
Takato Yoshimura (University of Oxford)


GGI, May 2022


Based on collaboration with B. Doyon, G. Perfetto, and T. Sasamoto

Ballistic macroscopic fluctuation theory 


for


 Integrable systems



Inhomogeneous dynamics in quantum many-body systems
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How can we characterise the persistent (ballistic) currents?
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•One of the most important quantities is the average of the currents 


• But of course that’s not the only thing that describes the properties of currents! More intricate information is encoded in 
correlations pertaining to rare fluctuations


• They are known as (scaled) cumulants, and capture the statistics of currents, e.g. variance, skewness, etc.
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•More formally


• The nontrivial  exists when the probability  follows the large deviation principle  with a 
convex large deviation function .


•How would we compute  for ballistic many-body systems?


• The ballistic fluctuation theory (BFT) was devised for this purpose but it is restricted to the homogeneous initial condition


•We propose a general framework to describe the physics pertaining to (rare) fluctuations. It can be seen as the ballistic version of the 
diffusive macroscopic fluctuation theory (MFT). Its general idea was also introduced in Benjamin’s talk.
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Hydrodynamics and local relaxation


•We consider a many-body system with  conservation laws, which support ballistic transport. Let us start with recalling the 
principle of Euler hydrodynamics


• Suppose the initial condition is given by some local (generalised) Gibbs ensemble with the statistical average


• The primary objects in hydrodynamics are the space-time averaged mesoscopic observables 


•Note that we eventually take 
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• For instance hydrodynamics predicts that 


•Note that  characterise the fluid cell at the (macroscopic) space-time , so their arguments  are macroscopic.


• The above equality implies that the local equilibrium average of the (mesoscopic) observable at the macroscopic point  is 
given by its equilibrium average with the spatio-temporal Lagrange multipliers .


•On the Euler scale the average of any local operator can be thought of as a functional of , i.e.
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𝚚(x, t) := ⟨ ̂q⟩β(x,t)

lim
ℓ→∞
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• In terms of  and , the Euler hydrodynamic equation reads , or equivalently,


•Here   with the susceptibility matrix 


•One can also write down a hydro equation for the Lagrange multipliers


•Hydro is all about the dynamics of averages (and equilibrium correlation functions obtained out of them). In order to access the 
quantities that are strongly affected by the (rare) fluctuations, one also has to know how the fluctuations (regardless of their origins) 
propagate in time.
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Initial fluctuations

• To consider the propagation of fluctuations, one has to first characterise the fluctuations of the initial condition


•We are interested in the fluctuations of the mesoscopic variables . Its correlations can be obtained from a 
measure


, where  is the probability of observing the density profile  given the initial 
background density 


•Defining  via , the saddle point of  gives the 


•How do we generalise  to ?

qi(x,0) ≡ qi(ℓx,0)

dℙini[q(⋅,0)] = dμ[q(⋅,0)] e−ℓℱ[q(⋅,0)] e−ℓℱ[q(⋅,0)] qi(x,0)
𝚚ini,i(x)

β(x,0) qi(x,0) = 𝚚i[β(x,0)] dℙini[q(⋅,0)] βi(x,0) = βi
ini(x)

dℙini[q(⋅,0)] dℙini[q( ⋅ , ⋅ )]

ℱ[q(⋅,0)] = ∫ℝ
dx (βi

ini(x)(qi(x,0) − 𝚚ini,i(x)) + s[𝚚ini(x)] − s[q(x,0)]) .



Local relaxation of fluctuations

• The idea of local relaxation of fluctuations constitutes the cornerstone of the BMFT. This is the only assumption we make.


• This is closely related to local relaxation of averages . To fix , we can determine it by taking  and 
invoke


• The saddle point of it yields , i.e. . 

𝚘(x, t) = ⟨ ̂o⟩[𝚚(x, t)] o[ ∙ ] t = 0

o[q(x,0)] = 𝚘[q(x,0)] o(ℓx, ℓt) = 𝚘[q(x, t)]

Mesoscopic means of local observables (coarse-grained observables), , 

do not fluctuate independently but are fixed functionals of conserved densities, i.e.


 

o(ℓx, ℓt)

o(ℓx, ℓt) = o[q(x, t)]

⟨ ̂o⟩β(x,0) = ∫(ℝ)
dℙini[q(⋅,0)] o[q(x,0)] (because  according to the ansatz)o(x,0) = o[q(x,0)]

⟨o(x, t)⟩ℓ = 𝚘[𝚚(x, t)] o(x, t) = 𝚘[q(x, t)]

Local relaxation of averages Local relaxation of fluctuations
ℓ → ∞



•Having this assumption with , the measure  we use for the BMFT is given by


•With this measure we write the BMFT average as


   which we identify with .


•Closely related to the conventional MFT ansatz

ji(x, t) = ji(ℓx, ℓt) = 𝚓i[q(x, t)] dℙini[q( ⋅ , ⋅ )]

⟨ ∙ ⟩ℓ

dℙ[q( ⋅ , ⋅ )] = dμ[q( ⋅ , ⋅ )] e−ℓℱ[q(⋅,0)]δ[∂tq + ∂x𝚓[q]]
flat measure initial


fluctuation
continuity

equation + local relaxation 

of fluctuations

⟨⟨ ∙ ⟩⟩ℓ =
1
Z ∫(𝕊)

dμ[q( ⋅ , ⋅ )] e−ℓℱ[q(⋅,0)]δ(∂tq + ∂x𝚓[q]) ∙ , 𝕊 := ℝ × [0,T]

dℙ[q( ⋅ , ⋅ )] = dμ[q( ⋅ , ⋅ )]dμ[η( ⋅ , ⋅ )] e−ℓℱ[q(⋅,0)]δ[∂tq + ∂x j
diff

], jdiff,i := − 𝔇 j
i ∂xqj + ηi



•Using the ansatz for the measure, one can compute any average of observables. In particular we’re interested in two objects: 


• The BMFT allows us to evaluate these quantities via the path-integrals


• The power of the (B)MFT is that we don’t even have to evaluate the path-integrals, as they turn out to be dominated by their saddle 
points when !ℓ → ∞

S ̂o1,…, ̂on
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Current fluctuations from the BMFT


• Let us first look into the current fluctuations, i.e. the evaluation of 


   with 


•Clearly the path-integral is dominated by  and  such that , which can be obtained by solving the MFT equations


F(λ, T )

Scurr[q, H] := − λJi*(T ) + ℱ[q(⋅,0)] + ∫
𝕊

dtdx Hi(∂tqi + ∂x𝚓i[q])

q H δScurr = 0

⟨eλ ̂Ji*
(ℓT)⟩ = ∫(𝕊)

dμ[q( ⋅ , ⋅ )] eℓλJi*
(T)e−ℓℱ[q(⋅,0)]δ(∂tq + ∂x𝚓[q])

=: ∫(𝕊)
dμ[q( ⋅ , ⋅ )]dμ[H( ⋅ , ⋅ )]e−ℓScurr[q,H]

λδi
i*Θ(x) − βi(x,0) + βi

ini(x) − Hi(x,0) = 0,

λδi
i*Θ(x) − Hi(x, T) = 0,

∂tβi(x, t) + 𝖠 i
j [β(x, t)]∂xβ j(x, t) = 0,

∂tHi(x, t) + 𝖠 i
j [β(x, t)]∂xHj(x, t) = 0.



•Once we have the solution we can compute the SCGF as 


• In general it is hard to solve the equations, as the solution tends to be not unique due to the appearance of shocks (e.g. the TASEP). 
Some progress has been made for the TASEP by taking the totally asymmetric limit of the MFT for the WASEP


• Fortunately no shock appears in integrable systems, which turns out to be a great help in doing the BMFT for integrable systems.


• Surprisingly, the structure of the MFT equations implies the Gallavotti-Cohen fluctuation theorem (GCFT). Suppose the initial 
condition is a step-initial condition . Then the GCFT claims the symmetry


• It turns out that the symmetry follows from the fact that  and its time-reversal counterpart with the counting field 
 satisfy the same MFT equation


F(λ, T ) = ∫ λ
0

dλ′ ∫ T
0

dt 𝚓(λ′ )
i* (0,t)/T

βi
ini(x) = δi

i*(βLΘ(−x) + βRΘ(x))

𝚚(λ)
i (x, t)

λ̃ = βL − βR − λ

F(λ) = F(βL − βR − λ), F(λ) := F(λ,1)

[Bodineau and Derrida, 2006]



Dynamical correlation functions from the BMFT


• In a similar way one can also compute the Euler-scale dynamical correlation function


   with 


• As in the case of the SCGF, one can compute  out of the solution of the MFT equation involving  and . 


• Since  is the saddle point action, we have . Hence

Scorr[q, H] := − (λ1qi1(x1, t1) + λ2qi2(x2, t2)) + ℱ[q(⋅,0)] + ∫
𝕊

dtdx Hi(x, t)(∂tqi(x, t) + ∂x𝚓i[q(x, t)]) .

S ̂qi1, ̂qi2
(x1, t1; x2, t2) λ1 λ2

Ssp
corr ∂λ2

Ssp
corr = − qi2(x2, t2)

S ̂qi1, ̂qi2
(x1, t1; x2, t2) =

d2

ℓdλ1dλ2
log[∫(𝕊)

dμ[q( ⋅ , ⋅ )]exp[ℓ(λ1qi1(x1, t1) + λ2qi2(x2, t2))]e
ℓℱ[q(⋅,0)]δ(∂tq + ∂x𝚓[q])]

λ1=λ2=0

=:
d2

ℓdλ1dλ2
log[∫(𝕊)

dμ[q( ⋅ , ⋅ )]dμ[H( ⋅ , ⋅ )]e−ℓScorr[q,H]],

S ̂qi1, ̂qi2
(x1, t1; x2, t2) = −

d2

dλ1dλ2
Ssp

corr

λ1=λ2=0

.

S ̂qi1, ̂qi2
(x1, t1; x2, t2) =

d
dλ

𝚚i2(x2, t2)
λ=0

, λ := λ1



• The associated MFT equation is then


• The solution of the MFT equation actually predicts the existence of the long-range correlation amongst the fluid cells on the same 
time slice , i.e. 


• Even if there is no long-range correlation initially, it could build up by the coupling between normal modes on an inhomogeneous 
background

t1 = t2 = t

βi(x,0) − βi
ini(x) + Hi(x,0) = 0,

Hi(x, T ) = 0,
∂tβi + 𝖠 i

j ∂xβ j = 0,

∂tHi + 𝖠 i
j ∂xHj + λδi

i1δ(x − x1)δ(t − t1) = 0.

lim
ℓ→∞

⟨qi1(ℓx1, ℓt)qi2(ℓx2, ℓt)⟩ℓ = S ̂qi1, ̂qi2
(x1, t; x2, t) = Ci1i2(x1, t)δ(x1 − x2)+Ei1i2(x1, x2; t)

⟨ ∙ ⟩ℓ ≠
1
Z

Tr exp [−
N−1

∑
i=0

∫ℝ
dx βi(x /ℓ, t/ℓ) ̂qi(x,0)] ∙ for higher point functions



•Note that the long-range correlations observed here is of purely hydrodynamic nature


• For instance it is readily seen that TASEP cannot develop long-range correlations based on this mechanism


• Long-range correlations have also been observed in NESS in the partitioning protocol for different models e.g. free 1d Klein-Gordon   
model, Lieb-Liniger model where  decays as  [Doyon, Lucas, Schalm, and Bhaseen, 2015; De Nardis and Panfil, 2018]. 
But this has a different origin, which is a non-locality of the NESS density operator. A similar observation was also made for the 
symmetric simple exclusion process [Derrida, 2007]


•We are going to compute these quantities explicitly for integrable systems

⟨ ̂q0(x,0) ̂q(0,0)⟩c
NESS 1/x2

veff
i veff

j

x

t

multiple conservation laws  ✔ 
interaction                              ✔  
initial inhomogeneity            ✔

[Ortiz de Zárate and Sengers, 2004]



Generalised hydrodynamics

• In integrable systems thermodynamics as well as the dynamics of the system are dictated by the scattering data: particle species, 

dispersion relation, and the two-body S-matrix. 


•We shall consider a diagonally-scattering integrable model with a single species defined on a line. Generalisations to more 
complicated models are straightforward.


• A kinetic intuition behind GHD is that on a hydrodynamic scale, quasi-particles in integrable systems behave pretty much like tracer 
particles of hard-rods.


• This underlying similarity of kinetics among integrable systems amounts to universal structures of hydrodynamic equations.


• An exact expression of the current average turns out to be instrumental in GHD.

[Cortés Cubero, TY, and Spohn, 2021]

[Boldrighini, Dobrushin, and Sukhov, 1983; Spohn, 1991; Doyon and Spohn, 2017; Doyon, TY, and Caux, 2018]

[See reviews: Borsi, Pozsgay, and Pristyák, 2021;

Cortés Cubero, TY, and Spohn, 2021]



•On the Euler scale, quasi-particles in integrable systems are transported according to the GHD equation


• In MFT it is in fact more convenient to work with the Lagrange multipliers  (we are considering a GGE )


• To solve initial value problems we shall use the GHD equation in terms of the normal mode


• To go from the equation for  to that for , we used  where  diagonalises the flux matrix: 
.


•One of the crucial properties of the GHD equation is that its solutions always involve neither shocks nor rarefaction waves but only 
contact discontinuities (CD). CDs can be thought of as shocks without entropy production.

βθ ϱ ∼ e−βθQ̂θ

βθ ϵθ (R−1) θ
ϕ ∂t,xβϕ = ∂t,xϵθ R = 1 − nT

RAR−1 = diag veff

∂tρθ(x, t) + ∂x(veff
θ (x, t)ρθ(x, t)) = 0

∂tβθ(x, t) + A θ
ϕ [ρ.(x, t)]∂xβϕ(x, t) = 0 Note  and  with Cij = −

∂ρi

∂β j
AC = CAT A ϕ

θ :=
∂(ρθveff

θ )
∂ρϕ

∂tϵθ(x, t) + veff
θ (x, t)∂xϵθ(x, t) = 0

[Castro-Alvaredo, Doyon, and TY, 2016; Bertini, Collura, De Nardis, Fagotti, 2016]

∂t𝚚(x, t) + ∂x𝚓(x, t) = 0



Initial value problems in GHD


• Let us start with recalling how the method of characteristics works in a simple case:  with .


• For each  at , we have the characteristic curve  along which  is constant: . This implies


• Furthermore the characteristic curve is straight because clearly . The equation of characteristics can be solved as 
, i.e. 


•Having  by solving the equation, we obtain .


•We want to do the same for GHD.

∂tρ + v(ρ)∂xρ = 0 ρ(x,0) = ρ0(x)

x = u t = 0 Γu ρ(x, t) dx(u, t)
dt

= v(ρ(x(u, t), t))

d2x
dt2 = 0

dx
dt

= v(ρ(x, t)) = v(ρ(u,0)) = v(ρ0(u))

u(x, t) ρ(x, t) = ρ(u(x, t),0) = ρ0(u(x, t))

d
dt

ρ(x, t) =
∂
∂t

ρ(x, t) +
dx
dt

∂
∂x

ρ(x, t) =
∂
∂t

ρ(x, t) + v(ρ)
∂
∂x

ρ(x, t) = 0

x = v(ρ0(u))t + u Γu
t

xu

[Doyon, Spohn, and TY, 2017; Doyon 2020]



• The characteristic curve in GHD is defined by , which immediately implies  with 
.


• The characteristic curve is not straight, i.e. . One gets .


• In fact it is more convenient to fix the space time  and then construct a characteristic curve that passes  at 
.


•We thus redefine  with which we have


•How do we determine ? Clearly the characteristic curves being not straight isn’t helpful.


• The following observation makes things simpler: by changing the state-dependent coordinate change we get


•Here  is defined by  with


dxθ(u, t)
dt

= veff
θ [ϵ.(xθ(u, t), t)]

dϵθ(xθ(u, t), t)
dt

= 0
xθ(u,0) = u

d2xθ(u, t)

dt2 ≠ 0 ϵθ(xθ(u, t), t) = ϵθ(xθ(u,0),0) = ϵθ(u,0)

(x′ , t′ ) x = uθ(x′ , t′ )
t = 0

u = uθ(x, t), xθ(uθ(x, t), t) = x

uθ(x, t)

̂ϵθ(q, t) ̂ϵθ(qθ(x, t), t) = ϵθ(x, t)

Γθ
x′ ,t′ 

t

x
uθ(x′ , t′ )

(x′ , t′ )

ϵθ(x, t) = ϵθ(uθ(x, t),0)

[Doyon, Spohn, and TY, 2017]∂t ̂ϵθ(q, t) + v−
θ ∂x ̂ϵθ(q, t) = 0, v−

θ := veff
θ 𝒦θ[n−]

qθ(x, t) := ∫
x

x0

dy 𝒦θ[ϵ.(y, t)], 𝒦θ[ϵ.] :=
(p′ )dr

θ [ϵ.]
p′ θ

, hdr
θ := (R−T) ϕ

θ hϕ



•Quasi-particles are now transported freely according to the above equation but on the state-dependent phase space 
. The asymptotic coordinate  is chosen so that  for all  at any time .


• The equation is trivially solved by . Using the definition of  i.e.  and 
, it immediately follows that


•We thus get the solution of the characteristics in GHD, which also determines 


• In the -coordinate space the characteristic lines are all straight. Also importantly they share the same velocity , which is in 
accordance with the fact that there is no shock in GHD.


• Alternatively the above solution can also be written as

dqdθ = 𝒦θ[ϵ(x)]dxdθ x0 ρθ(x, t) = ρ−
θ x0 ≤ x t ∈ [0,T]

̂ϵθ(q, t) = ̂ϵ(q − v−
θ t,0) uθ(x, t) ϵθ(x, t) = ϵθ(uθ(x, t),0)

̂ϵθ(qθ(x, t), t) = ϵθ(x, t)

uθ(x, t)

q v−
θ

∫
uθ(x,t)

x0

dy 𝒦θ[ϵ0
. (y)] + v−

θ t = ∫
x

x0

dy 𝒦θ[ϵ.(y, t)]

̂ϵθ(qθ(uθ(x, t),0),0) = ̂ϵ(qθ(x, t) − v−
θ t,0)

qθ(x, t) = v−
θ t + qθ(uθ(x, t),0)

Γ̂θ
q,t

t

q
qθ(x,0)



Current fluctuations in integrable systems

•We simply adopt the BMFT we formulated to (quantum) integrable systems. We want to compute 

. The MFT equation is


•We rewrite it in terms of normal modes. Recall that   and  are related by . Motivated by this we define 
normal modes associated to :


• The property  is instrumental


F(λ, T ) = lim
ℓ→∞

log⟨eλ ̂Ji*
(ℓT)⟩ℓ /(ℓT )

βθ ϵθ (R−1) θ
ϕ ∂t,xβϕ = ∂t,xϵθ

Hθ

∂t∂xGθ = ∂x∂tGθ

λhθδθ
θ*

Θ(x) − βθ(x,0) + βθ
ini(x) − Hθ(x,0) = 0

−λhθδθ
θ*

Θ(x) + Hθ(x, T ) = 0

∂tβθ(x, t) + A θ
ϕ (x, t)∂xβϕ(x, t) = 0

∂tHθ(x, t) + A θ
ϕ (x, t)∂xHϕ(x, t) = 0

Q̂i |θ⟩ = hθ
i |θ⟩

hθ:= hθ
i*

(R−1) θ
ϕ ∂t,xHϕ =: ∂t,xGθ



• The MFT equation for the auxiliary field becomes


• The method of characteristics allows us to solve the equation via , where 
. 


•With this the MFT equation is now recast into the GHD equation with the -dependent initial condition


• The evaluation of the current  gives 

Gθ(x, t) = Gθ(rθ(x, t), T ) = hdr;θ(0,T )Θ(rθ(x, t))
rθ(x, t) = 𝒰θ(x, t; T )

λ

j(λ)
θ (0,t) F(λ, T )

λhdr;θ(0,T )Θ(x) − Gθ(x, T ) = 0
∂tGθ(x, t) + veff;θ(x, t)∂xGθ(x, t) = 0

, (adr,θ := (R−T)θ
ϕaϕ)

t

x
uθ(x, t)

(x, t)

T
rθ(x, t)

s

𝒰θ(x, t; s)βθ(x,0) = βθ
ini(x) + λhθΘ(x) − λR θ

ϕ (0,T )Θ(x − uϕ(0,T ))hdr;ϕ(0,T )

∂tβθ(x, t) + 𝖠 θ
ϕ (x, t)∂xβϕ(x, t) = 0



• In the homogeneous case one can readily compute the cumulants and get


• They coincide with the results obtained by the Ballistic fluctuation theory, which were also corroborated against Hard-rod 
simulations.


• A virtue of the BMFT is that the extension to inhomogeneous cases is straightforward. For instance we computed  for the 
partitioning protocol and obtained


c2

chom
2 = χθ |veff

θ | (hdr;θ
i*

)2

chom
3 = χϕ |veff

ϕ |hdr;ϕ
i* (sϕ f̃ϕ(hdr;ϕ

i*
)2 + 3[sf(hdr

i* )2]dr
ϕ ) .

cpart
2 = χθ(0) |veff

θ (0) | (hdr;θ
i*

(0))2

Fully fixed by the NESS at !ξ = 0



• A gas of hard-rods consists of rigid rods that scatter elastically, and hence is an integrable system


• The onset to the stationary value is controlled by the diffusive corrections
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Euler dynamical correlation functions in integrable systems


• The MFT equation for the correlation function  is


• In terms of the solution, the correlator is computed by


S ̂qi1, ̂qi2
(x1, t1; x2, t2)

βθ(x,0) − βθ
ini(x) + Hθ(x,0) = 0

Hθ(x, T ) = 0
∂tβθ + 𝖠 θ

ϕ ∂xβϕ = 0

∂tHθ + 𝖠 θ
ϕ ∂xHϕ + λhθ

i1δ(x − x1)δ(t − t1) = 0

, t1, t2 ≠ 0,T

S ̂qi1, ̂qi2
(x1, t1; x2, t2) =

d
dλ

𝚚i2(x2, t2)
λ=0

= − [(hi2)
dr;θ χθ∂λϵθ](x2, t2)

λ=0
.



• As in the case of SCGF, the MFT equation is reduced to the following GHD equation


• Let us take . The Euler dynamical correlator  turns out to be given byt1 = t2 = t S ̂qi1, ̂qi2
(x1, t; x2, t)

βθ(x,0) = βθ
ini(x) − λ∂ ((RT)θ

ϕ(x1, t1)hdr;ϕ(x1, t1)Θ(x − uϕ))
∂tβθ(x, t) + 𝖠 θ

ϕ (x, t)∂xβϕ(x, t) = 0

S ̂qi1, ̂qi2
(x1, t; x2, t) = Ci1i2(x1, t)δ(x1 − x2)+Ei1i2(x1, x2; t), Ci1i2(x1, t) := [(hi1)

dr;θ χθ(hi2)
dr;θ](x1, t)

Ei1i2(x1, x2; t) := − [hdr;θ
i2

χθℰθ](x2, t)

ℰθ(x, t) = ℰθ
0(x, t) + wθ(x, t)∫

x

−∞
dy[χℰ]dr;θ(y, t)

wθ(x, t) :=
∂ϵθ

ini(uθ(x, t))
ρtot;θ(uθ(x, t),0)

ℰθ
0(x, t) = 𝒟θ

1(x, t) + 𝒟θ
2(x, t)

𝒟θ
1(x, t) := (R−T)θ

ϕ(uθ(x, t),0)∂ [(RT)ϕ
αhdr;α](x1, t)Θ(uθ(x, t) − uα(x1, t)) − wθ(x, t)[χhdr]dr;θ(x1, t)Θ(x2 − x1)

𝒟θ
2(x, t) := − wθ(x, t)∫

uθ(x,t)

−∞
dy[χ𝒟3]dr;θ(y,0)

𝒟θ
3(x,0) := − hdr;θ(x1, t)

δ(x − uθ(x1, t))
∂𝒰θ(uθ(x1, t),0; t)

+ (R−T)θ
ϕ(x,0)∂ [(RT)ϕ

αhdr;α](x1, t)Θ(x − uα(x1, t))



•Despite of the small numbers, the agreements are very satisfying!


• By increasing , one can observe the convergence of the numbersℓ
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Conclusions and outlooks


• The BMFT is a new theory to study the fluctuation-induced physics, such as current fluctuations and large scale dynamical 
correlation functions, in ballistic many-body systems


• The underlying idea of the BMFT is local relaxation of fluctuations


• It works particularly well for integrable systems. The results also agree with hard-rods simulations very well.


• The BMFT should be applicable to other ballistic systems, e.g. the anharmonic chain. Will we indeed see the expected long-range 
correlations?


• It is highly desirable to derive our predictions microscopically using a simple model such as the AHR model.


•Obtaining the KPZ function from the BMFT+superdiffusive corrections?


•Quantum fluctuations?


