Diagonal finite volume matrix elements in the sinh-Gordon model

Fedor Smirnov

Based on joint work with Zoltan Bajnok

1. Introduction

Consider the Euclidean QFT on a cylinder

where we insert the local operator O. Energy-momentum tensor

$$\partial_{\bar{z}}T = \partial_z\Theta, \quad \partial_z\bar{T} = \partial_{\bar{z}}\Theta,$$

produces

$$P_{\pm} = \int_{C_{\pm}} (Tdz + \Theta d\bar{z}) \qquad \bar{P}_{\pm} = \int_{C_{\pm}} (\bar{T}d\bar{z} + \Theta dz) \,.$$

If the boundary conditions correspond to the same Matsubara eigenvector $(P_+ = P_-, \bar{P}_+ = \bar{P}_-)$ the figure represents a diagonal matrix element. -p.2/25 There are several reasons to be interested in diagonal matrix elements.

✓ For $L \to \infty$ we are interested in the Matsubara ground state matrix elements (One-point functions, Negro, Smirnov, 2013). Using the OPE

$$O_i(x)O_j(0) = \sum_k c_{i,j}^k(x)O_k(0),$$

which is a purely UV characteristics (a subject of PCFT in principle) we reduce all correlation functions to the one-point functions.

The one-point function on the torus equals

$$\langle O(0) \rangle_{\text{torus}} = \sum_{K} \frac{\langle K|O(0)|K \rangle}{\langle K|K \rangle} e^{-2\pi L e_{K}}$$

This is an interesting object which, in particular must be invariant under $L \leftrightarrow R$.

Diagonal matrix elements are used when the correction to the S-matrix for perturbed model are computed.

Sinh-Gordon model

We shall consider sinh-Gordon model The Lagrangian density of the

$$\mathcal{L} = \frac{1}{4\pi} (\partial \phi)^2 + \frac{2\mu^2}{\sin \pi b^2} \cosh(b\varphi) \,.$$
$$b \to 1/b \,.$$

Duality:

We use selfdual $Q = b + b^{-1}$.

The exact relation between the dimensional parameter and μ and the particle mass:

$$b^{-1}(\mu\Gamma(1+b^2))^{\frac{1}{1+b^2}} = Z(b)m,$$

where

$$Z(b) = \frac{1}{16Q\pi^{3/2}} \Gamma\left(\frac{b}{2Q}\right) \Gamma\left(\frac{b^{-1}}{2Q}\right).$$

The *S*-matrix

$$S(\theta) = \frac{\sinh \theta - i \sin(\frac{\pi}{1+b^2})}{\sinh \theta + i \sin(\frac{\pi}{1+b^2})} \ .$$

We shall use dimensionless r = mR.

Finite volume spectrum can be found using the Q-function: regular in θ it satisfies the quantum Wronskian relation

$$\mathcal{Q}(\theta + \frac{i\pi}{2})\mathcal{Q}(\theta - \frac{i\pi}{2}) - \mathcal{Q}(\theta + \frac{i\pi}{2}\frac{1-b^2}{1+b^2})\mathcal{Q}(\theta - \frac{i\pi}{2}\frac{1-b^2}{1+b^2}) = 1,$$

and behaves asymptotically as

$$\log \mathcal{Q}(\theta) \simeq -\frac{r \cosh(\theta)}{2 \sin(\frac{\pi}{1+b^2})}, \quad \theta \to \pm \infty.$$

Let θ_k be zeros of $\mathcal{Q}(\theta)$ in the strip $|\text{Im}(\theta)| < \pi$, then

$$\begin{aligned} \mathcal{Q}(\theta) &= \prod_{k=1}^{N} \tanh\left(\frac{\theta - \theta_{k}}{2}\right) \\ &\times \exp\left(-\frac{r\cosh(\theta)}{2\sin(\frac{\pi}{1+b^{2}})} + \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\cosh(\theta - \theta')} \log(1 + e^{-\epsilon(\theta')}) d\theta'\right), \end{aligned}$$

where

$$e^{-\epsilon(\theta)} = \mathcal{Q}(\theta + \frac{i\pi}{2}\frac{1-b^2}{1+b^2})\mathcal{Q}(\theta - \frac{i\pi}{2}\frac{1-b^2}{1+b^2}).$$

It is assumed that all θ_k are real.

. – p.5/25

From that we derive the TBA equation

$$\epsilon(\theta) = r \cosh \theta + \sum_{k=1}^{N} \log S(\theta - \theta_k - \frac{\pi i}{2}) - \int_{-\infty}^{\infty} K(\theta - \theta') \log(1 + e^{-\epsilon(\theta')}) d\theta',$$

with the kernel

$$K(\theta) = \frac{1}{2\pi i} \frac{d}{d\theta} \log S(\theta)$$
.

In addition we have for the discrete spectrum

$$f(\theta_k) = \pi N_k \,,$$

where

$$f(\theta) = r \sinh \theta + \sum_{k=1}^{N} \arg(-S(\theta - \theta_k)) - \int_{-\infty}^{\infty} K(\theta - \theta' + \frac{\pi i}{2}) \log(1 + e^{-\epsilon(\theta')}) d\theta'$$

. – p.6/25

coincides at $\theta = \theta_k$ with the analytical continuation of $-i\epsilon(\theta + i\pi/2)$. We use $\arg(-S(\theta - \theta_k))$ for convenience because S(0) = -1, Eigenvalues of the local integrals of motion:

$$I_{s}(r) = \frac{1}{C_{s}(b)} \left(-\frac{1}{s} \sum_{j=1}^{m} e^{s\theta_{k}} + (-1)^{\frac{s-1}{2}} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{s\theta} \log\left(1 + e^{-\epsilon(\theta)}\right) d\theta \right),$$

$$\bar{I}_{s}(r) = \frac{1}{C_{s}(b)} \left(-\frac{1}{s} \sum_{j=1}^{m} e^{-s\theta_{k}} + (-1)^{\frac{s-1}{2}} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-s\theta} \log\left(1 + e^{-\epsilon(\theta)}\right) d\theta \right),$$

where

$$C_s(b) = -\frac{Z(b)^{-s}}{4\sqrt{\pi}Q\left(\frac{s+1}{2}\right)!} \Gamma(\frac{b}{2Q}s)\Gamma(\frac{b^{-1}}{2Q}s).$$

In particular,

$$E = I_1 + \bar{I}_1, \quad P = I_1 - \bar{I}_1.$$

The coefficients $C_s(b)$ are introduced in order to fit with the UV CFT normalisation.

For large volume one reproduces the Luscher corrections. This is rather simple, I do not go into details.

Small R is more interesting. Everything depends on dimensionless

$$\tilde{\mu} = \mu R^{1+b^2}$$

Replacing μ we obtain for the zero mode the potential of the form

Quantisation of the zero-mode:

$$4P_L(r)Q\log\left(Z(b)rb^{\frac{b^2-1}{b^2+1}}\right) = -\pi L + \frac{1}{i}\log\frac{\Gamma(1+2iP_L(r)b)\Gamma(1+2iP_L(r)/b)}{\Gamma(1-2iP_L(r)b)\Gamma(1-2iP_L(r)/b)}$$

These equations we solve numerically. It is easy to compare the first integrals with CFT

$$I_1^{\text{CFT}} = P_L(r)^2 - \frac{1}{24} + M, \quad \overline{I}_1^{\text{CFT}} = P_L(r)^2 - \frac{1}{24} + \overline{M},$$

Later we use

$$\Delta = P^2 + \frac{Q^2}{4}, \qquad c = 1 + 6Q^2.$$

For example $\mathcal{N} = \{-2, 0, 2\}$ corresponds to the primary field with L = 4. We compute for r = .001 the ratios:

$$\frac{I_1}{I_1^{\text{CFT}}} = 1.00003 , \quad \frac{I_1}{\overline{I}_1^{\text{CFT}}} = 0.999989 .$$

Counting the CFT operators

\mathcal{N}	L	M	$ar{M}$
{ }	1	0	0
{0}	2	0	0
{-1,1}	3	0	0
{-2,0,2}	4	0	0
{2}	1	1	0
{-1,3}	2	1	0
{-2,0,4}	3	1	0
{-3,3}	1	1	1
{4}	1	2	0
{1,3}	1	2	0
{-1,5}	2	2	0
{-2,2,4}	2	2	0
{-3,5}	1	2	1
{-5,5}	1	2	2
{1,5}	1	3	0
{0,2,4}	1	3	0
{-3,-1,1,5}	4	1	0

2. Expectation values

Since *a* is generic we have one-to-one correspondence between local fields in the Liouville and sinh-Gordon models.

Our goal is to compute the diagonal matrix elements

 $\langle \theta_1,\ldots,\theta_m | \mathcal{O} | \theta_m,\ldots,\theta_1 \rangle_R$.

Obviously \mathcal{O} are defined modulo $[I_s, \cdot]$. The primary field

$$\Phi_a = \frac{1}{\mathcal{F}(a,b)} e^{a\varphi} \,,$$

is normalised by Lukyanov-Zamolodchikov one-point function.

We have fermionic operators acting on the space of local operators. Define

$$\beta_M^* \gamma_N^* \bar{\beta}_{\bar{M}}^* \bar{\gamma}_{\bar{N}}^* \Phi_a = \beta_{m_1}^* \dots \beta_{m_k}^* \gamma_{n_1}^* \dots \gamma_{n_k}^* \bar{\beta}_{\bar{m}_1}^* \dots \bar{\beta}_{\bar{m}_{\bar{k}}}^* \bar{\gamma}_{\bar{n}_1}^* \dots \bar{\gamma}_{\bar{n}_{\bar{k}}}^* \Phi_a \,.$$

with the requirement

$$#(M) + #(\overline{M}) = #(N) + #(\overline{N}).$$
 ...p.11/25

General rule: In UV limit the Virasoro descendants descendants of Φ_a are sent to the descentants of Φ_{a-mb} ,

$$m = \#(N) - \#(M)$$
.

Explicit relation to Virasoro descendants will be discussed later.

To understand $m \neq 0$ we need $\beta^*_{-j} = \gamma_j$, $\gamma^*_{-j} = \beta_j$ satisfying

$$\{\beta_k, \beta_n^*\} = \{\bar{\gamma}_k, \bar{\gamma}_n^*\} = -t_k(a, b)\delta_{k, n}; \qquad t_n(a, b) = \frac{1}{2\sin(\frac{\pi}{Q}(2a - nb))}.$$

The femionmic descendant with $m \neq 0$ describe Virasoro descendants in shifted modules:

$$\beta_{M}^{*} \gamma_{N}^{*} \bar{\beta}_{\bar{M}}^{*} \bar{\gamma}_{\bar{N}}^{*} \Phi_{a+mb} = \frac{1}{\prod_{j=1}^{m} t_{2j-1}(a,b)} \beta_{M+2m}^{*} \gamma_{N-2m}^{*} \bar{\beta}_{\bar{M}-2m}^{*} \bar{\gamma}_{\bar{N}+2m}^{*} \beta_{I_{\text{odd}}(m)}^{*} \bar{\gamma}_{I_{\text{odd}}(m)}^{*} \Phi_{a} .$$

where $I_{\text{odd}}(m) = \{1, 3, \dots, 2m - 1\}.$

For m = 0 the fermionic basis $\beta_M^* \gamma_N^* \overline{\beta}_{\overline{M}}^* \overline{\gamma}_{\overline{N}}^* \Phi_a$ has a remarkable property of solving the reflection relations of FFLZZ, namely, under both reflections

$$a \to -a, \qquad a \to Q-a$$

 $eta^* \longleftrightarrow oldsymbol{\gamma}^*$.

we have

This can be taken for definition, contrary to sine-Gordon case we do not have scaling limit from the lattice.

Our main conjecture is that like in the sine-Gordon case

$$\frac{\langle \theta_1, \dots, \theta_m | \beta_M^* \gamma_N^* \bar{\beta}_{\bar{M}}^* \bar{\gamma}_{\bar{N}}^* \Phi_a | \theta_m, \dots, \theta_1 \rangle_R}{\langle \theta_1, \dots, \theta_m | \Phi_a | \theta_m, \dots, \theta_1 \rangle_R} = \mathcal{D}(\{M \cup (-\bar{M})\} | \{N \cup (-\bar{N})\} | a).$$

where for the index sets $M = \{m_1, \ldots, m_k\}$ and $N = \{n_1, \ldots, n_k\}$ the determinant is

$$\mathcal{D}(M|N|a) = \prod_{j=1}^{k} \frac{\operatorname{sgn}(m_j)\operatorname{sgn}(n_j)}{\pi} \operatorname{Det}\left(\Omega_{m_i,n_j}\right)_{i,j=1,\cdots,k},$$

$$\Omega_{m,n} = \omega_{m,n} - \pi \operatorname{sgn}(n)\delta_{m,-n}t_n(a).$$

The matrix $||\omega_{m,n}||$ is defined by analogy with other cases.

3. Definition of $\boldsymbol{\omega}$

Using

$$\partial_r f(\theta_k) + \partial_\theta f(\theta_k) \frac{d\theta_k}{dr} = 0,$$

compute the variation

 $\partial_r \epsilon(\theta)$

$$= \cosh \theta - 2\pi i \sum_{k=1}^{N} K(\theta - \theta_k + \frac{\pi i}{2}) \frac{d\theta_k}{dr} + \int_{-\infty}^{\infty} K(\theta - \theta') \partial_r \epsilon(\theta') \frac{1}{1 + e^{\epsilon(\theta')}} d\theta'$$
$$= \cosh \theta + 2\pi i \sum_{k=1}^{N} K(\theta - \theta_k + \frac{\pi i}{2}) \frac{\partial_r f(\theta_k)}{\partial_\theta f(\theta_k)} + \int_{-\infty}^{\infty} K(\theta - \theta') \partial_r \epsilon(\theta') \frac{1}{1 + e^{\epsilon(\theta')}} d\theta',$$

Motivated by this we introduce the convolution

$$G * H = 2\pi i \sum \frac{1}{\partial_{\theta} f(\theta_k)} g_k h_k + \int_{-\infty}^{\infty} g(\theta) h(\theta) \frac{d\theta}{1 + e^{\epsilon(\theta)}}.$$

. – p.14/25

Now we are ready to define

$$\omega_{n,m} = e_n * (1 + \mathcal{K}_a + \mathcal{K}_a * \mathcal{K}_a + \dots) * e_m \equiv e_n * (1 + \mathcal{R}_{\mathrm{dress},a}) * e_m,$$

where $e_n = \{e^{n(\theta_1 + \frac{\pi i}{2})}, \dots, e^{n(\theta_m + \frac{\pi i}{2})}, e^{n\theta}\}$, and \mathcal{K}_a has a matrix structure

$$\mathcal{K}_a = \begin{pmatrix} K_a(\theta_k - \theta_l) & K_a(\theta_k - \theta' + \frac{\pi i}{2}) \\ K_a(\theta - \theta_l - \frac{\pi i}{2}) & K_a(\theta - \theta') \end{pmatrix},$$

and K_a is the deformation of the TBA kernel

$$K_a(\theta) = \frac{1}{2\pi i} \left(\frac{A^{-1}}{\sinh(\theta - \frac{\pi i}{1 + b^2})} - \frac{A}{\sinh(\theta + \frac{\pi i}{1 + b^2})} \right), \quad A = \exp\left\{2\pi i \frac{a}{Q}\right\}.$$

4. UV limit

On the cylinder we have two Virasoro algebras

$$T(z) = \sum_{n = -\infty}^{\infty} \mathbf{l}_n z^{-n-2}, \quad T(z) = \sum_{n = -\infty}^{\infty} L_n e^{\frac{nz}{R}} - \frac{c}{24},$$

here we can set R = 1, it is easy to reconstruct the dependance on R due to the scale invariance. We are interested in

$$\langle \Psi | \mathcal{O}_a | \Psi \rangle$$
,

where

$$|\Psi\rangle = L_{-n_1} \cdots L_{-n_p} |\Delta\rangle, \quad \mathcal{O}_a = \mathbf{l}_{-2m_1} \cdots \mathbf{l}_{-2m_r} \Phi_a,$$

 Φ_a is the primary field with dimension

$$\Delta_a = a(Q-a) \, .$$

Below we give examples relating the fermionic basis to the Virasoro one.

Recall $m = #(\gamma^*) - #(\beta^*)$.

Consider first examples with m=0

$$\begin{split} \beta_1^* \gamma_1^* \Phi_a &\equiv D_1(a, b) D_1(Q - a, b) \mathbf{l}_{-2} \Phi_a \,, \\ \beta_1^* \gamma_3^* \Phi_a &\equiv D_1(a, b) D_3(Q - a, b) \left(\mathbf{l}_{-2}^2 + \left(\frac{2c - 32}{9} + \frac{2}{3} d(a, b) \right) \mathbf{l}_{-4} \right) \Phi_a \,, \\ \beta_3^* \gamma_1^* \Phi_a &\equiv D_3(a, b) D_1(Q - a, b) \left(\mathbf{l}_{-2}^2 + \left(\frac{2c - 32}{9} - \frac{2}{3} d(a, b) \right) \mathbf{l}_{-4} \right) \Phi_a \,, \end{split}$$

where

$$d(a,b) = (b^2 - b^{-2})(Q/2 - a),$$

$$D_n(a,b) = \frac{1}{2i\sqrt{\pi}}Z(b)^{-n}\Gamma\Big(\frac{(2a+nb)}{2Q}\Big)\Gamma\Big(\frac{(2a+nb^{-1})}{2Q}\Big).$$

Using these formulae we find the UV asymptotics

$$\begin{split} \Omega_{1,1} &\simeq r^{-2} D_1(a,b) D_1(Q-a,b) \frac{\langle \mathbf{l}_{-2} \Phi_a \rangle}{\langle \Phi_a \rangle} \,, \\ \Omega_{3,1} &\simeq r^{-4} \frac{1}{2} D_3(a,b) D_1(Q-a,b) \Big\{ \frac{\langle \mathbf{l}_{-2}^2 \Phi_a \rangle}{\langle \Phi_a \rangle} + \Big(\frac{2c-32}{9} + \frac{2}{3} d(a,b) \Big) \frac{\langle \mathbf{l}_{-4} \Phi_a \rangle}{\langle \Phi_a \rangle} \Big\} \,, \\ \Omega_{1,3} &\simeq r^{-4} \frac{1}{2} D_1(a,b) D_3(Q-a,b) \Big\{ \frac{\langle \mathbf{l}_{-2}^2 \Phi_a \rangle}{\langle \Phi_a \rangle} + \Big(\frac{2c-32}{9} - \frac{2}{3} d(a,b) \Big) \frac{\langle \mathbf{l}_{-4} \Phi_a \rangle}{\langle \Phi_a \rangle} \Big\} \,. \end{split}$$

Now we consider m = -1. Simplest case is

$$\beta_1^* \bar{\gamma}_1^* \Phi_a \equiv t_1(a, b) \Phi_{a-b} \,.$$

For primary fields using the Liouville three-point function we get

$$\frac{\langle \Phi_{a-b} \rangle_{\Delta}}{\langle \Phi_{a} \rangle_{\Delta}} = F(a,b) \frac{\gamma^2(ab-b^2)}{\gamma(2ab-2b^2)\gamma(2ab-b^2)} \gamma(ab-b^2-2ibP)\gamma(ab-b^2+2ibP) \,.$$

where F(a, b) is a ratio of two LZ one-point functions:

$$F(a,b) = 2(1+b^2)Z(b)^{2(\Delta_a - \Delta_{a-b})}$$
$$\times \gamma \left(\frac{2a+b^{-1}}{2Q}\right)\gamma \left(\frac{2(Q-a)+b}{2Q}\right)\gamma \left(2ab-b^2\right).$$

We find

$$\Omega_{1,-1} \simeq r^{2(\Delta_a - \Delta_{a-b})} t_1(a,b) \frac{\langle \Phi_{a-b} \rangle}{\langle \Phi_a \rangle} \,.$$

Numerics.

Below we give numerical results for

$$r = .0001, \ a = \frac{87}{80}, \ b = \frac{2}{5}.$$

We take the first really non-trivial case of level 2. This is the simplest one with degenerate $I_1 = L_0 - \frac{c}{24}$. For simplicity we consider states with $\overline{M} = 0$.

Use the basis:

$$L_{-2}|\Delta\rangle, \quad L_{-1}^2|\Delta\rangle.$$

The degeneration is lifted by

$$I_3 = 2\sum_{n=1}^{\infty} L_{-n}L_n + L_0^2 - \frac{c+2}{12}L_0 + \frac{c(5c+22)}{2880},$$

with eigenvalues

$$\lambda_{\pm}(\Delta) = \frac{17}{3} + \frac{c(5c + 982)}{2880} - \frac{c - 142}{12}\Delta + \Delta^2 \pm \frac{1}{2}\sqrt{288\Delta + (c - 4)^2},$$

and eigenvectors

$$\psi_{\pm} = \begin{pmatrix} \frac{1}{12}c - 4 \pm \sqrt{288\Delta + (c-4)^2} \\ 1 \end{pmatrix}$$

Numerical computation gives for $b = 2/5, r = 10^{-3}$

$$\mathcal{N}_{-} = \{1, 3\}, \quad I_{3}(r) = 21.3719, \quad \lambda_{-}(\Delta(r)) = 21.3767,$$
$$\mathcal{N}_{+} = \{4\}, \quad I_{3}(r) = 74.8342, \quad \lambda_{+}(\Delta(r)) = 74.8399.$$

We compute (using natural notations)

$$\frac{\langle \Phi_a \rangle_{\Delta+2}}{\langle \Phi_a \rangle_{\Delta}} = \frac{2(3\Delta - 4\Delta_a + 4\Delta_a^2 + c/2)}{2(3\Delta - \Delta_a + \Delta_a^3)} + \frac{2(3\Delta - \Delta_a + \Delta_a^3)}{2(3\Delta - \Delta_a + \Delta_a^3)} + \frac{2(3\Delta - \Delta_a + \Delta_a^3)}{8\Delta^2 + \Delta(4 - 8\Delta_a + 8\Delta_a^2) - 2\Delta_a + 3\Delta_a^2 - 2\Delta_a^3 + \Delta_a^4}$$

and

$$\frac{\langle \mathcal{O}_a \rangle_{\Delta+2}}{\langle \Phi_a \rangle_{\Delta}} = \begin{pmatrix} M_{1,1}(\mathcal{O}_a) & M_{1,2}(\mathcal{O}_a) \\ M_{1,2}(\mathcal{O}_a) & M_{2,2}(\mathcal{O}_a) \end{pmatrix},$$

the matrix is symmetric.

For example, for $\mathcal{O}_a = \mathbf{l}_{-2} \Phi_a$,

$$\begin{split} M_{1,1} &= \frac{1}{48} \Big(48c - c^2 - 672\Delta_a + 102c\Delta_a + 976\Delta_a^2 - 8c\Delta_a^2 - 16\Delta_a^3 \\ &+ \Delta (384 + 16c + 560\Delta_a + 192\Delta_a^2) + 192\Delta^2 \Big) \,, \\ M_{1,2} &= \frac{1}{12} \Big(-72\Delta_a + 7c\Delta_a + 14\Delta_a^2 + 6c\Delta_a^2 + 84\Delta_a^3 - c\Delta_a^3 - 2\Delta_a^4 \\ &+ \Delta (144 - 3c + 258\Delta_a + 144\Delta_a^2 + 24\Delta_a^3) + 72\Delta^2 \Big) \,, \\ M_{2,2} &= \frac{1}{24} \Big(-96\Delta_a + 2c\Delta_a + 52\Delta_a^2 - 3c\Delta_a^2 - 6\Delta_a^3 + 2c\Delta_a^3 + 52\Delta_a^4 - c\Delta_a^4 - 2\Delta_a^5 \\ &+ \Delta (192 - 4c + 232\Delta_a + 8c\Delta_a + 568\Delta_a^2 - 8c\Delta_a^2 + 128\Delta_a^3 + 24\Delta_a^4) \\ &+ \Delta^2 (480 - 8c + 560\Delta_a + 192\Delta_a^2) + 192\Delta^3 \Big) \,. \end{split}$$

The general formulas the CFT limit take the form

$$\Omega_{1,1}^{\pm} \simeq r^{-2} D_1(a,b) D_1(Q-a,b) \frac{\psi_{\pm}^t \cdot \langle \mathbf{l}_{-2} \Phi_a \rangle_{\Delta+2} \cdot \psi_{\pm}}{\psi_{\pm}^t \cdot \langle \Phi_a \rangle_{\Delta+2} \cdot \psi_{\pm}},$$

$$\Omega_{1,3}^{\pm} \simeq r^{-2} D_1(a,b) D_3(Q-a,b) \\ \times \frac{\psi_{\pm}^t \cdot \langle \mathbf{l}_{-2}^2 + \frac{2}{9}(c-16-3d(a,b))\mathbf{l}_{-4}\Phi_a \rangle_{\Delta+2} \cdot \psi_{\pm}}{\psi_{\pm}^t \cdot \langle \Phi_a \rangle_{\Delta+2} \cdot \psi_{\pm}},$$

$$\Omega_{3,1}^{\pm} \simeq r^{-2} D_3(a,b) D_1(Q-a,b) \\ \times \frac{\psi_{\pm}^t \cdot \langle \mathbf{l}_{-2}^2 + \frac{2}{9}(c-16+3d(a,b)) \mathbf{l}_{-4} \Phi_a \rangle_{\Delta+2} \cdot \psi_{\pm}}{\psi_{\pm}^t \cdot \langle \Phi_a \rangle_{\Delta+2} \cdot \psi_{\pm}} ,$$

$$\Omega_{1,-1}^{\pm} \simeq r^{2(\Delta_a - \Delta_{a-b})} t_1(a,b) \frac{\psi_{\pm}^t \cdot \langle \Phi_{a-b} \rangle_{\Delta+2} \cdot \psi_{\pm}}{\psi_{\pm}^t \cdot \langle \Phi_a \rangle_{\Delta+2} \cdot \psi_{\pm}}$$

٠

Numerical results

	Ω^{-}	CFT	Ω^+	CFT
1, 1	$-1.08264 \cdot 10^{10}$	$-1.08263 \cdot 10^{10}$	$-1.88711 \cdot 10^{10}$	$-1.88706 \cdot 10^{10}$
1,3	$2.18196 \cdot 10^{20}$	$2.18194 \cdot 10^{20}$	$1.20262 \cdot 10^{21}$	$1.20259 \cdot 10^{21}$
3,1	$2.04976 \cdot 10^{20}$	$2.04975 \cdot 10^{20}$	$1.20746 \cdot 10^{21}$	$1.20742 \cdot 10^{21}$
1, -1	-0.000266622	-0.000266688	-0.000309866	-0.000309887

This supports our conjecture.

Another evidence is given by comparing with the analogue of LeClair-Mussardo formula which was found by Pozsgay.