≡ ∑
n,m

⟨n |ρ |m⟩ |m⟩( �̃� |n⟩⟩) ⟨n′ | �̃� |n⟩ = ⟨n |𝒪 |n′ ⟩

for bosonic ops

density matrix

Now define superoperators acting on these states.

Superoperators arising from operators acting from the right:



Lindblad eqn becomes ∂
∂t

|ρ⟩ = ℒ |ρ⟩

ℒ = − iH + i H̃ + ∑
a

γa [LaL̃†
a −

1
2 (L†

aLa + L̃aL̃†
a)]

There are Lindblad equations for which 𝓛 is the (non-
hermitian) Hamiltonian of a quantum integrable model!

Medvedyeva, Essler & Prosen ’16

Rowlands & Lamacraft ’18, Shibata & Katsura ’19


Essler& Ziolkowska ’20, Essler& Piroli ’21, Robertson & Essler ’21

Buca et al ’20, Nakagawa, Kawakami & Ueda ‘20


de Leeuw, Paletta & Pozsgay ’21 …



imaginary t Hubbard model

ℒ = −i∑
j,σ

c†
j,σcj+1,σ + c†

j+1,σcj,σ + 4u∑
j

(nj,↑ −
1
2 )(nj,↓ −

1
2 )

Medvedyeva et al ’16

H = ∑
j

σ+
j σ−

j+1 + σ−
j σ+

j+1 Lj =
u
2

σz
j

Example: XX model with dephasing noise

After a Jordan-Wigner transformation Lindbladian becomes

N.B. The i does not affect integrability but dramatically changes 

the BAE.



Are there quantum versions of exclusion processes?

And if so, are they integrable?



 “Quantum ASEP” Jin, Krajenbrink & Bernard ’20

Bauer, Bernard & Jin ’19, ‘20

H(t) =
L

∑
j=1

κj(t)σ+
j σ−

j+1 + κ̄j(t)σ−
j σ+

j+1

spin-1/2 chain coupled to “quantum noise”

𝔼[κj(t)κ̄k(t′ )] = J1δj,kδ(t − t′ )

𝔼[κ̄j(t)κk(t′ )] = J2δj,kδ(t − t′ )

•    •    •    •    •    •    •

  •    •    •    •    •    •

spins-1/2

environment= “quantum BM”

Time-dep. Hamiltonian

spin-flips induced by Markovian (quantum) environment 

𝔼[κj(t)] = 0

𝔼[κ̄j(t)] = 0



ρ(t) = U(t, t0)ρ(t0)U†(t, t0) U(t, t0) = T e−i ∫t
t0

dsH(s)

Time evolution of the full density matrix

Time evolution of the reduced density matrix of the system

ℒ[ρS] =
L

∑
j=1

J2ℓ(2)
j ρSℓ(2)

j
† + J1ℓ(1)

j ρSℓ(1)
j

† −
1
2 {J1ℓ(1)

j
†ℓ(1)

j + J2ℓ(2)
j

†ℓ(2)
j , ρS}

ℓ(1)
j = σ−

j σ+
j+1 , ℓ(2)

j = σ+
j σ−

j+1 “jump operators”

d
dt

ρS(t) =
d
dt

𝔼[ρ(t)] = ℒ [ρS(t)]

Bernard, Essler, Hruza& Medenjak ‘21



| ↑ ⟩j j⟨ ↑ | ⇒ | ↑ ⟩j | ↑ ⟩⟩j ≡ |1⟩j

Basis of super-operators: Eab
j ≡ |a⟩j j⟨b | , a, b ∈ {1,2,3,4}

Lindblad equation: d |ρS(t)⟩
dt

= ℒ |ρS(t)⟩

Quantum-ASEP in the super-operator formalism

Vectorization

where the Lindbladian is

|n⟩⟨m | ⇒ |n⟩ |m⟩⟩ | ↓ ⟩j j⟨ ↑ | ⇒ | ↓ ⟩j | ↑ ⟩⟩j ≡ |2⟩j

| ↑ ⟩j j⟨ ↓ | ⇒ | ↑ ⟩j | ↓ ⟩⟩j ≡ |3⟩j

| ↓ ⟩j j⟨ ↓ | ⇒ | ↓ ⟩j | ↓ ⟩⟩j ≡ |4⟩j



ℒ = ∑
j

J1E14
j E41

j+1 + J2E41
j E14

j+1 − J1E44
j E11

j+1 − J2E11
j E44

j+1

−
1
2 ∑

j

(E22
j + E33

j )(J1E11
j+1 + J2E44

j+1) + (E22
j+1 + E33

j+1)(J2E11
j + J1E44

j )

+
J1 + J2

4 ∑
j

(E22
j E33

j+1 + E33
j E22

j+1) .

Integrable?



“Operator space fragmentation”

 has an extensive number of strictly local conservation lawsℒ

[ℒ, E22
j ] = 0 = [ℒ, E33

j ] j=1,..,L

Essler&Piroli ’20

➝  is block-diagonal ℒ

sites in states ,  are frozen under dynamics➝ static “defects”|2⟩ |3⟩

Simplest block: no defects

ℒASEP =
L

∑
j=1

[J1σ+
j σ−

j+1 + J2σ−
j σ+

j+1 +
J1 + J2

4 (σz
j σz

j+1 − 1)] .

Classical ASEP!



Sectors with defects: consider  where|Ψ(t)⟩ = eℒt |Ψ(0)⟩

|Ψ(0)⟩ = |ψ[1,ℓ1−1]⟩ ⊗ |2⟩ℓ1
⊗ |ψ[ℓ1+1,ℓ2−1]⟩ ⊗ |3⟩ℓ2

⊗ ψ[ℓ2+1,L−1]⟩ ⊗ |2⟩L

•

•••

•

•

•

•

•

•• •
•

•
•

•
•

|2⟩|2⟩

|3⟩

frozen under dynamics

{ |1⟩, |4⟩}

2
1

L ℓ1

ℓ2

ℒ → ℒ[1,ℓ1−1] + ℒ[ℓ1+1,ℓ2−1] + ℒ[ℓ2+1,L−1]Lindbladian is block-diagonal:



S−1ℒ[m,n]S = −
J1J2

2 (2Δ +
n−1

∑
j=m

[σx
j σx

j+1 + σy
j σy

j+1 + Δ (σz
j σz

j+1 − 1)])

2Δ =
J1

J2
+

J2

J1
open Heisenberg spin-1/2 chain!

➝ can use integrability methods to determine spectrum of ℒ

At late times QASP reduces to ASEP!

|ρ(t)⟩=∑
α

ρααeℒASEPt |α⟩ |α⟩⟩ + 𝒪(e−max(J1,J2)t/2)

“Dynamics becomes classical”.



Tr [ρ(t)σz
j1
…σz

jn] dynamics as in classical ASEP

Tr [ρ(t)σ+
j1

σ−
j2 σz

j3
…σz

jn] = 𝒪(e−max(J1,J2)t/2)

(approach stationary values)

“quantum” correlations decay exponentially to zero (more 
 lead to faster decay)σ±

m



Tr [ρ(t)σ+
1 σ−

ℓ ] = ⟨ϕ |eℒ[2,ℓ−1]teℒ[ℓ+1,L]t |ρ(0)⟩

Can we calculate “quantum” correlation functions?

where ⟨ϕ | = 1⟨2 | ⊗ℓ−1
j=2 [j⟨1 | + j⟨4 |] ⊗ ℓ⟨3 | ⊗L

j=ℓ+1 [j⟨1 | + j⟨4 |]

Not known how to calculate this even for unentangled .|ρ(0)⟩

cf. Piroli, Pozsgay& Vernier ‘18

⟨ρ(0) |eHXXZ t |ρ(0)⟩“Loschmidt amplitude”



⟨Φ |eℒ[1,ℓ]t |ρ⟩

1 ℓ

|Φ⟩

|ρ⟩

Building block: ➝ 2-boundary QTM

−t/N

t/N − η

−t/N

t/N − η



L(1)
j = (L(2)

j )† = σ+
j σ−

j+1

A more complicated simpler problem

L(3)
j = (L(4)

j )† = σ+
j σ+

j+1

Robertson & Essler ‘21

Consider Lindblad equation for spin-1/2 with four jump operators

Quantum-ASEP additional couplings to environment

ℒ = ℒQASEP + ∑
j

J3E14
j E14

j+1 + J4E41
j E41

j+1 −∑
j

J3E44
j E44

j+1 + J4E11
j E11

j+1

−
1
2 ∑

j

(E22
j + E33

j )(J4E11
j+1 + J3E44

j+1) + (E22
j+1 + E33

j+1)(J4E11
j + J3E44

j )

−
J3 + J4

2
(E22

j E33
j+1 + E33

j E22
j+1)

Lindbladian:



Exhibits operator-space fragmentation [ℒ, E22
j ] = 0 = [ℒ, E33

j ]

j=1,..,L

Observation: if  then  can be mapped to 
a non-Hermitian open free-fermion chain

J1 + J2 = J3 + J4 ℒ[1,ℓ]

ℒ[1,ℓ] = −
J1 + J2

2
(ℓ + 1) − μ

ℓ

∑
j=1

(2c†
j cj − 1)

+
ℓ−1

∑
j=1

{J1c†
j+1cj + J2c†

j cj+1 − J3cjcj+1 − J4c†
j+1c

†
j )}

cj =
j−1

∏
n=1

(E11
j − E44

j )E41
j , {cj, c†

k } = δj,k

Can use (non-standard) free-fermion techniques to determine 
correlation functions.



Summary

1. Certain quantum master equations can be related to 

Yang-Baxter integrable models in interesting ways.


2. Spectral properties can be analysed using integrability.


3. Calculation of observables requires new methods.



